Skip to main content
Erschienen in: Cellulose 3/2020

30.11.2019 | Review Paper

Cellulose nanomaterials: new generation materials for solving global issues

verfasst von: T. C. Mokhena, M. J. John

Erschienen in: Cellulose | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This review describes the recent advances in the production and application of cellulose nanomaterials. Cellulose nanomaterials (CNMs), especially cellulose nanocrystals and cellulose nanofibers, can be produced using different preparation processes resulting in materials with unique structures and physicochemical properties that are exploited in different fields such as, biomedical, sensors, in wastewater treatment, paper and board/packaging industry. These materials possess attractive properties such as large surface area, high tensile strength and stiffness, surface tailor-ability via hydroxyl groups and are renewable. This has been a driving force to produce these materials in industrial scale with several companies producing CNMs at tons-per-day scale. The recent developments in their production rate and their applications in various fields such as medical sector, environmental protection, energy harvesting/storage are comprehensively discussed in this review. We emphasize on the current trends and future remarks based on the production and applications of cellulose nanomaterials.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017CrossRef Abe K, Yano H (2009) Comparison of the characteristics of cellulose microfibril aggregates of wood, rice straw and potato tuber. Cellulose 16(6):1017CrossRef
Zurück zum Zitat Abraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475CrossRef Abraham E, Deepa B, Pothan L, Jacob M, Thomas S, Cvelbar U, Anandjiwala R (2011) Extraction of nanocellulose fibrils from lignocellulosic fibres: a novel approach. Carbohydr Polym 86(4):1468–1475CrossRef
Zurück zum Zitat Abushammala H, Krossing I, Laborie M-P (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616CrossRefPubMed Abushammala H, Krossing I, Laborie M-P (2015) Ionic liquid-mediated technology to produce cellulose nanocrystals directly from wood. Carbohydr Polym 134:609–616CrossRefPubMed
Zurück zum Zitat Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–wheat straw and soy hulls. Biores Technol 99(6):1664–1671CrossRef Alemdar A, Sain M (2008) Isolation and characterization of nanofibers from agricultural residues–wheat straw and soy hulls. Biores Technol 99(6):1664–1671CrossRef
Zurück zum Zitat Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7(2):163–173CrossRef Anwar Z, Gulfraz M, Irshad M (2014) Agro-industrial lignocellulosic biomass a key to unlock the future bio-energy: a brief review. J Radiat Res Appl Sci 7(2):163–173CrossRef
Zurück zum Zitat Ávila HM, Schwarz S, Rotter N, Gatenholm P (2016) 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting 1:22–35CrossRef Ávila HM, Schwarz S, Rotter N, Gatenholm P (2016) 3D bioprinting of human chondrocyte-laden nanocellulose hydrogels for patient-specific auricular cartilage regeneration. Bioprinting 1:22–35CrossRef
Zurück zum Zitat Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3:1–14CrossRef Azeredo HMC, Barud H, Farinas CS, Vasconcellos VM, Claro AM (2019) Bacterial cellulose as a raw material for food and food packaging applications. Front Sustain Food Syst 3:1–14CrossRef
Zurück zum Zitat Azrina ZZ, Beg MDH, Rosli M, Ramli R, Junadi N, Alam AM (2017) Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohydr Polym 162:115–120CrossRef Azrina ZZ, Beg MDH, Rosli M, Ramli R, Junadi N, Alam AM (2017) Spherical nanocrystalline cellulose (NCC) from oil palm empty fruit bunch pulp via ultrasound assisted hydrolysis. Carbohydr Polym 162:115–120CrossRef
Zurück zum Zitat Baheti V, Abbasi R, Militky J (2012) Ball milling of jute fibre wastes to prepare nanocellulose. World J Eng 9(1):45–50CrossRef Baheti V, Abbasi R, Militky J (2012) Ball milling of jute fibre wastes to prepare nanocellulose. World J Eng 9(1):45–50CrossRef
Zurück zum Zitat Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21(3):1655–1665CrossRef Batmaz R, Mohammed N, Zaman M, Minhas G, Berry RM, Tam KC (2014) Cellulose nanocrystals as promising adsorbents for the removal of cationic dyes. Cellulose 21(3):1655–1665CrossRef
Zurück zum Zitat Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42(3):502–507CrossRef Battista OA (1950) Hydrolysis and crystallization of cellulose. Ind Eng Chem 42(3):502–507CrossRef
Zurück zum Zitat Battista O, Coppick S, Howsmon J, Morehead F, Sisson WA (1956) Level-off degree of polymerization. Ind Eng Chem 48(2):333–335CrossRef Battista O, Coppick S, Howsmon J, Morehead F, Sisson WA (1956) Level-off degree of polymerization. Ind Eng Chem 48(2):333–335CrossRef
Zurück zum Zitat Bauli CR, Rocha DB, de Oliveira SA, Rosa DS (2019) Cellulose nanostructures from wood waste with low input consumption. J Clean Prod 211:408–416CrossRef Bauli CR, Rocha DB, de Oliveira SA, Rosa DS (2019) Cellulose nanostructures from wood waste with low input consumption. J Clean Prod 211:408–416CrossRef
Zurück zum Zitat Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10(8):2144–2151PubMedCrossRef Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10(8):2144–2151PubMedCrossRef
Zurück zum Zitat Bian H, Chen L, Dai H, Zhu JY (2017a) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Polym 167:167–176PubMedCrossRef Bian H, Chen L, Dai H, Zhu JY (2017a) Integrated production of lignin containing cellulose nanocrystals (LCNC) and nanofibrils (LCNF) using an easily recyclable di-carboxylic acid. Carbohydr Polym 167:167–176PubMedCrossRef
Zurück zum Zitat Bian H, Chen L, Gleisner R, Dai H, Zhu JY (2017b) Producing wood-based nanomaterials by rapid fractionation of wood at 80 °C using a recyclable acid hydrotrope. Greeen Chem 19(14):3370–3379CrossRef Bian H, Chen L, Gleisner R, Dai H, Zhu JY (2017b) Producing wood-based nanomaterials by rapid fractionation of wood at 80 °C using a recyclable acid hydrotrope. Greeen Chem 19(14):3370–3379CrossRef
Zurück zum Zitat Bian H, Gao Y, Yang Y, Fang G, Dai H (2018) Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresour Technol 256:321–327PubMedCrossRef Bian H, Gao Y, Yang Y, Fang G, Dai H (2018) Improving cellulose nanofibrillation of waste wheat straw using the combined methods of prewashing, p-toluenesulfonic acid hydrolysis, disk grinding, and endoglucanase post-treatment. Bioresour Technol 256:321–327PubMedCrossRef
Zurück zum Zitat Blanco A, Monte MC, Campano C, Balea A, Merayo N, Negro C (2018) Nanocellulose for industrial use: cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 74–126CrossRef Blanco A, Monte MC, Campano C, Balea A, Merayo N, Negro C (2018) Nanocellulose for industrial use: cellulose nanofibers (CNF), cellulose nanocrystals (CNC), and bacterial cellulose (BC). In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 74–126CrossRef
Zurück zum Zitat Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez J-Y (2016) Nanocomposite poly(vinyl fluride)/nanocrystalline cellulose porous membranes as separators fro lithium-ion batteries. Electrochim Acta 214:38–48CrossRef Bolloli M, Antonelli C, Molméret Y, Alloin F, Iojoiu C, Sanchez J-Y (2016) Nanocomposite poly(vinyl fluride)/nanocrystalline cellulose porous membranes as separators fro lithium-ion batteries. Electrochim Acta 214:38–48CrossRef
Zurück zum Zitat Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630CrossRef Bondeson D, Oksman K (2007) Dispersion and characteristics of surfactant modified cellulose whiskers nanocomposites. Compos Interfaces 14(7–9):617–630CrossRef
Zurück zum Zitat Budhi Y, Fakhrudin M, Culsum N, Suendo V, Iskandar F (2018) Preparation of cellulose nanocrystals from empty fruit bunch of palm oil by using phosphotungstic acid. In: IOP conference series: earth and environmental science, IOP Publishing, vol 1, p 012063CrossRef Budhi Y, Fakhrudin M, Culsum N, Suendo V, Iskandar F (2018) Preparation of cellulose nanocrystals from empty fruit bunch of palm oil by using phosphotungstic acid. In: IOP conference series: earth and environmental science, IOP Publishing, vol 1, p 012063CrossRef
Zurück zum Zitat Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14(4):1223–1230PubMedCrossRef Camarero Espinosa S, Kuhnt T, Foster EJ, Weder C (2013) Isolation of thermally stable cellulose nanocrystals by phosphoric acid hydrolysis. Biomacromolecules 14(4):1223–1230PubMedCrossRef
Zurück zum Zitat Cao X, Huang M, Ding B, Yu J, Sun G (2013) Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification. Desalination 316:120–126CrossRef Cao X, Huang M, Ding B, Yu J, Sun G (2013) Robust polyacrylonitrile nanofibrous membrane reinforced with jute cellulose nanowhiskers for water purification. Desalination 316:120–126CrossRef
Zurück zum Zitat Carlmark A, Larsson E, Malmström E (2012) Grafting of cellulose by ring-opening polymerisation–a review. Eur Polym J 48(10):1646–1659CrossRef Carlmark A, Larsson E, Malmström E (2012) Grafting of cellulose by ring-opening polymerisation–a review. Eur Polym J 48(10):1646–1659CrossRef
Zurück zum Zitat Castro C, Zuluaga R, Álvarez C, Putaux J-L, Caro G, Orlando JR, Mondraggon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89(4):1033–1037PubMedCrossRef Castro C, Zuluaga R, Álvarez C, Putaux J-L, Caro G, Orlando JR, Mondraggon I, Gañán P (2012) Bacterial cellulose produced by a new acid-resistant strain of Gluconacetobacter genus. Carbohydr Polym 89(4):1033–1037PubMedCrossRef
Zurück zum Zitat Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19(2):401–410CrossRef Cervin NT, Aulin C, Larsson PT, Wågberg L (2012) Ultra porous nanocellulose aerogels as separation medium for mixtures of oil/water liquids. Cellulose 19(2):401–410CrossRef
Zurück zum Zitat Charreau H, Foresti ML, Vázquez (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrytals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80PubMedCrossRef Charreau H, Foresti ML, Vázquez (2013) Nanocellulose patents trends: a comprehensive review on patents on cellulose nanocrytals, microfibrillated and bacterial cellulose. Recent Pat Nanotechnol 7:56–80PubMedCrossRef
Zurück zum Zitat Chauve G, Bras J (2014) Industrial point of view of nanocellulose materials and their possible applications. In: Handbook of green materials: 1 Bionanomaterials: separation processes, characterization and properties. World Scientific, pp 233–252 Chauve G, Bras J (2014) Industrial point of view of nanocellulose materials and their possible applications. In: Handbook of green materials: 1 Bionanomaterials: separation processes, characterization and properties. World Scientific, pp 233–252
