Skip to main content
Erschienen in: Journal of Materials Science 2/2015

01.01.2015 | Original Paper

Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process

verfasst von: Oleksandr Nechyporchuk, Frédéric Pignon, Mohamed Naceur Belgacem

Erschienen in: Journal of Materials Science | Ausgabe 2/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanofibrillated cellulose (NFC) aqueous suspensions were produced from once-dried bisulfite softwood pulp using enzymatic or 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-mediated oxidation pretreatments, followed by wet grinding, as an ultimate fibrillation technique. Two commercial enzyme solutions: cellulase, with the major activity of endoglucanase and exoglucanase, and monocomponent endoglucanase, were compared to facilitate the nanofibrils isolation from cellulose fibers. The influence of their concentrations, as well as the other processing conditions, was analyzed. The morphology of the produced NFC was characterized using optical microscopy, atomic force microscopy (AFM), field emission gun-scanning electron microscopy (FEG-SEM), and morphological fiber analyzer (MorFi). Nanofibrils with a wide size distribution were produced. The average lateral dimensions of 12 ± 7 nm for the most disintegrated enzymatically hydrolyzed NFC and 4 ± 2 nm for TEMPO-oxidized NFC were determined from the AFM height images. The degree of polymerization (DP) decreased and the crystallinity index (CI) increased with an increase of the concentration of both enzyme solutions. TEMPO-oxidation did not have a significant impact on the cellulose CI; however, the DP was strongly affected. The monocomponent endoglucanase solution was found to have a better effect on the nanofibrils isolation rather than their depolymerization.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses, and Commercial Potential. In: Sarko A (ed) Proceedings of the Ninth Cellulose Conference, Appl Polym Symp, 37. Wiley, New York, pp 815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated Cellulose, a New Cellulose Product: Properties, Uses, and Commercial Potential. In: Sarko A (ed) Proceedings of the Ninth Cellulose Conference, Appl Polym Symp, 37. Wiley, New York, pp 815–827
3.
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose. U.S. Patent No. 4,374,702 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose. U.S. Patent No. 4,374,702
7.
Zurück zum Zitat Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219. doi:10.1021/ie9011672 CrossRef Stelte W, Sanadi AR (2009) Preparation and characterization of cellulose nanofibers from two commercial hardwood and softwood pulps. Ind Eng Chem Res 48:11211–11219. doi:10.​1021/​ie9011672 CrossRef
8.
Zurück zum Zitat Shackford LD (2003) A Comparison of Pulping and Bleaching of Kraft Softwood and Eucalyptus Pulps. In: 36th International pulp and paper congress and exhibition, São Paulo, Brazil Shackford LD (2003) A Comparison of Pulping and Bleaching of Kraft Softwood and Eucalyptus Pulps. In: 36th International pulp and paper congress and exhibition, São Paulo, Brazil
9.
10.
Zurück zum Zitat Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated Cellulose: morphology, and accessibility. In: Sarko A (ed) Proceedings of the Ninth Cellulose Conference, Appl Polym Symp, 37. Wiley, New York, pp 797–813 Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated Cellulose: morphology, and accessibility. In: Sarko A (ed) Proceedings of the Ninth Cellulose Conference, Appl Polym Symp, 37. Wiley, New York, pp 797–813
12.
Zurück zum Zitat Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromol 8:2556–2563. doi:10.1021/bm0703160 CrossRef Svagan AJ, Azizi Samir MAS, Berglund LA (2007) Biomimetic polysaccharide nanocomposites of high cellulose content and high toughness. Biomacromol 8:2556–2563. doi:10.​1021/​bm0703160 CrossRef
13.
Zurück zum Zitat Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552. doi:10.1007/s00339-003-2453-5 CrossRef Nakagaito AN, Yano H (2004) The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites. Appl Phys A 78:547–552. doi:10.​1007/​s00339-003-2453-5 CrossRef
14.
Zurück zum Zitat Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941. doi:10.1021/bm061215p CrossRef Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromol 8:1934–1941. doi:10.​1021/​bm061215p CrossRef
16.
Zurück zum Zitat Spence KL, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellul 18:1097–1111. doi:10.1007/s10570-011-9533-z CrossRef Spence KL, Venditti RA, Rojas OJ et al (2011) A comparative study of energy consumption and physical properties of microfibrillated cellulose produced by different processing methods. Cellul 18:1097–1111. doi:10.​1007/​s10570-011-9533-z CrossRef
19.
Zurück zum Zitat Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated microfibrillated cellulose as a toughening agent in poly (lactic acid). J Appl Polym Sci 126:E449–E458. doi:10.1002/app.36787 CrossRef Bulota M, Kreitsmann K, Hughes M, Paltakari J (2012) Acetylated microfibrillated cellulose as a toughening agent in poly (lactic acid). J Appl Polym Sci 126:E449–E458. doi:10.​1002/​app.​36787 CrossRef
