Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2017

11.05.2017

Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites

verfasst von: Farzin Azimpour Shishevan, Hamid Akbulut, M. A. Mohtadi-Bonab

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this research, we studied low velocity impact response of homogenous basalt fiber-reinforced polymer (BFRP) composites and then compared the impact key parameters with carbon fiber-reinforced polymer (CFRP) homogenous composites. BFRPs and CFRPs were fabricated by vacuum-assisted resin transfer molding (VARTM) method. Fabricated composites included 60% fiber and 40% epoxy matrix. Basalt and carbon fibers used as reinforcement materials were weaved in 2/2 twill textile tip in the structures of BFRP and CFRP composites. We also utilized the energy profile method to determine penetration and perforation threshold energies. The low velocity impact tests were carried out in 30, 60, 80, 100, 120 and 160 J energy magnitudes, and impact response of BFRPs was investigated by related force-deflection, force-time, deflection-time and absorbed energy-time graphics. The related impact key parameters such as maximum contact force, absorbed energy, deflection and duration time were compared with CFRPs for various impact energy levels. As a result, due to the higher toughness of basalt fibers, a better low velocity impact performance of BFRP than that of CFRP was observed. The effects of fabrication parameters, such as curing process, were studied on the low velocity impact behavior of BFRP. The results of tested new fabricated materials show that the change of fabrication process and curing conditions improves the impact behavior of BFRPs up to 13%.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S. Carmisciano, I.M.D. Rosa, F. Sarasini, A. Tamburrano, and M. Valente, Basalt Woven Fiber Reinforced Vinylester Composites: Flexural and Electrical Properties, Mater. Des., 2011, 32, p 337–342CrossRef S. Carmisciano, I.M.D. Rosa, F. Sarasini, A. Tamburrano, and M. Valente, Basalt Woven Fiber Reinforced Vinylester Composites: Flexural and Electrical Properties, Mater. Des., 2011, 32, p 337–342CrossRef
2.
Zurück zum Zitat L.X. Zhong, S.Y. Fu, X.S. Zhou, and H.Y. Zhan, Effect of Surface Microfibrillation of Sisal Fibre on the Mechanical Properties of Sisal/Aramid Fibre Hybrid Composites, Compos. Part A Appl. Sci., 2011, 4, p 244–252CrossRef L.X. Zhong, S.Y. Fu, X.S. Zhou, and H.Y. Zhan, Effect of Surface Microfibrillation of Sisal Fibre on the Mechanical Properties of Sisal/Aramid Fibre Hybrid Composites, Compos. Part A Appl. Sci., 2011, 4, p 244–252CrossRef
3.
Zurück zum Zitat V. Fiore, G.D. Bella, and A. Valenza, Glass-Basalt/Epoxy Hybrid Composites for Marine Applications, Mater. Des., 2011, 32, p 2091–2099CrossRef V. Fiore, G.D. Bella, and A. Valenza, Glass-Basalt/Epoxy Hybrid Composites for Marine Applications, Mater. Des., 2011, 32, p 2091–2099CrossRef
4.
Zurück zum Zitat E. Quagliarini, F. Monnia, S. Lencia, and F. Bondioli, Tensile Characterization of Basalt Fiber Rods and Ropes: A First Contribution, Constr. Build. Mater., 2012, 34, p 372–380CrossRef E. Quagliarini, F. Monnia, S. Lencia, and F. Bondioli, Tensile Characterization of Basalt Fiber Rods and Ropes: A First Contribution, Constr. Build. Mater., 2012, 34, p 372–380CrossRef
5.
Zurück zum Zitat E.E. Mcconnell, O. Kamstup, R. Musselman, T.W. Hesterberg, J. Chevalier, and W.C. Miller, Chronic Inhalation Study of Size-Separated Rock and Slag Wool Insulation Fibers in Fischer 344/N Rats, Inhal. Toxicol., 1994, 6, p 571–614CrossRef E.E. Mcconnell, O. Kamstup, R. Musselman, T.W. Hesterberg, J. Chevalier, and W.C. Miller, Chronic Inhalation Study of Size-Separated Rock and Slag Wool Insulation Fibers in Fischer 344/N Rats, Inhal. Toxicol., 1994, 6, p 571–614CrossRef