Zurück zum Zitat Chen W, Yu H, Liu Y (2011a) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461CrossRef Chen W, Yu H, Liu Y (2011a) Preparation of millimeter-long cellulose I nanofibers with diameters of 30–80 nm from bamboo fibers. Carbohydr Polym 86(2):453–461CrossRef
Zurück zum Zitat Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRef Chen W, Yu H, Liu Y, Chen P, Zhang M, Hai Y (2011b) Individualization of cellulose nanofibers from wood using high-intensity ultrasonication combined with chemical pretreatments. Carbohydr Polym 83(4):1804–1811CrossRef
Zurück zum Zitat Chen L, Cao W, Quinlan PJ, Berry RM, Tam KC (2015) Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals. ACS Sustain Chem Eng 3(5):978–985CrossRef Chen L, Cao W, Quinlan PJ, Berry RM, Tam KC (2015) Sustainable catalysts from gold-loaded polyamidoamine dendrimer-cellulose nanocrystals. ACS Sustain Chem Eng 3(5):978–985CrossRef
Zurück zum Zitat Chen L, Zhu J, Baez C, Kitin P, Elder T (2016a) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843CrossRef Chen L, Zhu J, Baez C, Kitin P, Elder T (2016a) Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chem 18(13):3835–3843CrossRef
Zurück zum Zitat Chen YW, Tan TH, Lee HV, Abd Hamid SB (2017) Easy fabrication of highly thermal-stable cellulose nanocrystals using Cr (NO3) 3 catalytic hydrolysis system: a feasibility study from macro-to nano-dimensions. Materials 10(1):42PubMedCentralCrossRef Chen YW, Tan TH, Lee HV, Abd Hamid SB (2017) Easy fabrication of highly thermal-stable cellulose nanocrystals using Cr (NO3) 3 catalytic hydrolysis system: a feasibility study from macro-to nano-dimensions. Materials 10(1):42PubMedCentralCrossRef
Zurück zum Zitat Chen X-Q, Deng X-Y, Shen W-H, Jia M-Y (2018) Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydr Polym 181:879–884PubMedCrossRef Chen X-Q, Deng X-Y, Shen W-H, Jia M-Y (2018) Preparation and characterization of the spherical nanosized cellulose by the enzymatic hydrolysis of pulp fibers. Carbohydr Polym 181:879–884PubMedCrossRef
Zurück zum Zitat Cheng Q, Wang S, Rials TG, Lee S-H (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602CrossRef Cheng Q, Wang S, Rials TG, Lee S-H (2007) Physical and mechanical properties of polyvinyl alcohol and polypropylene composite materials reinforced with fibril aggregates isolated from regenerated cellulose fibers. Cellulose 14(6):593–602CrossRef
Zurück zum Zitat Cheng Q, Wang S, Rials TG (2009) Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos A Appl Sci Manuf 40(2):218–224CrossRef Cheng Q, Wang S, Rials TG (2009) Poly (vinyl alcohol) nanocomposites reinforced with cellulose fibrils isolated by high intensity ultrasonication. Compos A Appl Sci Manuf 40(2):218–224CrossRef
Zurück zum Zitat Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115(5):2756–2762CrossRef Cheng Q, Wang S, Han Q (2010) Novel process for isolating fibrils from cellulose fibers by high-intensity ultrasonication. II. Fibril characterization. J Appl Polym Sci 115(5):2756–2762CrossRef
Zurück zum Zitat Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2(1):251–258CrossRef Cheng M, Qin Z, Liu Y, Qin Y, Li T, Chen L, Zhu M (2014) Efficient extraction of carboxylated spherical cellulose nanocrystals with narrow distribution through hydrolysis of lyocell fibers by using ammonium persulfate as an oxidant. J Mater Chem A 2(1):251–258CrossRef
Zurück zum Zitat Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725CrossRef Cherian BM, Leão AL, de Souza SF, Thomas S, Pothan LA, Kottaisamy M (2010) Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydr Polym 81(3):720–725CrossRef
Zurück zum Zitat Chinga-Carrasco G (2013) Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron 48:42–48PubMedCrossRef Chinga-Carrasco G (2013) Optical methods for the quantification of the fibrillation degree of bleached MFC materials. Micron 48:42–48PubMedCrossRef
Zurück zum Zitat Cobut A, Sehaqui H, Berglund LA (2014) Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix. BioResources 9(2):3276–3289CrossRef Cobut A, Sehaqui H, Berglund LA (2014) Cellulose nanocomposites by melt compounding of TEMPO-treated wood fibers in thermoplastic starch matrix. BioResources 9(2):3276–3289CrossRef
Zurück zum Zitat Crotogino R (2012) NanoCellulose. In: International symposium on assessing the economic impact of nanotechnology, p 28 Crotogino R (2012) NanoCellulose. In: International symposium on assessing the economic impact of nanotechnology, p 28
Zurück zum Zitat Csiszár E, Nagy S (2017) A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydr Polym 174:740–749PubMedCrossRef Csiszár E, Nagy S (2017) A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting films with glycerol and sorbitol plasticisers. Carbohydr Polym 174:740–749PubMedCrossRef
Zurück zum Zitat De Adhikari A, Oraon R, Tiwari S, Lee JH, Nayak G (2015) Effect of waste cellulose fibres on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application. RSC Adv 5(35):27347–27355CrossRef De Adhikari A, Oraon R, Tiwari S, Lee JH, Nayak G (2015) Effect of waste cellulose fibres on the charge storage capacity of polypyrrole and graphene/polypyrrole electrodes for supercapacitor application. RSC Adv 5(35):27347–27355CrossRef
Zurück zum Zitat De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef De France KJ, Hoare T, Cranston ED (2017) Review of hydrogels and aerogels containing nanocellulose. Chem Mater 29:4609–4631CrossRef
Zurück zum Zitat De Menezes AJ, Siqueira G, Curvelo AA, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563CrossRef De Menezes AJ, Siqueira G, Curvelo AA, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563CrossRef
Zurück zum Zitat De Oliveira RL, da Silva BH, de Assunҫao RM, da Silva MC, Carvalho GO, Filho GR, Messaddeq Y, Ribeiro (2011) Synthesis and characterization of microcrstalline cellulose produced from bacterial cellulose. J Therm Anal Calorim 106(3):703–709CrossRef De Oliveira RL, da Silva BH, de Assunҫao RM, da Silva MC, Carvalho GO, Filho GR, Messaddeq Y, Ribeiro (2011) Synthesis and characterization of microcrstalline cellulose produced from bacterial cellulose. J Therm Anal Calorim 106(3):703–709CrossRef
Zurück zum Zitat Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, De Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Biores Technol 102(2):1988–1997CrossRef Deepa B, Abraham E, Cherian BM, Bismarck A, Blaker JJ, Pothan LA, Leao AL, De Souza SF, Kottaisamy M (2011) Structure, morphology and thermal characteristics of banana nano fibers obtained by steam explosion. Biores Technol 102(2):1988–1997CrossRef
Zurück zum Zitat Desmaisons J, Boutonnet E, Rueff M, Dufresne A, Bras J (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329PubMedCrossRef Desmaisons J, Boutonnet E, Rueff M, Dufresne A, Bras J (2017) A new quality index for benchmarking of different cellulose nanofibrils. Carbohydr Polym 174:318–329PubMedCrossRef
Zurück zum Zitat Dimic-Misic K, Gane PAC, Paltakari J (2013a) Micro-and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind Eng Chem Res 52(45):16066–16083CrossRef Dimic-Misic K, Gane PAC, Paltakari J (2013a) Micro-and nanofibrillated cellulose as a rheology modifier additive in CMC-containing pigment-coating formulations. Ind Eng Chem Res 52(45):16066–16083CrossRef
Zurück zum Zitat Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Paltakari J, Maloney T (2013b) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20(6):2847–2861CrossRef Dimic-Misic K, Puisto A, Gane P, Nieminen K, Alava M, Paltakari J, Maloney T (2013b) The role of MFC/NFC swelling in the rheological behavior and dewatering of high consistency furnishes. Cellulose 20(6):2847–2861CrossRef
Zurück zum Zitat Dong Ntoutou GMA, Granet R, Mbakid JP, Brégier F, Léger DY, Fidanzi-Dugas C, Lequart V, Joly N, Liagre B, Chaleix V, Sol V (2016) Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Biorgan Med Chem Lett 26(3):941–945CrossRef Dong Ntoutou GMA, Granet R, Mbakid JP, Brégier F, Léger DY, Fidanzi-Dugas C, Lequart V, Joly N, Liagre B, Chaleix V, Sol V (2016) Development of curcumin–cyclodextrin/cellulose nanocrystals complexes: new anticancer drug delivery systems. Biorgan Med Chem Lett 26(3):941–945CrossRef
Zurück zum Zitat Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Si C, Li B (2016a) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23(4):2389–2407CrossRef Du H, Liu C, Mu X, Gong W, Lv D, Hong Y, Si C, Li B (2016a) Preparation and characterization of thermally stable cellulose nanocrystals via a sustainable approach of FeCl3-catalyzed formic acid hydrolysis. Cellulose 23(4):2389–2407CrossRef
Zurück zum Zitat Du H, Lui C, Zhang Y, Yu G, Si C, Li B (2016b) Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind Crops Prod 94:736–745CrossRef Du H, Lui C, Zhang Y, Yu G, Si C, Li B (2016b) Preparation and characterization of functional cellulose nanofibrils via formic acid hydrolysis pretreatment and the followed high-pressure homogenization. Ind Crops Prod 94:736–745CrossRef
Zurück zum Zitat Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8CrossRef Dufresne A (2017) Cellulose nanomaterial reinforced polymer nanocomposites. Curr Opin Colloid Interface Sci 29:1–8CrossRef
Zurück zum Zitat Dufresne A (2018) Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos Trans R Soc A 376(2112):20170040CrossRef Dufresne A (2018) Cellulose nanomaterials as green nanoreinforcements for polymer nanocomposites. Philos Trans R Soc A 376(2112):20170040CrossRef
Zurück zum Zitat Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194CrossRef Dufresne A, Cavaillé JY, Vignon MR (1997) Mechanical behavior of sheets prepared from sugar beet cellulose microfibrils. J Appl Polym Sci 64(6):1185–1194CrossRef
Zurück zum Zitat Durán N, Lemes AP, Seabra AB (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28PubMedCrossRef Durán N, Lemes AP, Seabra AB (2012) Review of cellulose nanocrystals patents: preparation, composites and general applications. Recent Pat Nanotechnol 6:16–28PubMedCrossRef