21.
Zurück zum Zitat Spence KL, Venditti RA, Habibi Y et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968CrossRef Spence KL, Venditti RA, Habibi Y et al (2010) The effect of chemical composition on microfibrillar cellulose films from wood pulps: mechanical processing and physical properties. Bioresour Technol 101:5961–5968CrossRef
23.
Zurück zum Zitat Tangnu SK (1982) Process development for ethanol production based on enzymatic hydrolysis of cellulosic biomass. Process Biochem 17:36–45 Tangnu SK (1982) Process development for ethanol production based on enzymatic hydrolysis of cellulosic biomass. Process Biochem 17:36–45
24.
Zurück zum Zitat Siqueira G, Tapin-Lingua S, Bras J et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellul 17:1147–1158. doi:10.1007/s10570-010-9449-z CrossRef Siqueira G, Tapin-Lingua S, Bras J et al (2010) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellul 17:1147–1158. doi:10.​1007/​s10570-010-9449-z CrossRef
27.
Zurück zum Zitat Rosgaard L, Pedersen S, Langston J et al (2007) Evaluation of minimal trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23:1270–1276. doi:10.1021/bp070329p CrossRef Rosgaard L, Pedersen S, Langston J et al (2007) Evaluation of minimal trichoderma reesei cellulase mixtures on differently pretreated barley straw substrates. Biotechnol Prog 23:1270–1276. doi:10.​1021/​bp070329p CrossRef
29.
Zurück zum Zitat Saito T, Nishiyama Y, Putaux J-L et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691. doi:10.1021/bm060154s CrossRef Saito T, Nishiyama Y, Putaux J-L et al (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromol 7:1687–1691. doi:10.​1021/​bm060154s CrossRef
30.
Zurück zum Zitat Bäckström M, Bolivar S, Paltakari J (2012) Effect of ionic form on fibrillation and the development of the fibre network strength during the refining of the kraft pulps. O Papel 73:57–65 Bäckström M, Bolivar S, Paltakari J (2012) Effect of ionic form on fibrillation and the development of the fibre network strength during the refining of the kraft pulps. O Papel 73:57–65
31.
Zurück zum Zitat Saito T, Hirota M, Tamura N et al (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 10:1992–1996. doi:10.1021/bm900414t CrossRef Saito T, Hirota M, Tamura N et al (2009) Individualization of nano-sized plant cellulose fibrils by direct surface carboxylation using TEMPO catalyst under neutral conditions. Biomacromol 10:1992–1996. doi:10.​1021/​bm900414t CrossRef
32.
Zurück zum Zitat Spinu M, Santos ND, Moigne NL, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellul 18:247–256. doi:10.1007/s10570-010-9485-8 CrossRef Spinu M, Santos ND, Moigne NL, Navard P (2011) How does the never-dried state influence the swelling and dissolution of cellulose fibres in aqueous solvent? Cellul 18:247–256. doi:10.​1007/​s10570-010-9485-8 CrossRef
33.
Zurück zum Zitat Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. doi:10.1021/bm0703970 CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromol 8:2485–2491. doi:10.​1021/​bm0703970 CrossRef
34.
Zurück zum Zitat Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794. doi:10.1177/004051755902901003 CrossRef Segal L, Creely JJ, Martin AE, Conrad CM (1959) An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Text Res J 29:786–794. doi:10.​1177/​0040517559029010​03 CrossRef
35.
Zurück zum Zitat Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344. doi:10.1039/C1GC15103G CrossRef Zhu JY, Sabo R, Luo X (2011) Integrated production of nano-fibrillated cellulose and cellulosic biofuel (ethanol) by enzymatic fractionation of wood fibers. Green Chem 13:1339–1344. doi:10.​1039/​C1GC15103G CrossRef
36.
Zurück zum Zitat Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.1186/1754-6834-3-10 CrossRef Park S, Baker JO, Himmel ME et al (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10. doi:10.​1186/​1754-6834-3-10 CrossRef
39.
Zurück zum Zitat Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromol 13:842–849. doi:10.1021/bm2017542 CrossRef Shinoda R, Saito T, Okita Y, Isogai A (2012) Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils. Biomacromol 13:842–849. doi:10.​1021/​bm2017542 CrossRef
40.
41.
Zurück zum Zitat Puangsin B, Fujisawa S, Kuramae R et al (2013) TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. J Polym Environ 21:555–563. doi:10.1007/s10924-012-0548-9 CrossRef Puangsin B, Fujisawa S, Kuramae R et al (2013) TEMPO-mediated oxidation of hemp bast holocellulose to prepare cellulose nanofibrils dispersed in water. J Polym Environ 21:555–563. doi:10.​1007/​s10924-012-0548-9 CrossRef
Metadaten
Titel
Morphological properties of nanofibrillated cellulose produced using wet grinding as an ultimate fibrillation process
verfasst von
Oleksandr Nechyporchuk
Frédéric Pignon
Mohamed Naceur Belgacem
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 2/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8609-1

Weitere Artikel der Ausgabe 2/2015

Journal of Materials Science 2/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.