Skip to main content
Erschienen in: Rare Metals 6/2020

26.05.2020

Microalloying Al alloys with Sc: a review

verfasst von: Jin-Yu Zhang, Yi-Han Gao, Chong Yang, Peng Zhang, Jie Kuang, Gang Liu, Jun Sun

Erschienen in: Rare Metals | Ausgabe 6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As a kind of important light alloys, the Al alloys exhibit mechanical properties that are closely related to the microstructures. Changing the main alloying elements and adjusting heat treatments are usually approaches to tune the microstructure and hence artificially control the mechanical properties. However, the windows for the two approaches have become quite narrow, after extensive studies in the last half of century. Microalloying has become the most promising strategy to further modify the microstructure and improve the mechanical properties of Al alloys, among which the element of scandium (Sc) is especially powerful. In this paper, the recent progresses in Al alloys microalloyed with Sc are briefly reviewed, focusing on the microstructural characterization, strengthening response, and underlying mechanisms. The possible key research points are also proposed for the further development of Al alloys microalloyed with Sc and other rare earth elements.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Hornbogen E, Starke EA Jr. Theory assisted design of high strength low alloy aluminum. Acta Metall Mater. 1993;41(1):1.CrossRef Hornbogen E, Starke EA Jr. Theory assisted design of high strength low alloy aluminum. Acta Metall Mater. 1993;41(1):1.CrossRef
[2]
Zurück zum Zitat Wen K, Xiong BQ, Fan YQ, Zhang YA, Li ZH, Li XW, Wang F, Liu HW. Transformation and dissolution of second phases during solution treatment of an Al–Zn–Mg–Cu alloy containing high zinc. Rare Met. 2018;37(5):376.CrossRef Wen K, Xiong BQ, Fan YQ, Zhang YA, Li ZH, Li XW, Wang F, Liu HW. Transformation and dissolution of second phases during solution treatment of an Al–Zn–Mg–Cu alloy containing high zinc. Rare Met. 2018;37(5):376.CrossRef
[3]
Zurück zum Zitat Huang HL, Jia ZH, Xing Y, Wang XL, Liu Q. Microstructure of Al–Si–Mg alloy with Zr/Hf additions during solidification and solution treatment. Rare Met. 2019;38(11):1033.CrossRef Huang HL, Jia ZH, Xing Y, Wang XL, Liu Q. Microstructure of Al–Si–Mg alloy with Zr/Hf additions during solidification and solution treatment. Rare Met. 2019;38(11):1033.CrossRef
[4]
Zurück zum Zitat Liu G, Zhang GJ, Ding XD, Sun J, Chen KH. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates. Mater Sci Eng A. 2003;344:113.CrossRef Liu G, Zhang GJ, Ding XD, Sun J, Chen KH. Modeling the strengthening response to aging process of heat-treatable aluminum alloys containing plate/disc- or rod/needle-shaped precipitates. Mater Sci Eng A. 2003;344:113.CrossRef
[5]
Zurück zum Zitat Liu G, Sun J, Nan CW, Chen KH. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta Mater. 2005;53(12):3459.CrossRef Liu G, Sun J, Nan CW, Chen KH. Experiment and multiscale modeling of the coupled influence of constituents and precipitates on the ductile fracture of heat-treatable aluminum alloys. Acta Mater. 2005;53(12):3459.CrossRef
[6]
Zurück zum Zitat Grong Ø, Shercliff HR. Microstructural modelling in metals processing. Prog Mater Sci. 2002;47(1):163.CrossRef Grong Ø, Shercliff HR. Microstructural modelling in metals processing. Prog Mater Sci. 2002;47(1):163.CrossRef
[7]
Zurück zum Zitat Deschamps A, Livet F, Bréchet Y. Influence of pre-deformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Mater. 1998;47(1):281.CrossRef Deschamps A, Livet F, Bréchet Y. Influence of pre-deformation on ageing in an Al–Zn–Mg alloy—I. Microstructure evolution and mechanical properties. Acta Mater. 1998;47(1):281.CrossRef
[8]
Zurück zum Zitat Starink JM, Wang SC. A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater. 2003;51(17):5131.CrossRef Starink JM, Wang SC. A model for the yield strength of overaged Al–Zn–Mg–Cu alloys. Acta Mater. 2003;51(17):5131.CrossRef
[9]
Zurück zum Zitat Myhr OR, Grong Ø, Andersen SJ. Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater. 2001;49(1):65.CrossRef Myhr OR, Grong Ø, Andersen SJ. Modelling of the age hardening behaviour of Al–Mg–Si alloys. Acta Mater. 2001;49(1):65.CrossRef
[10]
Zurück zum Zitat Hardy H. The ageing characteristics of ternary aluminium–copper alloys with cadmium indium or tin. J Inst Met. 1952;80(2):483. Hardy H. The ageing characteristics of ternary aluminium–copper alloys with cadmium indium or tin. J Inst Met. 1952;80(2):483.