Zurück zum Zitat Dutta S, Kim J, Ide Y, Kim JH, Hossain MSA, Bando Y, Yamauchi Y, Wu KC-W (2017) 3D network of cellulose-based energy storage devices and related emerging applications. Mater Horizons 4(4):522–545CrossRef Dutta S, Kim J, Ide Y, Kim JH, Hossain MSA, Bando Y, Yamauchi Y, Wu KC-W (2017) 3D network of cellulose-based energy storage devices and related emerging applications. Mater Horizons 4(4):522–545CrossRef
Zurück zum Zitat Eisa WH, Abdelgawad AM, Rojas OJ (2018) Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic activity. ACS Sustain Chem Eng 6(3):3974–3983CrossRef Eisa WH, Abdelgawad AM, Rojas OJ (2018) Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic activity. ACS Sustain Chem Eng 6(3):3974–3983CrossRef
Zurück zum Zitat Ellebracht NC, Jones CW (2018) Amine-functionalization of cellulose nanocrystals for acid-base organocatalyis: surface chemistry, cross-linking, and solvent effects. Cellulose 25(11):6495–6512CrossRef Ellebracht NC, Jones CW (2018) Amine-functionalization of cellulose nanocrystals for acid-base organocatalyis: surface chemistry, cross-linking, and solvent effects. Cellulose 25(11):6495–6512CrossRef
Zurück zum Zitat Espino-Pérez E, Domenek S, Belgacem N, Cc Sillard, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15(12):4551–4560PubMedCrossRef Espino-Pérez E, Domenek S, Belgacem N, Cc Sillard, Bras J (2014) Green process for chemical functionalization of nanocellulose with carboxylic acids. Biomacromolecules 15(12):4551–4560PubMedCrossRef
Zurück zum Zitat Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Chen Q, Li Y, Han X, Lee S (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14(2):765–773PubMedCrossRef Fang Z, Zhu H, Yuan Y, Ha D, Zhu S, Preston C, Chen Q, Li Y, Han X, Lee S (2014) Novel nanostructured paper with ultrahigh transparency and ultrahigh haze for solar cells. Nano Lett 14(2):765–773PubMedCrossRef
Zurück zum Zitat Favier V, Canova G, Cavaillé J, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355CrossRef Favier V, Canova G, Cavaillé J, Chanzy H, Dufresne A, Gauthier C (1995) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6(5):351–355CrossRef
Zurück zum Zitat Ferreira F, Mariano M, Rabelo S, Gouveia R, Lona L (2018) Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro-to a nano-scale view. Appl Surf Sci 436:1113–1122CrossRef Ferreira F, Mariano M, Rabelo S, Gouveia R, Lona L (2018) Isolation and surface modification of cellulose nanocrystals from sugarcane bagasse waste: from a micro-to a nano-scale view. Appl Surf Sci 436:1113–1122CrossRef
Zurück zum Zitat Ferrer A, Filpponen I, Rodríguez A, Laine J, Rojas OJ (2012) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Biores Technol 125:249–255CrossRef Ferrer A, Filpponen I, Rodríguez A, Laine J, Rojas OJ (2012) Valorization of residual empty palm fruit bunch fibers (EPFBF) by microfluidization: production of nanofibrillated cellulose and EPFBF nanopaper. Biores Technol 125:249–255CrossRef
Zurück zum Zitat Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Biores Technol 100(7):2259–2264CrossRef Filson PB, Dawson-Andoh BE (2009) Sono-chemical preparation of cellulose nanocrystals from lignocellulose derived materials. Biores Technol 100(7):2259–2264CrossRef
Zurück zum Zitat Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814CrossRef Filson PB, Dawson-Andoh BE, Schwegler-Berry D (2009) Enzymatic-mediated production of cellulose nanocrystals from recycled pulp. Green Chem 11(11):1808–1814CrossRef
Zurück zum Zitat Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny J (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956PubMedCrossRef Fortunati E, Peltzer M, Armentano I, Torre L, Jiménez A, Kenny J (2012) Effects of modified cellulose nanocrystals on the barrier and migration properties of PLA nano-biocomposites. Carbohydr Polym 90(2):948–956PubMedCrossRef
Zurück zum Zitat Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJ, Cranston ED, Eichhorn SJ (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47(8):2609–2679CrossRefPubMed Foster EJ, Moon RJ, Agarwal UP, Bortner MJ, Bras J, Camarero-Espinosa S, Chan KJ, Clift MJ, Cranston ED, Eichhorn SJ (2018) Current characterization methods for cellulose nanomaterials. Chem Soc Rev 47(8):2609–2679CrossRefPubMed
Zurück zum Zitat Fraschini C, Chauve G, Bouchard J (2017) TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 24(7):2775–2790CrossRef Fraschini C, Chauve G, Bouchard J (2017) TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs). Cellulose 24(7):2775–2790CrossRef
Zurück zum Zitat Gao R, Xiao S, Gan W, Liu Q, Amer H, Rosenau T, Li J, Lu Y (2018) Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels fro oil/water separation. ACS Sustain Chem Eng 6(7):9047–9055CrossRef Gao R, Xiao S, Gan W, Liu Q, Amer H, Rosenau T, Li J, Lu Y (2018) Mussel adhesive-inspired design of superhydrophobic nanofibrillated cellulose aerogels fro oil/water separation. ACS Sustain Chem Eng 6(7):9047–9055CrossRef
Zurück zum Zitat Goetz LA, Naseri N, Nair SS, Karim Z, Mathew AP (2018) All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals. Cellulose 25(5):3011–3023CrossRef Goetz LA, Naseri N, Nair SS, Karim Z, Mathew AP (2018) All cellulose electrospun water purification membranes nanotextured using cellulose nanocrystals. Cellulose 25(5):3011–3023CrossRef
Zurück zum Zitat Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromol 12(7):2456–2465CrossRef Goffin A-L, Raquez J-M, Duquesne E, Siqueira G, Habibi Y, Dufresne A, Dubois P (2011) From interfacial ring-opening polymerization to melt processing of cellulose nanowhisker-filled polylactide-based nanocomposites. Biomacromol 12(7):2456–2465CrossRef
Zurück zum Zitat Gong X, Wang Y, Zeng H, Betti M, Chen L (2019) Highly porous, hydrophobic, and compresssible cellulose nanocrystals/poly(vinyl alcohol) aerogels as recyclable absorbents for oil-water separation. ACS Sustain Chem Eng 7(13):11118–11128CrossRef Gong X, Wang Y, Zeng H, Betti M, Chen L (2019) Highly porous, hydrophobic, and compresssible cellulose nanocrystals/poly(vinyl alcohol) aerogels as recyclable absorbents for oil-water separation. ACS Sustain Chem Eng 7(13):11118–11128CrossRef
Zurück zum Zitat Hamid SBA, Zain SK, Das R, Centi G (2016) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr Polym 138:349–355PubMedCrossRef Hamid SBA, Zain SK, Das R, Centi G (2016) Synergic effect of tungstophosphoric acid and sonication for rapid synthesis of crystalline nanocellulose. Carbohydr Polym 138:349–355PubMedCrossRef
Zurück zum Zitat Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244CrossRef Hasani M, Cranston ED, Westman G, Gray DG (2008) Cationic surface functionalization of cellulose nanocrystals. Soft Matter 4(11):2238–2244CrossRef
Zurück zum Zitat Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: J Appl Polym Sci Appl Polym Symp, vol CONF-8205234-Vol 2. ITT Rayonier Inc., Shelton, WA Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. In: J Appl Polym Sci Appl Polym Symp, vol CONF-8205234-Vol 2. ITT Rayonier Inc., Shelton, WA
Zurück zum Zitat Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22(1):421–433CrossRef Ho TTT, Abe K, Zimmermann T, Yano H (2015) Nanofibrillation of pulp fibers by twin-screw extrusion. Cellulose 22(1):421–433CrossRef
Zurück zum Zitat Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47CrossRef Hokkanen S, Repo E, Sillanpää M (2013) Removal of heavy metals from aqueous solutions by succinic anhydride modified mercerized nanocellulose. Chem Eng J 223:40–47CrossRef
Zurück zum Zitat Hubbe MA, Tayeb P, Joyce M, Tyagi P, Dimic-Misic M, Pal L (2017) Rheology of nanocellulose-rich aqueous suspensions: a review. BioResources 12(4):9556–9661 Hubbe MA, Tayeb P, Joyce M, Tyagi P, Dimic-Misic M, Pal L (2017) Rheology of nanocellulose-rich aqueous suspensions: a review. BioResources 12(4):9556–9661
Zurück zum Zitat Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26(5):2895–2911CrossRef Hussain Z, Sajjad W, Khan T, Wahid F (2019) Production of bacterial cellulose from industrial wastes: a review. Cellulose 26(5):2895–2911CrossRef
Zurück zum Zitat Im W, Lee S, Abhari AR, Youn HJ, Lee HL (2018) Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils. Cellulose 25(7):3873–3883CrossRef Im W, Lee S, Abhari AR, Youn HJ, Lee HL (2018) Optimization of carboxymethylation reaction as a pretreatment for production of cellulose nanofibrils. Cellulose 25(7):3873–3883CrossRef
Zurück zum Zitat Im W, Oh K, Abhari AR, Youn HJ, Lee HL (2019) Recycling of isopropanol fro cost-effective, environmentally friendly production of carboxylmethylated cellulose nanofibrils. Carbohydr Polym 208:365–371PubMedCrossRef Im W, Oh K, Abhari AR, Youn HJ, Lee HL (2019) Recycling of isopropanol fro cost-effective, environmentally friendly production of carboxylmethylated cellulose nanofibrils. Carbohydr Polym 208:365–371PubMedCrossRef
Zurück zum Zitat Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRefPubMed Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRefPubMed
Zurück zum Zitat Jia C, Bian H, Gao T, Jiang F, Kierzewski IM, Wang Y, Yao Y, Chen L, Shao Z, Zhu J (2017a) Thermally stable cellulose nanocrystals toward high-performance 2D and 3D nanostructures. ACS Appl Mater Interfaces 9(34):28922–28929PubMedCrossRef Jia C, Bian H, Gao T, Jiang F, Kierzewski IM, Wang Y, Yao Y, Chen L, Shao Z, Zhu J (2017a) Thermally stable cellulose nanocrystals toward high-performance 2D and 3D nanostructures. ACS Appl Mater Interfaces 9(34):28922–28929PubMedCrossRef
Zurück zum Zitat Jia C, Chen L, Shao Z, Agarwal UP, Hu L, Zhu J (2017b) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24(6):2483–2498CrossRef Jia C, Chen L, Shao Z, Agarwal UP, Hu L, Zhu J (2017b) Using a fully recyclable dicarboxylic acid for producing dispersible and thermally stable cellulose nanomaterials from different cellulosic sources. Cellulose 24(6):2483–2498CrossRef
Zurück zum Zitat Jiang H, Wu Y, Han B, Zhang Y (2017) Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate. Carbohydr Polym 174:291–298PubMedCrossRef Jiang H, Wu Y, Han B, Zhang Y (2017) Effect of oxidation time on the properties of cellulose nanocrystals from hybrid poplar residues using the ammonium persulfate. Carbohydr Polym 174:291–298PubMedCrossRef
Zurück zum Zitat Jiang Y, Zhou J, Yang Z, Liu D, Xv X, Zhao G, Shi H, Zhang Q (2018) Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. J Mater Sci 53(16):11883–11900CrossRef Jiang Y, Zhou J, Yang Z, Liu D, Xv X, Zhao G, Shi H, Zhang Q (2018) Dialdehyde cellulose nanocrystal/gelatin hydrogel optimized for 3D printing applications. J Mater Sci 53(16):11883–11900CrossRef