6.
Zurück zum Zitat B. Wei, H. Cao, and S. Song, Tensile Behavior Contrast of Basalt and Glass Fibers After Chemical Treatment, Mater. Des., 2010, 31, p 4244–4250CrossRef B. Wei, H. Cao, and S. Song, Tensile Behavior Contrast of Basalt and Glass Fibers After Chemical Treatment, Mater. Des., 2010, 31, p 4244–4250CrossRef
7.
Zurück zum Zitat M. Berozashvili, Continuous Reinforcing Fibers are Being Offered for Construction, Civil Engineering and Other Composites Applications, Adv. Compos. Mater, 2001, 21, p 5–6 M. Berozashvili, Continuous Reinforcing Fibers are Being Offered for Construction, Civil Engineering and Other Composites Applications, Adv. Compos. Mater, 2001, 21, p 5–6
8.
Zurück zum Zitat C. Schefflera, T. Förster, E. Mäder, G. Heinrich, S. Hempel, and V. Mechtcherine, Aging of Alkali-Resistant Glass and Basalt Fibers in Alkaline Solutions: Evaluation of the Failure Stress by Weibull Distribution Function, J. Non-Cryst. Solids, 2009, 355, p 2588–2595CrossRef C. Schefflera, T. Förster, E. Mäder, G. Heinrich, S. Hempel, and V. Mechtcherine, Aging of Alkali-Resistant Glass and Basalt Fibers in Alkaline Solutions: Evaluation of the Failure Stress by Weibull Distribution Function, J. Non-Cryst. Solids, 2009, 355, p 2588–2595CrossRef
9.
Zurück zum Zitat J. Sim, C. Park, and D.Y. Moon, Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures, Compos. Part B Eng., 2005, 36, p 504–512CrossRef J. Sim, C. Park, and D.Y. Moon, Characteristics of Basalt Fiber as a Strengthening Material for Concrete Structures, Compos. Part B Eng., 2005, 36, p 504–512CrossRef
10.
Zurück zum Zitat W. Tian, K.H. Leong, A.Y. Leong, F. Fredo, and M. Quaresimin, The Effect of Surface Treatments on the Mechanical Properties of Basalt-Reinforced Epoxy Composites, Polym. Compos., 2013, 34, p 320–329CrossRef W. Tian, K.H. Leong, A.Y. Leong, F. Fredo, and M. Quaresimin, The Effect of Surface Treatments on the Mechanical Properties of Basalt-Reinforced Epoxy Composites, Polym. Compos., 2013, 34, p 320–329CrossRef
11.
Zurück zum Zitat V. Lopresto, C. Leone, and I.D. Iorio, Mechanical Characterisation of Basalt Fibre Reinforced Plastic, Compos. Part B Eng., 2011, 42, p 717–723CrossRef V. Lopresto, C. Leone, and I.D. Iorio, Mechanical Characterisation of Basalt Fibre Reinforced Plastic, Compos. Part B Eng., 2011, 42, p 717–723CrossRef
12.
Zurück zum Zitat R.K. Gideon, H. Hu, P. Wambu, and B. Gu, Characterizations of Basalt Unsaturated Polyester Laminates Under Static Three-Point Bending and Low-Velocity Impact Loadings, Polym. Compos., 2014, 35, p 2203–2213CrossRef R.K. Gideon, H. Hu, P. Wambu, and B. Gu, Characterizations of Basalt Unsaturated Polyester Laminates Under Static Three-Point Bending and Low-Velocity Impact Loadings, Polym. Compos., 2014, 35, p 2203–2213CrossRef
13.
Zurück zum Zitat H. Kim, Thermal Characteristics of Basalt Fiber Reinforced Epoxy-Benzoxazine Composites, Fiber Polym., 2012, 13, p 762–768CrossRef H. Kim, Thermal Characteristics of Basalt Fiber Reinforced Epoxy-Benzoxazine Composites, Fiber Polym., 2012, 13, p 762–768CrossRef
14.
Zurück zum Zitat S.X. Wang, L.Z. Wu, and L. Ma, Low-Velocity Impact and Residual Tensile Strength Analysis to Carbon Fiber Composite Laminates, Mater. Des., 2010, 31, p 118–125CrossRef S.X. Wang, L.Z. Wu, and L. Ma, Low-Velocity Impact and Residual Tensile Strength Analysis to Carbon Fiber Composite Laminates, Mater. Des., 2010, 31, p 118–125CrossRef