[11]
Zurück zum Zitat Silcock JM, Heal TJ, Hardy HK. The structural ageing characteristics of ternary aluminium–copper alloys with cadmium, indium, or tin. J Inst Met. 1955;84(1):23. Silcock JM, Heal TJ, Hardy HK. The structural ageing characteristics of ternary aluminium–copper alloys with cadmium, indium, or tin. J Inst Met. 1955;84(1):23.
[12]
Zurück zum Zitat Boyd JD, Nicholson RB. A calorimetric determination of precipitate interfacial energies in two Al–Cu alloys. Acta Metall. 1971;19(3):1101.CrossRef Boyd JD, Nicholson RB. A calorimetric determination of precipitate interfacial energies in two Al–Cu alloys. Acta Metall. 1971;19(3):1101.CrossRef
[13]
Zurück zum Zitat Sankaran R, Laird C. Effect of trace additions Cd, In and Sn on the interfacial structure and kinetics of growth of θ′ plates in Al–Cu alloy. Mater Sci Eng. 1974;14(1):271.CrossRef Sankaran R, Laird C. Effect of trace additions Cd, In and Sn on the interfacial structure and kinetics of growth of θ′ plates in Al–Cu alloy. Mater Sci Eng. 1974;14(1):271.CrossRef
[14]
Zurück zum Zitat Kanno M, Suzuki H, Kanoh O. The precipitation of theta-prime phase in an Al–4%Cu–0.06%In alloy. J Jpn Inst Met. 1980;44(3):1139.CrossRef Kanno M, Suzuki H, Kanoh O. The precipitation of theta-prime phase in an Al–4%Cu–0.06%In alloy. J Jpn Inst Met. 1980;44(3):1139.CrossRef
[15]
Zurück zum Zitat Nuyten JBM. Quenched structures and precipitation in Al–Cu alloys with and without trace additions of Cd. Acta Metall. 1967;15(4):1765.CrossRef Nuyten JBM. Quenched structures and precipitation in Al–Cu alloys with and without trace additions of Cd. Acta Metall. 1967;15(4):1765.CrossRef
[16]
Zurück zum Zitat Ringer SP, Hono K, Sakurai T. The effect of trace additions of Sn on precipitation in Al–Cu alloys: an atom probe field ion microscopy study. Metall Mater Trans A. 1995;26(5):2207.CrossRef Ringer SP, Hono K, Sakurai T. The effect of trace additions of Sn on precipitation in Al–Cu alloys: an atom probe field ion microscopy study. Metall Mater Trans A. 1995;26(5):2207.CrossRef
[17]
Zurück zum Zitat Mitlin D, Morris JW, Radmilovic V, Dahmen U. Precipitation and aging in Al–Si–Ge–Cu. Metall Mater Trans A. 2001;32(1):197.CrossRef Mitlin D, Morris JW, Radmilovic V, Dahmen U. Precipitation and aging in Al–Si–Ge–Cu. Metall Mater Trans A. 2001;32(1):197.CrossRef
[18]
Zurück zum Zitat Mitlin D, Radmilovic V, Morris JW, Dahmen U. On the influence of Si–Ge additions on the aging response of Al–Cu. Metall Mater Trans A. 2003;34(2):735. Mitlin D, Radmilovic V, Morris JW, Dahmen U. On the influence of Si–Ge additions on the aging response of Al–Cu. Metall Mater Trans A. 2003;34(2):735.