Zurück zum Zitat Jin L, Li W, Xu Q, Sun Q (2015a) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22(4):2443–2456CrossRef Jin L, Li W, Xu Q, Sun Q (2015a) Amino-functionalized nanocrystalline cellulose as an adsorbent for anionic dyes. Cellulose 22(4):2443–2456CrossRef
Zurück zum Zitat Jin L, Sun Q, Xu Q, Xu Y (2015b) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Biores Technol 197:348–355CrossRef Jin L, Sun Q, Xu Q, Xu Y (2015b) Adsorptive removal of anionic dyes from aqueous solutions using microgel based on nanocellulose and polyvinylamine. Biores Technol 197:348–355CrossRef
Zurück zum Zitat Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335PubMedCrossRef Jin E, Guo J, Yang F, Zhu Y, Song J, Jin Y, Rojas OJ (2016) On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II. Carbohydr Polym 143:327–335PubMedCrossRef
Zurück zum Zitat Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C (2012) Renewable fibers and bio-based materials for packaging applications–a review of recent developments. BioResources 7(2):2506–2552CrossRef Johansson C, Bras J, Mondragon I, Nechita P, Plackett D, Simon P, Svetec DG, Virtanen S, Baschetti MG, Breen C (2012) Renewable fibers and bio-based materials for packaging applications–a review of recent developments. BioResources 7(2):2506–2552CrossRef
Zurück zum Zitat John MJ, Anandjiwala R, Oksman K, Mathew AP (2013) Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties. J Appl Polym Sci 127(1):274–281CrossRef John MJ, Anandjiwala R, Oksman K, Mathew AP (2013) Melt-spun polylactic acid fibers: effect of cellulose nanowhiskers on processing and properties. J Appl Polym Sci 127(1):274–281CrossRef
Zurück zum Zitat Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238CrossRef Jonoobi M, Mathew AP, Oksman K (2012) Producing low-cost cellulose nanofiber from sludge as new source of raw materials. Ind Crops Prod 40:232–238CrossRef
Zurück zum Zitat Kan KH, Li J, Wijesekera K, Cranston ED (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromol 14(9):3130–3139CrossRef Kan KH, Li J, Wijesekera K, Cranston ED (2013) Polymer-grafted cellulose nanocrystals as pH-responsive reversible flocculants. Biomacromol 14(9):3130–3139CrossRef
Zurück zum Zitat Kardam A, Raj KR, Srivastava S, Srivastava M (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16(2):385–393CrossRef Kardam A, Raj KR, Srivastava S, Srivastava M (2014) Nanocellulose fibers for biosorption of cadmium, nickel, and lead ions from aqueous solution. Clean Technol Environ Policy 16(2):385–393CrossRef
Zurück zum Zitat Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676PubMedCrossRef Karim Z, Mathew AP, Grahn M, Mouzon J, Oksman K (2014) Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr Polym 112:668–676PubMedCrossRef
Zurück zum Zitat Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428CrossRef Karim Z, Claudpierre S, Grahn M, Oksman K, Mathew AP (2016) Nanocellulose based functional membranes for water cleaning: tailoring of mechanical properties, porosity and metal ion capture. J Membr Sci 514:418–428CrossRef
Zurück zum Zitat Keshk S (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4(150):2 Keshk S (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4(150):2
Zurück zum Zitat Keshk SM, Haija MA (2011) A new method for producing microcrystalline cellulose ffrom Gluconacetobacter xylinus and kenaf. Carbohydr Polym 84(4):1301–1305CrossRef Keshk SM, Haija MA (2011) A new method for producing microcrystalline cellulose ffrom Gluconacetobacter xylinus and kenaf. Carbohydr Polym 84(4):1301–1305CrossRef
Zurück zum Zitat Khanjanzadeh H, Behrooz R, Bahramifar N, Gindl-Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol 106:1288–1296PubMedCrossRef Khanjanzadeh H, Behrooz R, Bahramifar N, Gindl-Altmutter W, Bacher M, Edler M, Griesser T (2018) Surface chemical functionalization of cellulose nanocrystals by 3-aminopropyltriethoxysilane. Int J Biol Macromol 106:1288–1296PubMedCrossRef
Zurück zum Zitat Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616PubMedCrossRef Khawas P, Deka SC (2016) Isolation and characterization of cellulose nanofibers from culinary banana peel using high-intensity ultrasonication combined with chemical treatment. Carbohydr Polym 137:608–616PubMedCrossRef
Zurück zum Zitat Kim J, Montero G, Habibi Y, Hinestroza JP, Genzer J, Argyropoulos DS, Rojas OJ (2009) Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym Eng Sci 49(10):2054–2061CrossRef Kim J, Montero G, Habibi Y, Hinestroza JP, Genzer J, Argyropoulos DS, Rojas OJ (2009) Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrix. Polym Eng Sci 49(10):2054–2061CrossRef
Zurück zum Zitat Kim CH, Kim JW, Zhai L, Kim J (2019) Strng and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields. Cellulose 26:5821–5829CrossRef Kim CH, Kim JW, Zhai L, Kim J (2019) Strng and tough long cellulose fibers made by aligning cellulose nanofibers under magnetic and electric fields. Cellulose 26:5821–5829CrossRef
Zurück zum Zitat Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J (2012) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55PubMedCrossRef Kolakovic R, Laaksonen T, Peltonen L, Laukkanen A, Hirvonen J (2012) Spray-dried nanofibrillar cellulose microparticles for sustained drug release. Int J Pharm 430(1–2):47–55PubMedCrossRef
Zurück zum Zitat Kontturi E, Meriluoto A, Penttilä PA, Baccile N, Malho JM, Potthast A, Rosenau T, Ruokolainen J, Serimaa R, Laine J (2016) Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew Chem Int Ed 55(46):14455–14458CrossRef Kontturi E, Meriluoto A, Penttilä PA, Baccile N, Malho JM, Potthast A, Rosenau T, Ruokolainen J, Serimaa R, Laine J (2016) Degradation and crystallization of cellulose in hydrogen chloride vapor for high-yield isolation of cellulose nanocrystals. Angew Chem Int Ed 55(46):14455–14458CrossRef
Zurück zum Zitat Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816PubMedCrossRef Korhonen JT, Kettunen M, Ras RHA, Ikkala O (2011) Hydrophobic nanocellulose aerogels as floating, sustainable, reusable, and recyclable oil absorbents. ACS Appl Mater Interfaces 3(6):1813–1816PubMedCrossRef
Zurück zum Zitat Kulpinski P (2005) Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J Appl Polym Sci 98(4):1855–1859CrossRef Kulpinski P (2005) Cellulose nanofibers prepared by the N-methylmorpholine-N-oxide method. J Appl Polym Sci 98(4):1855–1859CrossRef
Zurück zum Zitat Kumar R, Ha SK, Verma K, Tiwari SK (2018) Recent progress in some selected bio-nanomaterials and their engineering applications: an overview. J Sci Adv Mater Dev 3:263–288 Kumar R, Ha SK, Verma K, Tiwari SK (2018) Recent progress in some selected bio-nanomaterials and their engineering applications: an overview. J Sci Adv Mater Dev 3:263–288
Zurück zum Zitat Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18(3):607–617CrossRef Labet M, Thielemans W (2011) Improving the reproducibility of chemical reactions on the surface of cellulose nanocrystals: ROP of ε-caprolactone as a case study. Cellulose 18(3):607–617CrossRef
Zurück zum Zitat Lam E, Leung AC, Liu Y, Majid E, Hrapovic S, Male KB, Luong JH (2012) Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustain Chem Eng 1(2):278–283CrossRef Lam E, Leung AC, Liu Y, Majid E, Hrapovic S, Male KB, Luong JH (2012) Green strategy guided by Raman spectroscopy for the synthesis of ammonium carboxylated nanocrystalline cellulose and the recovery of byproducts. ACS Sustain Chem Eng 1(2):278–283CrossRef
Zurück zum Zitat Leppiniemi J, Lahtinen P, Paajanen A, Mahlberg R, Metsä-Kortelainen S, Pinomaa T, Pajari H, Vikholm-Lundin I, Pursula P, Hytönen VP (2017) 3D-printable bioactivated nanocellulose–alginate hydrogels. ACS Appl Mater Interfaces 9(26):21959–21970PubMedCrossRef Leppiniemi J, Lahtinen P, Paajanen A, Mahlberg R, Metsä-Kortelainen S, Pinomaa T, Pajari H, Vikholm-Lundin I, Pursula P, Hytönen VP (2017) 3D-printable bioactivated nanocellulose–alginate hydrogels. ACS Appl Mater Interfaces 9(26):21959–21970PubMedCrossRef
Zurück zum Zitat Li B, Xu W, Kronlund D, Määttänen A, Liu J, Smått J-H, Peltonen J, Willför S, Mu X, Xu C (2015) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612PubMedCrossRef Li B, Xu W, Kronlund D, Määttänen A, Liu J, Smått J-H, Peltonen J, Willför S, Mu X, Xu C (2015) Cellulose nanocrystals prepared via formic acid hydrolysis followed by TEMPO-mediated oxidation. Carbohydr Polym 133:605–612PubMedCrossRef
Zurück zum Zitat Li VC, Mulyadi A, Dunn CK, Deng Y, Qi HJ (2018a) Direct ink write 3D printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable, and functionalizable properties. ACS Sustain Chem Eng 6(2):2011–2022CrossRef Li VC, Mulyadi A, Dunn CK, Deng Y, Qi HJ (2018a) Direct ink write 3D printed cellulose nanofiber aerogel structures with highly deformable, shape recoverable, and functionalizable properties. ACS Sustain Chem Eng 6(2):2011–2022CrossRef
Zurück zum Zitat Li Y-Y, Wang B, Ma M-G, Wang B (2018b) The influence of pre-treatment time and sulfuric acid on cellulose nanocrystals. BioResources 13(2):3585–3602 Li Y-Y, Wang B, Ma M-G, Wang B (2018b) The influence of pre-treatment time and sulfuric acid on cellulose nanocrystals. BioResources 13(2):3585–3602
Zurück zum Zitat Lin N, Huang J, Chang PR, Feng L, Yu J (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B 85(2):270–279CrossRef Lin N, Huang J, Chang PR, Feng L, Yu J (2011) Effect of polysaccharide nanocrystals on structure, properties, and drug release kinetics of alginate-based microspheres. Colloids Surf B 85(2):270–279CrossRef
Zurück zum Zitat Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294PubMedCrossRef Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 4(11):3274–3294PubMedCrossRef
Zurück zum Zitat Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym 110:415–422PubMedCrossRef Liu Y, Wang H, Yu G, Yu Q, Li B, Mu X (2014) A novel approach for the preparation of nanocrystalline cellulose by using phosphotungstic acid. Carbohydr Polym 110:415–422PubMedCrossRef
Zurück zum Zitat Liu J, Plog A, Groszewicz P, Zhao L, Xu Y, Breitzke H, Stark A, Hoffmann R, Gutmann T, Zhang K (2015a) Design of a heterogeneous catalyst based on cellulose nanocrystals for cyclopropanation: synthesis and solid-state NMR characterization. Chem Eur J 21(35):12414–12420PubMedCrossRef Liu J, Plog A, Groszewicz P, Zhao L, Xu Y, Breitzke H, Stark A, Hoffmann R, Gutmann T, Zhang K (2015a) Design of a heterogeneous catalyst based on cellulose nanocrystals for cyclopropanation: synthesis and solid-state NMR characterization. Chem Eur J 21(35):12414–12420PubMedCrossRef