15.
Zurück zum Zitat W.J. Cantwell and J. Morton, Geometrical Effects in the Low Velocity Impact Response of CFRP, Compos. Struct., 1989, 12, p 39–59CrossRef W.J. Cantwell and J. Morton, Geometrical Effects in the Low Velocity Impact Response of CFRP, Compos. Struct., 1989, 12, p 39–59CrossRef
16.
Zurück zum Zitat M.F.S.F. de Moura and A.T. Marques, Prediction of Low Velocity Impact Damage in Carbon–Epoxy Laminates, Compos. Part A Appl. Sci., 2002, 33, p 361–368CrossRef M.F.S.F. de Moura and A.T. Marques, Prediction of Low Velocity Impact Damage in Carbon–Epoxy Laminates, Compos. Part A Appl. Sci., 2002, 33, p 361–368CrossRef
17.
Zurück zum Zitat V. Tita, J.D. Carvalho, and D. Vandepitte, Failure Analysis of Low Velocity Impact on Thin Composite Laminates: Experimental and Numerical Approaches, Compos. Struct., 2008, 83, p 413–428CrossRef V. Tita, J.D. Carvalho, and D. Vandepitte, Failure Analysis of Low Velocity Impact on Thin Composite Laminates: Experimental and Numerical Approaches, Compos. Struct., 2008, 83, p 413–428CrossRef
18.
Zurück zum Zitat X. Zhang, L. Hounslow, and M. Grassi, Improvement of Low-Velocity Impact and Compression-After-Impact Performance by z-Fibre Pinning, Compos. Sci. Technol., 2006, 66, p 2785–2794CrossRef X. Zhang, L. Hounslow, and M. Grassi, Improvement of Low-Velocity Impact and Compression-After-Impact Performance by z-Fibre Pinning, Compos. Sci. Technol., 2006, 66, p 2785–2794CrossRef
19.
Zurück zum Zitat B. Berk, R. Karakuzu, B. Murat Icten, V. Arikan, Y. Arman, C. Atas, and A. Goren, An Experimental and Numerical Investigation on Low Velocity Impact Behavior of Composite Plates, J. Compos. Mater., 2016, 82, p 336–345 B. Berk, R. Karakuzu, B. Murat Icten, V. Arikan, Y. Arman, C. Atas, and A. Goren, An Experimental and Numerical Investigation on Low Velocity Impact Behavior of Composite Plates, J. Compos. Mater., 2016, 82, p 336–345
20.
Zurück zum Zitat R.K. Gideon, H. Hu, P. Wambu, and B. Gu, Characterizations of Basalt Unsaturated Polyester Laminates Under Static Three-Point Bending and Low-Velocity Impact Loadings, Polym. Compos., 2014, 35, p 2203–2213CrossRef R.K. Gideon, H. Hu, P. Wambu, and B. Gu, Characterizations of Basalt Unsaturated Polyester Laminates Under Static Three-Point Bending and Low-Velocity Impact Loadings, Polym. Compos., 2014, 35, p 2203–2213CrossRef
21.
Zurück zum Zitat B.M. Icten, C. Atas, M. Aktas, and R. Karakuzu, Low Temperature Effect on Impact Response of Quasi-Isotropic Glass/Epoxy Laminated Plates, Compos. Struct., 2009, 91, p 318–323CrossRef B.M. Icten, C. Atas, M. Aktas, and R. Karakuzu, Low Temperature Effect on Impact Response of Quasi-Isotropic Glass/Epoxy Laminated Plates, Compos. Struct., 2009, 91, p 318–323CrossRef
22.
Zurück zum Zitat M. Uyaner and M. Kara, Dynamic Response of Laminated Composites Subjected to Low-Velocity Impact, J. Compos. Mater., 2007, 41, p 2877–2895CrossRef M. Uyaner and M. Kara, Dynamic Response of Laminated Composites Subjected to Low-Velocity Impact, J. Compos. Mater., 2007, 41, p 2877–2895CrossRef
Metadaten
Titel
Low Velocity Impact Behavior of Basalt Fiber-Reinforced Polymer Composites
verfasst von
Farzin Azimpour Shishevan
Hamid Akbulut
M. A. Mohtadi-Bonab
Publikationsdatum
11.05.2017
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2017
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-017-2728-1

Weitere Artikel der Ausgabe 6/2017

Journal of Materials Engineering and Performance 6/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.