Zurück zum Zitat Liu P, Borrell PF, Božič M, Kokol V, Oksman K, Mathew AP (2015b) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185PubMedCrossRef Liu P, Borrell PF, Božič M, Kokol V, Oksman K, Mathew AP (2015b) Nanocelluloses and their phosphorylated derivatives for selective adsorption of Ag+, Cu2+ and Fe3+ from industrial effluents. J Hazard Mater 294:177–185PubMedCrossRef
Zurück zum Zitat Liu K, Liu M, Cheng J, Dong S, Wang C, Wang Q, Zhou X, Sun H, Chen X, Cui G (2016) Novel cellulose/polyurethane composite gel polymer electrolyte for high performance lithium batteries. Electrochim Acta 215:261–266CrossRef Liu K, Liu M, Cheng J, Dong S, Wang C, Wang Q, Zhou X, Sun H, Chen X, Cui G (2016) Novel cellulose/polyurethane composite gel polymer electrolyte for high performance lithium batteries. Electrochim Acta 215:261–266CrossRef
Zurück zum Zitat Lourenço AN, Godinho D, Gamelas JAF, Sarmento P, Ferreira PJT (2019) Carboxymethylated cellulose nanofibrils in papermaking: influence on filler retention and paper properties. Cellulose 26(5):3489–3502CrossRef Lourenço AN, Godinho D, Gamelas JAF, Sarmento P, Ferreira PJT (2019) Carboxymethylated cellulose nanofibrils in papermaking: influence on filler retention and paper properties. Cellulose 26(5):3489–3502CrossRef
Zurück zum Zitat Lu Q, Lin W, Tang L, Wang S, Chen X, Huang B (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50(2):611–619CrossRef Lu Q, Lin W, Tang L, Wang S, Chen X, Huang B (2015) A mechanochemical approach to manufacturing bamboo cellulose nanocrystals. J Mater Sci 50(2):611–619CrossRef
Zurück zum Zitat Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS SustainChem Eng 4(4):2165–2172CrossRef Lu Q, Cai Z, Lin F, Tang L, Wang S, Huang B (2016) Extraction of cellulose nanocrystals with a high yield of 88% by simultaneous mechanochemical activation and phosphotungstic acid hydrolysis. ACS SustainChem Eng 4(4):2165–2172CrossRef
Zurück zum Zitat Luo Y, Zhang J, Li X, Liao C, Li X (2014) The cellulose nanofibers for optoelectronic conversion and energy storage. J Nanomater 2014:11 Luo Y, Zhang J, Li X, Liao C, Li X (2014) The cellulose nanofibers for optoelectronic conversion and energy storage. J Nanomater 2014:11
Zurück zum Zitat Lv J, Zhang G, Zhang H, Zhao C, Yang F (2018) Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal. Appl Surf Sci 440:1091–1100CrossRef Lv J, Zhang G, Zhang H, Zhao C, Yang F (2018) Improvement of antifouling performances for modified PVDF ultrafiltration membrane with hydrophilic cellulose nanocrystal. Appl Surf Sci 440:1091–1100CrossRef
Zurück zum Zitat Lv D, Du H, Che X, Wu M, Zhang Y, Liu C, Nie S, Zhang X, Li B (2019) Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustain Chem Eng 7(10):9449–9463CrossRef Lv D, Du H, Che X, Wu M, Zhang Y, Liu C, Nie S, Zhang X, Li B (2019) Tailored and integrated production of functional cellulose nanocrystals and cellulose nanofibrils via sustainable formic acid hydrolysis: kinetic study and characterization. ACS Sustain Chem Eng 7(10):9449–9463CrossRef
Zurück zum Zitat Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577PubMedPubMedCentralCrossRef Lynd LR, Weimer PJ, Van Zyl WH, Pretorius IS (2002) Microbial cellulose utilization: fundamentals and biotechnology. Microbiol Mol Biol Rev 66(3):506–577PubMedPubMedCentralCrossRef
Zurück zum Zitat Ma H, Burger C, Hsiao BS, Chu B (2011a) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromol 13(1):180–186CrossRef Ma H, Burger C, Hsiao BS, Chu B (2011a) Nanofibrous microfiltration membrane based on cellulose nanowhiskers. Biomacromol 13(1):180–186CrossRef
Zurück zum Zitat Ma H, Burger C, Hsiao BS, Chu B (2011b) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromol 12(4):970–976CrossRef Ma H, Burger C, Hsiao BS, Chu B (2011b) Ultrafine polysaccharide nanofibrous membranes for water purification. Biomacromol 12(4):970–976CrossRef
Zurück zum Zitat Ma H, Burger C, Hsiao BS, Chu B (2014) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454:272–282CrossRef Ma H, Burger C, Hsiao BS, Chu B (2014) Fabrication and characterization of cellulose nanofiber based thin-film nanofibrous composite membranes. J Membr Sci 454:272–282CrossRef
Zurück zum Zitat Maloney TC (2015) Network swelling of TEMPO-oxidized nanocellulose. Holzforschung 69(2):207–213CrossRef Maloney TC (2015) Network swelling of TEMPO-oxidized nanocellulose. Holzforschung 69(2):207–213CrossRef
Zurück zum Zitat Mao J, Osorio-Madrazo A, Laborie M-P (2013) Preparation of celllulose I nanowhiskers with a mildly acidic aqueous ionic liquid: reaction effciency and whiskers attributes. Cellulose 20(4):1829–1840CrossRef Mao J, Osorio-Madrazo A, Laborie M-P (2013) Preparation of celllulose I nanowhiskers with a mildly acidic aqueous ionic liquid: reaction effciency and whiskers attributes. Cellulose 20(4):1829–1840CrossRef
Zurück zum Zitat Mao J, Heck B, Reiter G, Laborie M-P (2015) Cellulose nanocrystals’ production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)-mediated hydrolysis. Carbohydr Polym 117:443–451PubMedCrossRef Mao J, Heck B, Reiter G, Laborie M-P (2015) Cellulose nanocrystals’ production in near theoretical yields by 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim] HSO4)-mediated hydrolysis. Carbohydr Polym 117:443–451PubMedCrossRef
Zurück zum Zitat Mao J, Abushammala H, Pereira LB, Laborie M-P (2016) Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions. Carbohydr Polym 153:284–291PubMedCrossRef Mao J, Abushammala H, Pereira LB, Laborie M-P (2016) Swelling and hydrolysis kinetics of Kraft pulp fibers in aqueous 1-butyl-3-methylimidazolium hydrogen sulfate solutions. Carbohydr Polym 153:284–291PubMedCrossRef
Zurück zum Zitat Marchessault R, Morehead F, Walter N (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686):632–633CrossRef Marchessault R, Morehead F, Walter N (1959) Liquid crystal systems from fibrillar polysaccharides. Nature 184(4686):632–633CrossRef
Zurück zum Zitat Markstedt K, Mantas A, Tournier I, Hc MÁ, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromol 16(5):1489–1496CrossRef Markstedt K, Mantas A, Tournier I, Hc MÁ, Hägg D, Gatenholm P (2015) 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromol 16(5):1489–1496CrossRef
Zurück zum Zitat McAlpine KJ (2016) 4D-printed structure changes shape when placed in water. Harvard Gazette 25 McAlpine KJ (2016) 4D-printed structure changes shape when placed in water. Harvard Gazette 25
Zurück zum Zitat Meyabadi TF, Dadashian F, Sadeghi GMM, Asl HEZ (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240CrossRef Meyabadi TF, Dadashian F, Sadeghi GMM, Asl HEZ (2014) Spherical cellulose nanoparticles preparation from waste cotton using a green method. Powder Technol 261:232–240CrossRef
Zurück zum Zitat Mishra RK, Sabu A, Tiwari SK (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc 22:949–978CrossRef Mishra RK, Sabu A, Tiwari SK (2018) Materials chemistry and the futurist eco-friendly applications of nanocellulose: status and prospect. J Saudi Chem Soc 22:949–978CrossRef
Zurück zum Zitat Mittal N, Ansari F, Gowda VK, Brouzet C, Chen P, Larsson PT, Roth SV, Lundell F, Wågberg L, Kotov NA, Söderberg DL (2018) Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12(7):6378–6388PubMedCrossRef Mittal N, Ansari F, Gowda VK, Brouzet C, Chen P, Larsson PT, Roth SV, Lundell F, Wågberg L, Kotov NA, Söderberg DL (2018) Multiscale control of nanocellulose assembly: transferring remarkable nanoscale fibril mechanics to macroscale fibers. ACS Nano 12(7):6378–6388PubMedCrossRef
Zurück zum Zitat Mochane MJ, Mokhena TC, Mokhothu TH, Mtibe A, Sadiku ER, Ray SS (2018) The importance of nanostructured materials for energy storage/conversion. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 768–792CrossRef Mochane MJ, Mokhena TC, Mokhothu TH, Mtibe A, Sadiku ER, Ray SS (2018) The importance of nanostructured materials for energy storage/conversion. In: Hussain CM (ed) Handbook of nanomaterials for industrial applications. Elsevier, Amsterdam, pp 768–792CrossRef
Zurück zum Zitat Mohd Amin KN, Annamalai PK, Morrow IC, Martin D (2015) Production of cellulose nanocrystals via a scalable mechanical method. RCS Adv 5(70):57133–57140 Mohd Amin KN, Annamalai PK, Morrow IC, Martin D (2015) Production of cellulose nanocrystals via a scalable mechanical method. RCS Adv 5(70):57133–57140
Zurück zum Zitat Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61(2):101–110PubMedCrossRef Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61(2):101–110PubMedCrossRef
Zurück zum Zitat Mokhena TC, Jacobs VN, Luyt AS (2015) A review on electrospun bio-based polymers for water treatment. Express Polym Lett 9(10):839–880CrossRef Mokhena TC, Jacobs VN, Luyt AS (2015) A review on electrospun bio-based polymers for water treatment. Express Polym Lett 9(10):839–880CrossRef
Zurück zum Zitat Mokhena TC, Jacobs NV, Luyt AS (2018a) Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification. Cellulose 25(1):417–427CrossRef Mokhena TC, Jacobs NV, Luyt AS (2018a) Nanofibrous alginate membrane coated with cellulose nanowhiskers for water purification. Cellulose 25(1):417–427CrossRef
Zurück zum Zitat Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941–3994CrossRefPubMed
Zurück zum Zitat Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286PubMedCrossRef Morandi G, Heath L, Thielemans W (2009) Cellulose nanocrystals grafted with polystyrene chains through surface-initiated atom transfer radical polymerization (SI-ATRP). Langmuir 25(14):8280–8286PubMedCrossRef
Zurück zum Zitat Moser C, Lindström ME, Henriksson G (2015) Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers. BioResources 10(2):2360–2375CrossRef Moser C, Lindström ME, Henriksson G (2015) Toward industrially feasible methods for following the process of manufacturing cellulose nanofibers. BioResources 10(2):2360–2375CrossRef
Zurück zum Zitat Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8PubMedCrossRef Mtibe A, Linganiso LZ, Mathew AP, Oksman K, John MJ, Anandjiwala RD (2015) A comparative study on properties of micro and nanopapers produced from cellulose and cellulose nanofibres. Carbohydr Polym 118:1–8PubMedCrossRef
Zurück zum Zitat Mukherjee S, Woods H (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochem Biophys Acta 10:499–511PubMedCrossRef Mukherjee S, Woods H (1953) X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochem Biophys Acta 10:499–511PubMedCrossRef
Zurück zum Zitat Mukherjee S, Sikorski J, Woods H (1952) Electron-microscopy of degraded cellulose fibres. Taylor & Francis, RoutledgeCrossRef Mukherjee S, Sikorski J, Woods H (1952) Electron-microscopy of degraded cellulose fibres. Taylor & Francis, RoutledgeCrossRef
Zurück zum Zitat Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi-Wong M (2017) Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng 45(1):210–223PubMedCrossRef Müller M, Öztürk E, Arlov Ø, Gatenholm P, Zenobi-Wong M (2017) Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications. Ann Biomed Eng 45(1):210–223PubMedCrossRef
Zurück zum Zitat Naidu DS, Hlangothi SP, John MJ (2017) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41PubMedCrossRef Naidu DS, Hlangothi SP, John MJ (2017) Bio-based products from xylan: a review. Carbohydr Polym 179:28–41PubMedCrossRef
Zurück zum Zitat Nair JR, Bella F, Angulakshmi N, Stephan AM, Gerbaldi C (2016) Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries. Energy Storage Mater 3:69–76CrossRef Nair JR, Bella F, Angulakshmi N, Stephan AM, Gerbaldi C (2016) Nanocellulose-laden composite polymer electrolytes for high performing lithium–sulphur batteries. Energy Storage Mater 3:69–76CrossRef
Zurück zum Zitat Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef Nechyporchuk O, Belgacem MN, Bras J (2016) Production of cellulose nanofibrils: a review of recent advances. Ind Crops Prod 93:2–25CrossRef
Zurück zum Zitat Ng H-M, Sin LT, Bee S-T, Tee T-T, Rahmat A (2017) Review of nanocellulose polymer composite characteristics and challenges. Polym-Plast Technol Eng 56(7):687–731CrossRef Ng H-M, Sin LT, Bee S-T, Tee T-T, Rahmat A (2017) Review of nanocellulose polymer composite characteristics and challenges. Polym-Plast Technol Eng 56(7):687–731CrossRef
Zurück zum Zitat Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7(1):658PubMedPubMedCentralCrossRef Nguyen D, Hägg DA, Forsman A, Ekholm J, Nimkingratana P, Brantsing C, Kalogeropoulos T, Zaunz S, Concaro S, Brittberg M (2017) Cartilage tissue engineering by the 3D bioprinting of iPS cells in a nanocellulose/alginate bioink. Sci Rep 7(1):658PubMedPubMedCentralCrossRef
Zurück zum Zitat Nickerson R, Habrle J (1947) Cellulose intercrystalline structure. Ind Eng Chem 39(11):1507–1512CrossRef Nickerson R, Habrle J (1947) Cellulose intercrystalline structure. Ind Eng Chem 39(11):1507–1512CrossRef
Zurück zum Zitat Novo LP, Bras J, García A, Belgacem N, Curvelo AA (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846CrossRef Novo LP, Bras J, García A, Belgacem N, Curvelo AA (2015) Subcritical water: a method for green production of cellulose nanocrystals. ACS Sustain Chem Eng 3(11):2839–2846CrossRef
Zurück zum Zitat Novo LP, Bras J, García A, Belgacem N, da Silva Curvelo AA (2016) A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Ind Crops Prod 93:88–95CrossRef Novo LP, Bras J, García A, Belgacem N, da Silva Curvelo AA (2016) A study of the production of cellulose nanocrystals through subcritical water hydrolysis. Ind Crops Prod 93:88–95CrossRef
Zurück zum Zitat Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos A Appl Sci Manuf 83:2–18CrossRef Oksman K, Aitomäki Y, Mathew AP, Siqueira G, Zhou Q, Butylina S, Tanpichai S, Zhou X, Hooshmand S (2016) Review of the recent developments in cellulose nanocomposite processing. Compos A Appl Sci Manuf 83:2–18CrossRef
Zurück zum Zitat Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod 93:227–234CrossRef Ooi SY, Ahmad I, Amin MCIM (2016) Cellulose nanocrystals extracted from rice husks as a reinforcing material in gelatin hydrogels for use in controlled drug delivery systems. Ind Crops Prod 93:227–234CrossRef
Zurück zum Zitat Oun AA, Rhim J-W (2017) Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym 174:484–492PubMedCrossRef Oun AA, Rhim J-W (2017) Characterization of carboxymethyl cellulose-based nanocomposite films reinforced with oxidized nanocellulose isolated using ammonium persulfate method. Carbohydr Polym 174:484–492PubMedCrossRef
Zurück zum Zitat Pääkkönen T, Dimic-Misic K, Orelma H, Pönni R, Vuorinen T, Maloney T (2015) Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23(1):277–293CrossRef Pääkkönen T, Dimic-Misic K, Orelma H, Pönni R, Vuorinen T, Maloney T (2015) Effect of xylan in hardwood pulp on the reaction rate of TEMPO-mediated oxidation and the rheology of the final nanofibrillated cellulose gel. Cellulose 23(1):277–293CrossRef
Zurück zum Zitat Pan R, Cheung O, Wang Z, Tammela P, Huo J, Lindh J, Edström K, Strømme M, Nyholm L (2016) Mesoporous Cladophora cellulose separators for lithium-ion batteries. J Power Sour 321:185–192CrossRef Pan R, Cheung O, Wang Z, Tammela P, Huo J, Lindh J, Edström K, Strømme M, Nyholm L (2016) Mesoporous Cladophora cellulose separators for lithium-ion batteries. J Power Sour 321:185–192CrossRef
Zurück zum Zitat Pan R, Xu X, Sun R, Wang Z, Lindh J, Edström K, Strømme M, Nyholm L (2018) Nanocellulose modified polyethylene separators from lithium metal batteries. Small 14:1704371CrossRef Pan R, Xu X, Sun R, Wang Z, Lindh J, Edström K, Strømme M, Nyholm L (2018) Nanocellulose modified polyethylene separators from lithium metal batteries. Small 14:1704371CrossRef
Zurück zum Zitat Pan R, Sun R, Wang Z, Lindh J, Edström K, Strømme M, Nyholm L (2019) Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy 55:316–326CrossRef Pan R, Sun R, Wang Z, Lindh J, Edström K, Strømme M, Nyholm L (2019) Sandwich-structured nano/micro fiber-based separators for lithium metal batteries. Nano Energy 55:316–326CrossRef
Zurück zum Zitat Payen A (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes rendus 7:1052–1056 Payen A (1838) Mémoire sur la composition du tissu propre des plantes et du ligneux. Comptes rendus 7:1052–1056
Zurück zum Zitat Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9(6):2047–2055CrossRef Pei A, Butchosa N, Berglund LA, Zhou Q (2013) Surface quaternized cellulose nanofibrils with high water absorbency and adsorption capacity for anionic dyes. Soft Matter 9(6):2047–2055CrossRef
Zurück zum Zitat Peng J, Zhang H, Zheng Q, Clemons CM, Sabo RC, Gong S, Ma Z, Turng L-S (2017) A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9(4):1428–1433PubMedCrossRef Peng J, Zhang H, Zheng Q, Clemons CM, Sabo RC, Gong S, Ma Z, Turng L-S (2017) A composite generator film impregnated with cellulose nanocrystals for enhanced triboelectric performance. Nanoscale 9(4):1428–1433PubMedCrossRef
Zurück zum Zitat Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29(1):105–118CrossRef Plackett DV, Letchford K, Jackson JK, Burt HM (2014) A review of nanocellulose as a novel vehicle for drug delivery. Nord Pulp Pap Res J 29(1):105–118CrossRef
Zurück zum Zitat Qiao H, Zhou Y, Yu F, Wang E, Min Y, Huang Q, Pang L, Ma T (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303PubMedCrossRef Qiao H, Zhou Y, Yu F, Wang E, Min Y, Huang Q, Pang L, Ma T (2015) Effective removal of cationic dyes using carboxylate-functionalized cellulose nanocrystals. Chemosphere 141:297–303PubMedCrossRef
Zurück zum Zitat Qing Y, Sabo R, Zhu J, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234PubMedCrossRef Qing Y, Sabo R, Zhu J, Agarwal U, Cai Z, Wu Y (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234PubMedCrossRef
Zurück zum Zitat Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6(3):2807–2828CrossRef Rajinipriya M, Nagalakshmaiah M, Robert M, Elkoun S (2018) Importance of agricultural and industrial waste in the field of nanocellulose and recent industrial developments of wood based nanocellulose: a review. ACS Sustain Chem Eng 6(3):2807–2828CrossRef
Zurück zum Zitat Ranby BG (1949) Aqueous colloidal solutions of cellulose micelles. vol 3. Munksgaard Int Publ Ltd 35 Norre Sogade, Po Box 2148, DK-1016 Copenhagen, Denmark Ranby BG (1949) Aqueous colloidal solutions of cellulose micelles. vol 3. Munksgaard Int Publ Ltd 35 Norre Sogade, Po Box 2148, DK-1016 Copenhagen, Denmark
Zurück zum Zitat Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164CrossRef Rånby BG (1951) Fibrous macromolecular systems. Cellulose and muscle. The colloidal properties of cellulose micelles. Discuss Faraday Soc 11:158–164CrossRef
Zurück zum Zitat Rees A, Powell LC, Chinga-Carrasco G, Gethin DT, Syverud K, Hill KE, Thomas DW (2015) 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMed Res Int Rees A, Powell LC, Chinga-Carrasco G, Gethin DT, Syverud K, Hill KE, Thomas DW (2015) 3D bioprinting of carboxymethylated-periodate oxidized nanocellulose constructs for wound dressing applications. BioMed Res Int
Zurück zum Zitat Reid MS, Villalobos M, Cranston ED (2016) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33(7):1583–1598PubMedCrossRef Reid MS, Villalobos M, Cranston ED (2016) Benchmarking cellulose nanocrystals: from the laboratory to industrial production. Langmuir 33(7):1583–1598PubMedCrossRef
Zurück zum Zitat Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 49:151–159PubMedPubMedCentralCrossRef Revin V, Liyaskina E, Nazarkina M, Bogatyreva A, Shchankin M (2018) Cost-effective production of bacterial cellulose using acidic food industry by-products. Braz J Microbiol 49:151–159PubMedPubMedCentralCrossRef
Zurück zum Zitat Revol J-F, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172PubMedCrossRef Revol J-F, Bradford H, Giasson J, Marchessault R, Gray D (1992) Helicoidal self-ordering of cellulose microfibrils in aqueous suspension. Int J Biol Macromol 14(3):170–172PubMedCrossRef
Zurück zum Zitat Robles E, Csóka L, Labidi J (2018a) Effect of reaction conditions on the surface modification of cellulose nanofibrils with aminopropyl triethoxysilane. Coatings 8(4):139CrossRef Robles E, Csóka L, Labidi J (2018a) Effect of reaction conditions on the surface modification of cellulose nanofibrils with aminopropyl triethoxysilane. Coatings 8(4):139CrossRef
Zurück zum Zitat Robles E, Fernandez-Rodriguez J, Barbosa AM, Gordobil O, Carreno NL, Labidi J (2018b) Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. CarbohydR Polym 183:294–302PubMedCrossRef Robles E, Fernandez-Rodriguez J, Barbosa AM, Gordobil O, Carreno NL, Labidi J (2018b) Production of cellulose nanoparticles from blue agave waste treated with environmentally friendly processes. CarbohydR Polym 183:294–302PubMedCrossRef
Zurück zum Zitat Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46(22):7344–7355CrossRef Sadeghifar H, Filpponen I, Clarke SP, Brougham DF, Argyropoulos DS (2011) Production of cellulose nanocrystals using hydrobromic acid and click reactions on their surface. J Mater Sci 46(22):7344–7355CrossRef
Zurück zum Zitat Sain M, Bhatnagar A (2003) Manufacturing of nanofibrils from natural fibres, agro based fibres and root fibres. CA Patent Appl 2 Sain M, Bhatnagar A (2003) Manufacturing of nanofibrils from natural fibres, agro based fibres and root fibres. CA Patent Appl 2
Zurück zum Zitat Sain MM, Bhatnagar A (2008) Manufacturing process of cellulose nanofibers from renewable feed stocks. Google Patents Sain MM, Bhatnagar A (2008) Manufacturing process of cellulose nanofibers from renewable feed stocks. Google Patents
Zurück zum Zitat Saini S, Sillard C, Belgacem MN, Bras J (2016) Nisin anchored cellulose nanofibers for long term antimicrobial active food packaging. RSC Adv 6(15):12422–12430CrossRef Saini S, Sillard C, Belgacem MN, Bras J (2016) Nisin anchored cellulose nanofibers for long term antimicrobial active food packaging. RSC Adv 6(15):12422–12430CrossRef
Zurück zum Zitat Sainorudin MH, Mohammad M, Kadir NHA, Abdullah NA, Yaakob Z (2018) Characterization of several microcrystalline cellulose (MCC)-based agricutural waste via X-ray diffraction method. Solid State Phenom 280:340–345CrossRef Sainorudin MH, Mohammad M, Kadir NHA, Abdullah NA, Yaakob Z (2018) Characterization of several microcrystalline cellulose (MCC)-based agricutural waste via X-ray diffraction method. Solid State Phenom 280:340–345CrossRef
Zurück zum Zitat Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805CrossRef Salajková M, Berglund LA, Zhou Q (2012) Hydrophobic cellulose nanocrystals modified with quaternary ammonium salts. J Mater Chem 22(37):19798–19805CrossRef
Zurück zum Zitat Salminen R, Reza M, Pääkkönen T, Peyre J, Kontturi E (2017) TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield. Cellulose 24(4):1657–1667CrossRef Salminen R, Reza M, Pääkkönen T, Peyre J, Kontturi E (2017) TEMPO-mediated oxidation of microcrystalline cellulose: limiting factors for cellulose nanocrystal yield. Cellulose 24(4):1657–1667CrossRef
Zurück zum Zitat Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. CarbohydR Polym 83(1):122–129CrossRef Satyamurthy P, Jain P, Balasubramanya RH, Vigneshwaran N (2011) Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. CarbohydR Polym 83(1):122–129CrossRef
Zurück zum Zitat Silva R, Pereira G, Voiry D, Chhowalla M, Asefa T (2015) Co 3 O 4 nanoparticles/cellulose nanowhiskers-derived amorphous carbon nanoneedles: sustainable materials for supercapacitors and oxygen reduction electrocatalysis. RSC Adv 5(61):49385–49391CrossRef Silva R, Pereira G, Voiry D, Chhowalla M, Asefa T (2015) Co 3 O 4 nanoparticles/cellulose nanowhiskers-derived amorphous carbon nanoneedles: sustainable materials for supercapacitors and oxygen reduction electrocatalysis. RSC Adv 5(61):49385–49391CrossRef
Zurück zum Zitat Siqueira G, Oksman K, Tadokoro SK, Mathew AP (2016) Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Compos Sci Technol 123:49–56CrossRef Siqueira G, Oksman K, Tadokoro SK, Mathew AP (2016) Re-dispersible carrot nanofibers with high mechanical properties and reinforcing capacity for use in composite materials. Compos Sci Technol 123:49–56CrossRef
Zurück zum Zitat Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRef Spence KL, Venditti RA, Rojas OJ, Habibi Y, Pawlak JJ (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellulose 18(4):1097–1111CrossRef
Zurück zum Zitat Sucaldito MR, Camacho DH (2017) Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film. CarbohydR Polym 169:315–323PubMedCrossRef Sucaldito MR, Camacho DH (2017) Characteristics of unique HBr-hydrolyzed cellulose nanocrystals from freshwater green algae (Cladophora rupestris) and its reinforcement in starch-based film. CarbohydR Polym 169:315–323PubMedCrossRef
Zurück zum Zitat Tan XY, Hamid SBA, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591CrossRef Tan XY, Hamid SBA, Lai CW (2015) Preparation of high crystallinity cellulose nanocrystals (CNCs) by ionic liquid solvolysis. Biomass Bioenergy 81:584–591CrossRef
Zurück zum Zitat Tang L-R, Huang B, Ou W, Chen X-R, Chen Y-D (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Biores Technol 102(23):10973–10977CrossRef Tang L-R, Huang B, Ou W, Chen X-R, Chen Y-D (2011) Manufacture of cellulose nanocrystals by cation exchange resin-catalyzed hydrolysis of cellulose. Biores Technol 102(23):10973–10977CrossRef
Zurück zum Zitat Tang J, Shi Z, Berry RM, Tam KC (2015a) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res 54(13):3299–3308CrossRef Tang J, Shi Z, Berry RM, Tam KC (2015a) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res 54(13):3299–3308CrossRef
Zurück zum Zitat Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015b) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366PubMedCrossRef Tang Y, Shen X, Zhang J, Guo D, Kong F, Zhang N (2015b) Extraction of cellulose nano-crystals from old corrugated container fiber using phosphoric acid and enzymatic hydrolysis followed by sonication. Carbohydr Polym 125:360–366PubMedCrossRef
Zurück zum Zitat Tehrani AD, Neysi E (2013) Surface modification of cellulose nanowhisker throughout graft polymerization of 2-ethyl-2-oxazoline. Carbohydr Polym 97(1):98–104CrossRef Tehrani AD, Neysi E (2013) Surface modification of cellulose nanowhisker throughout graft polymerization of 2-ethyl-2-oxazoline. Carbohydr Polym 97(1):98–104CrossRef
Zurück zum Zitat Teixeira RSS, da Silva ASA, Jang J-H, Kim H-W, Ishikawa K, Endo T, Lee S-H, Bon EP (2015) Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydr Polym 128:75–81PubMedCrossRef Teixeira RSS, da Silva ASA, Jang J-H, Kim H-W, Ishikawa K, Endo T, Lee S-H, Bon EP (2015) Combining biomass wet disk milling and endoglucanase/β-glucosidase hydrolysis for the production of cellulose nanocrystals. Carbohydr Polym 128:75–81PubMedCrossRef
Zurück zum Zitat Torres-Rendon JG, Köpf M, Gehlen D, Blaeser A, Fischer H, Laporte LD, Walther A (2016) Cellulose nanofibril hydrogel tubes as sacrificial templates for freestanding tubular cell constructs. Biomacromolecules 17(3):905–913PubMedCrossRef Torres-Rendon JG, Köpf M, Gehlen D, Blaeser A, Fischer H, Laporte LD, Walther A (2016) Cellulose nanofibril hydrogel tubes as sacrificial templates for freestanding tubular cell constructs. Biomacromolecules 17(3):905–913PubMedCrossRef
Zurück zum Zitat Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellululose: isolation, characterization and biocomposites – a review. Int J Biol Macromol 93:789–804CrossRefPubMed Trache D, Hussin MH, Chuin CTH, Sabar S, Fazita MRN, Taiwo OFA, Hassan TM, Haafiz MKM (2016) Microcrystalline cellululose: isolation, characterization and biocomposites – a review. Int J Biol Macromol 93:789–804CrossRefPubMed
Zurück zum Zitat Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRefPubMed Trache D, Hussin MH, Haafiz MM, Thakur VK (2017) Recent progress in cellulose nanocrystals: sources and production. Nanoscale 9(5):1763–1786CrossRefPubMed
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: J Appl Polym Sci Appl Polym Symp (United States), vol CONF-8205234-Vol. 2. ITT Rayonier Inc., Shelton, WA Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. In: J Appl Polym Sci Appl Polym Symp (United States), vol CONF-8205234-Vol. 2. ITT Rayonier Inc., Shelton, WA
Zurück zum Zitat Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50(1):69–77PubMedCrossRef Valo H, Arola S, Laaksonen P, Torkkeli M, Peltonen L, Linder MB, Serimaa R, Kuga S, Hirvonen J, Laaksonen T (2013) Drug release from nanoparticles embedded in four different nanofibrillar cellulose aerogels. Eur J Pharm Sci 50(1):69–77PubMedCrossRef
Zurück zum Zitat Villanova J, Ayres E, Carvalho S, Patrício P, Pereira F, Oréfice R (2011) Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur J Pharm Sci 42(4):406–415PubMedCrossRef Villanova J, Ayres E, Carvalho S, Patrício P, Pereira F, Oréfice R (2011) Pharmaceutical acrylic beads obtained by suspension polymerization containing cellulose nanowhiskers as excipient for drug delivery. Eur J Pharm Sci 42(4):406–415PubMedCrossRef
Zurück zum Zitat Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7(2):415–418PubMedPubMedCentralCrossRef Viswanathan G, Murugesan S, Pushparaj V, Nalamasu O, Ajayan PM, Linhardt RJ (2006) Preparation of biopolymer fibers by electrospinning from room temperature ionic liquids. Biomacromolecules 7(2):415–418PubMedPubMedCentralCrossRef
Zurück zum Zitat Wågberg Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795PubMedCrossRef Wågberg Decher G, Norgren M, Lindström T, Ankerfors M, Axnäs K (2008) The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes. Langmuir 24:784–795PubMedCrossRef
Zurück zum Zitat Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A 5(8):3819–3831CrossRef Wan C, Jiao Y, Li J (2017) Flexible, highly conductive, and free-standing reduced graphene oxide/polypyrrole/cellulose hybrid papers for supercapacitor electrodes. J Mater Chem A 5(8):3819–3831CrossRef
Zurück zum Zitat Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly (lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4(10):5079–5085PubMedCrossRef Wang T, Drzal LT (2012) Cellulose-nanofiber-reinforced poly (lactic acid) composites prepared by a water-based approach. ACS Appl Mater Interfaces 4(10):5079–5085PubMedCrossRef
Zurück zum Zitat Wang B, Sain M, Oksman K (2007a) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14(2):89CrossRef Wang B, Sain M, Oksman K (2007a) Study of structural morphology of hemp fiber from the micro to the nanoscale. Appl Compos Mater 14(2):89CrossRef
Zurück zum Zitat Wang N, Ding E, Cheng R (2007b) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRef Wang N, Ding E, Cheng R (2007b) Thermal degradation behaviors of spherical cellulose nanocrystals with sulfate groups. Polymer 48(12):3486–3493CrossRef
Zurück zum Zitat Wang Q, Zhu J, Gleisner R, Kuster T, Baxa U, McNeil S (2012a) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643CrossRef Wang Q, Zhu J, Gleisner R, Kuster T, Baxa U, McNeil S (2012a) Morphological development of cellulose fibrils of a bleached eucalyptus pulp by mechanical fibrillation. Cellulose 19(5):1631–1643CrossRef
Zurück zum Zitat Wang Q, Zhu JY, Reiner RS, Verrill SP, Baxa U, McNeil SE (2012b) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6):2033–2047CrossRef Wang Q, Zhu JY, Reiner RS, Verrill SP, Baxa U, McNeil SE (2012b) Approaching zero cellulose loss in cellulose nanocrystal (CNC) production: recovery and characterization of cellulosic solid residues (CSR) and CNC. Cellulose 19(6):2033–2047CrossRef
Zurück zum Zitat Wang H, Li D, Zhang R (2013a) Preparation of ultralong cellulose nanofibers and optically transparent nanopapers derived from waste corrugated paper pulp. BioResources 8(1):1374–1384CrossRef Wang H, Li D, Zhang R (2013a) Preparation of ultralong cellulose nanofibers and optically transparent nanopapers derived from waste corrugated paper pulp. BioResources 8(1):1374–1384CrossRef
Zurück zum Zitat Wang Q, Zhu JY, Considine JM (2013b) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5(7):2527–2534PubMedCrossRef Wang Q, Zhu JY, Considine JM (2013b) Strong and optically transparent films prepared using cellulosic solid residue recovered from cellulose nanocrystals production waste stream. ACS Appl Mater Interfaces 5(7):2527–2534PubMedCrossRef
Zurück zum Zitat Wang R, Guan S, Sato A, Wang X, Wang Z, Yang R, Hsiao BS, Chu B (2013c) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382CrossRef Wang R, Guan S, Sato A, Wang X, Wang Z, Yang R, Hsiao BS, Chu B (2013c) Nanofibrous microfiltration membranes capable of removing bacteria, viruses and heavy metal ions. J Membr Sci 446:376–382CrossRef
Zurück zum Zitat Wang Z, Ma H, Hsiao BS, Chu B (2014) Nanofibrous ultrafiltration membranes containing cross-linked poly (ethylene glycol) and cellulose nanofiber composite barrier layer. Polymer 55(1):366–372CrossRef Wang Z, Ma H, Hsiao BS, Chu B (2014) Nanofibrous ultrafiltration membranes containing cross-linked poly (ethylene glycol) and cellulose nanofiber composite barrier layer. Polymer 55(1):366–372CrossRef
Zurück zum Zitat Wang R, Chen L, Zhu J, Yang R (2017) Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3(5):328–335CrossRef Wang R, Chen L, Zhu J, Yang R (2017) Tailored and integrated production of carboxylated cellulose nanocrystals (CNC) with nanofibrils (CNF) through maleic acid hydrolysis. ChemNanoMat 3(5):328–335CrossRef
Zurück zum Zitat Wang Z, Pan R, Sun R, Edström K, Strømme M, Nyholm L (2018) Nanocellulose structured paper-based lithium metal batteries. ACS Appl Energy Mater 1(8):4341–4350CrossRef Wang Z, Pan R, Sun R, Edström K, Strømme M, Nyholm L (2018) Nanocellulose structured paper-based lithium metal batteries. ACS Appl Energy Mater 1(8):4341–4350CrossRef
Zurück zum Zitat Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods- a review. Carbohydr Polym 219:63–76PubMedCrossRef Wang J, Tavakoli J, Tang Y (2019) Bacterial cellulose production, properties and applications with different culture methods- a review. Carbohydr Polym 219:63–76PubMedCrossRef
Zurück zum Zitat Wei J, Zhou Y, Lv Y, Wang J, Jia C, Liu J, Zhang X, Sun J, Shao Z (2019) C Carboxymethyl cellulose nanofibrils with a treelike matrix: preparation and behavior of pickering emulsions stabilization. ACS Sustain Chem Eng 7(15):12887–12896CrossRef Wei J, Zhou Y, Lv Y, Wang J, Jia C, Liu J, Zhang X, Sun J, Shao Z (2019) C Carboxymethyl cellulose nanofibrils with a treelike matrix: preparation and behavior of pickering emulsions stabilization. ACS Sustain Chem Eng 7(15):12887–12896CrossRef
Zurück zum Zitat Wu B, Geng B, Chen Y, Liu H, Li G, Wu Q (2017) Preparation and characteriastics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films. Front Chem Sci Eng 11(4):554–563CrossRef Wu B, Geng B, Chen Y, Liu H, Li G, Wu Q (2017) Preparation and characteriastics of TEMPO-oxidized cellulose nanofibrils from bamboo pulp and their oxygen-barrier application in PLA films. Front Chem Sci Eng 11(4):554–563CrossRef
Zurück zum Zitat Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018 Xie H, Du H, Yang X, Si C (2018) Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci 2018
Zurück zum Zitat Yahya MB, Lee HV, Hamid SBA (2015) Preparation of nanocellulose via transition metal salt-catalyzed hydrolysis pathway. BioResources 10(4):7627–7639CrossRef Yahya MB, Lee HV, Hamid SBA (2015) Preparation of nanocellulose via transition metal salt-catalyzed hydrolysis pathway. BioResources 10(4):7627–7639CrossRef
Zurück zum Zitat Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod Biorefining Innov Sustain Econ 2(1):26–40CrossRef Yang B, Wyman CE (2008) Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels, Bioprod Biorefining Innov Sustain Econ 2(1):26–40CrossRef
Zurück zum Zitat Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acidhydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944CrossRef Yu H, Qin Z, Liang B, Liu N, Zhou Z, Chen L (2013) Facile extraction of thermally stable cellulose nanocrystals with a high yield of 93% through hydrochloric acidhydrolysis under hydrothermal conditions. J Mater Chem A 1(12):3938–3944CrossRef
Zurück zum Zitat Yu H, Yan C, Lei X, Qin Z, Yao J (2014) Novel approach to extract thermally stable cellulose nanospheres with high yield. Mater Lett 131:12–15CrossRef Yu H, Yan C, Lei X, Qin Z, Yao J (2014) Novel approach to extract thermally stable cellulose nanospheres with high yield. Mater Lett 131:12–15CrossRef
Zurück zum Zitat Yu H-Y, Zhang H, Song M-L, Zhou Y, Yao J, Ni Q-Q (2017) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Interfaces 9(50):43920–43938PubMedCrossRef Yu H-Y, Zhang H, Song M-L, Zhou Y, Yao J, Ni Q-Q (2017) From cellulose nanospheres, nanorods to nanofibers: various aspect ratio induced nucleation/reinforcing effects on polylactic acid for robust-barrier food packaging. ACS Appl Mater Interfaces 9(50):43920–43938PubMedCrossRef
Zurück zum Zitat Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69(3):607–611CrossRef Zhang J, Elder TJ, Pu Y, Ragauskas AJ (2007) Facile synthesis of spherical cellulose nanoparticles. Carbohydr Polym 69(3):607–611CrossRef
Zurück zum Zitat Zhang L, Tsuzuki T, Wang X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22(3):1729–1741CrossRef Zhang L, Tsuzuki T, Wang X (2015) Preparation of cellulose nanofiber from softwood pulp by ball milling. Cellulose 22(3):1729–1741CrossRef
Zurück zum Zitat Zhang K, Sun P, Liu H, Shang S, Song J, Wang D (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr Polym 138:237–243PubMedCrossRef Zhang K, Sun P, Liu H, Shang S, Song J, Wang D (2016) Extraction and comparison of carboxylated cellulose nanocrystals from bleached sugarcane bagasse pulp using two different oxidation methods. Carbohydr Polym 138:237–243PubMedCrossRef
Zurück zum Zitat Zhang T, Cheng Q, Ye D, Chang C (2017a) Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr Polym 169:139–148PubMedCrossRef Zhang T, Cheng Q, Ye D, Chang C (2017a) Tunicate cellulose nanocrystals reinforced nanocomposite hydrogels comprised by hybrid cross-linked networks. Carbohydr Polym 169:139–148PubMedCrossRef
Zurück zum Zitat Zhang T, Zuo T, Hu D, Chang C (2017b) Dual physically cross-linked nanocomposite hydrogels reinforced by tunicate cellulose nanocrystals with high toughness and good self-recoverability. ACS Appl Mater Interfaces 9(28):24230–24237PubMedCrossRef Zhang T, Zuo T, Hu D, Chang C (2017b) Dual physically cross-linked nanocomposite hydrogels reinforced by tunicate cellulose nanocrystals with high toughness and good self-recoverability. ACS Appl Mater Interfaces 9(28):24230–24237PubMedCrossRef
Zurück zum Zitat Zhang L, Jia Y, He H, Yin J, Chen R, Zhang C, Shen W, Wang X (2018) Multiple factor analysis on preparation of cellulose nanofiber by ball milling from softwood pulp. BioResources 13(2):2397–2410 Zhang L, Jia Y, He H, Yin J, Chen R, Zhang C, Shen W, Wang X (2018) Multiple factor analysis on preparation of cellulose nanofiber by ball milling from softwood pulp. BioResources 13(2):2397–2410
Zurück zum Zitat Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90(7):073112CrossRef Zhao H-P, Feng X-Q, Gao H (2007) Ultrasonic technique for extracting nanofibers from nature materials. Appl Phys Lett 90(7):073112CrossRef
Zurück zum Zitat Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296PubMedCrossRef Zhao Y, Zhang Y, Lindström ME, Li J (2015) Tunicate cellulose nanocrystals: preparation, neat films and nanocomposite films with glucomannans. Carbohydr Polym 117:286–296PubMedCrossRef
Zurück zum Zitat Zhou Y, Fuentes-Hernandez C, Khan TM, Liu J-C, Hsu J, Shim JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536PubMedPubMedCentralCrossRef Zhou Y, Fuentes-Hernandez C, Khan TM, Liu J-C, Hsu J, Shim JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536PubMedPubMedCentralCrossRef
Zurück zum Zitat Zhou Y, Khan TM, Liu J-C, Fuentes-Hernandez C, Shim JW, Najafabadi E, Youngblood JP, Moon RJ, Kippelen B (2014) Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org Electron 15(3):661–666CrossRef Zhou Y, Khan TM, Liu J-C, Fuentes-Hernandez C, Shim JW, Najafabadi E, Youngblood JP, Moon RJ, Kippelen B (2014) Efficient recyclable organic solar cells on cellulose nanocrystal substrates with a conducting polymer top electrode deposited by film-transfer lamination. Org Electron 15(3):661–666CrossRef
Zurück zum Zitat Zhu R, Yadama V (2018) Isolation and characterization of cellulose micro/nanofibrils from douglas fir. J Polym Environ 26(3):1012–1023CrossRef Zhu R, Yadama V (2018) Isolation and characterization of cellulose micro/nanofibrils from douglas fir. J Polym Environ 26(3):1012–1023CrossRef
Zurück zum Zitat Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRef Zimmermann T, Pöhler E, Geiger T (2004) Cellulose fibrils for polymer reinforcement. Adv Eng Mater 6(9):754–761CrossRef
Zurück zum Zitat Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211CrossRef Zu G, Shen J, Zou L, Wang F, Wang X, Zhang Y, Yao X (2016) Nanocellulose-derived highly porous carbon aerogels for supercapacitors. Carbon 99:203–211CrossRef
Metadaten
Titel
Cellulose nanomaterials: new generation materials for solving global issues
verfasst von
T. C. Mokhena
M. J. John
Publikationsdatum
30.11.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 3/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02889-w

Weitere Artikel der Ausgabe 3/2020

Cellulose 3/2020 Zur Ausgabe