[19]
Zurück zum Zitat Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Z Fuer Metallk. 2006;97(3):246.CrossRef Knipling KE, Dunand DC, Seidman DN. Criteria for developing castable, creep-resistant aluminum-based alloys—a review. Z Fuer Metallk. 2006;97(3):246.CrossRef
[20]
Zurück zum Zitat Ringer SP, Hono K. Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Mater Charact. 2000;44(1):101.CrossRef Ringer SP, Hono K. Microstructural evolution and age hardening in aluminium alloys: atom probe field-ion microscopy and transmission electron microscopy studies. Mater Charact. 2000;44(1):101.CrossRef
[21]
Zurück zum Zitat Clouet E, Lae L, Epicier T, Lefebvre W, Nastar M, Deschamps A. Complex precipitation pathways in multicomponent alloys. Nat Mater. 2006;5(2):482.CrossRef Clouet E, Lae L, Epicier T, Lefebvre W, Nastar M, Deschamps A. Complex precipitation pathways in multicomponent alloys. Nat Mater. 2006;5(2):482.CrossRef
[22]
Zurück zum Zitat Fazeli F, Poole WJ, Sinclair CW. Modeling the effect of Al3Sc precipitates on the yield stress and work hardening of Al–Mg–Sc alloy. Acta Mater. 2008;56(7):1909.CrossRef Fazeli F, Poole WJ, Sinclair CW. Modeling the effect of Al3Sc precipitates on the yield stress and work hardening of Al–Mg–Sc alloy. Acta Mater. 2008;56(7):1909.CrossRef
[23]
Zurück zum Zitat Robson JD. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Mater. 2004;52(6):1409.CrossRef Robson JD. A new model for prediction of dispersoid precipitation in aluminium alloys containing zirconium and scandium. Acta Mater. 2004;52(6):1409.CrossRef
[24]
Zurück zum Zitat Liu G, Zhang GJ, Wang RH, Hu W, Sun J, Chen KH. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys. Acta Mater. 2007;55(1):273.CrossRef Liu G, Zhang GJ, Wang RH, Hu W, Sun J, Chen KH. Heat treatment-modulated coupling effect of multi-scale second-phase particles on the ductile fracture of aged aluminum alloys. Acta Mater. 2007;55(1):273.CrossRef
[25]
Zurück zum Zitat Hahn GT, Rosenfield AR. Metallurgical factors affecting fracture toughness of aluminum alloys. Metall Trans A. 1975;6(2):653.CrossRef Hahn GT, Rosenfield AR. Metallurgical factors affecting fracture toughness of aluminum alloys. Metall Trans A. 1975;6(2):653.CrossRef
[26]
Zurück zum Zitat Røyset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev. 2005;50(1):19.CrossRef Røyset J, Ryum N. Scandium in aluminium alloys. Int Mater Rev. 2005;50(1):19.CrossRef
[27]
Zurück zum Zitat Drits ME, Pavlenko SG, Toropova LS, Bykov YG, Ber LB. Mechanism of the influence of scandium in increasing the strength and thermal stability of alloys of the Al–Mg system. Soviet Phys Dok. 1981;26(3):344. Drits ME, Pavlenko SG, Toropova LS, Bykov YG, Ber LB. Mechanism of the influence of scandium in increasing the strength and thermal stability of alloys of the Al–Mg system. Soviet Phys Dok. 1981;26(3):344.
[28]
Zurück zum Zitat Jones MJ, Humphreys FJ. Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium. Acta Mater. 2003;51(15):2149.CrossRef Jones MJ, Humphreys FJ. Interaction of recrystallization and precipitation: the effect of Al3Sc on the recrystallization behaviour of deformed aluminium. Acta Mater. 2003;51(15):2149.CrossRef
[29]
Zurück zum Zitat Marquis EA, Seidman DN. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater. 2001;49(7):1909.CrossRef Marquis EA, Seidman DN. Nanoscale structural evolution of Al3Sc precipitates in Al(Sc) alloys. Acta Mater. 2001;49(7):1909.CrossRef
[30]
Zurück zum Zitat Seidman DN, Marquis EA, Dunand DC. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater. 2002;50(18):4021.CrossRef Seidman DN, Marquis EA, Dunand DC. Precipitation strengthening at ambient and elevated temperatures of heat-treatable Al(Sc) alloys. Acta Mater. 2002;50(18):4021.CrossRef
[31]
Zurück zum Zitat Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater. 2003;51(19):4803.CrossRef Fuller CB, Seidman DN, Dunand DC. Mechanical properties of Al(Sc, Zr) alloys at ambient and elevated temperatures. Acta Mater. 2003;51(19):4803.CrossRef
[32]
Zurück zum Zitat Iwamura S, Miura Y. Loss in coherency and coarsening behavior of Al3Sc precipitates. Acta Mater. 2004;52(3):591.CrossRef Iwamura S, Miura Y. Loss in coherency and coarsening behavior of Al3Sc precipitates. Acta Mater. 2004;52(3):591.CrossRef
[33]
Zurück zum Zitat Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at%) alloys during isochronal aging. Acta Mater. 2010;58(20):5184.CrossRef Knipling KE, Karnesky RA, Lee CP, Dunand DC, Seidman DN. Precipitation evolution in Al–0.1Sc, Al–0.1Zr and Al–0.1Sc–0.1Zr (at%) alloys during isochronal aging. Acta Mater. 2010;58(20):5184.CrossRef
[34]
Zurück zum Zitat Zhang CM, Jiang Y, Cao FH, Hu T, Wang YR, Yin DF. Formation of coherent, core-shelled nano-particles in dilute Al–Sc–Zr alloys from the first-principles. J Mater Sci Technol. 2018;35(5):930.CrossRef Zhang CM, Jiang Y, Cao FH, Hu T, Wang YR, Yin DF. Formation of coherent, core-shelled nano-particles in dilute Al–Sc–Zr alloys from the first-principles. J Mater Sci Technol. 2018;35(5):930.CrossRef
[35]
Zurück zum Zitat Liu L, Jiang JT, Zhang B, Shao WZ, Zhen L. Enhancement of strength and electrical conductivity for a dilute Al–Sc–Zr alloy via heat treatments and cold drawing. J Mater Sci Technol. 2018;35(6):962.CrossRef Liu L, Jiang JT, Zhang B, Shao WZ, Zhen L. Enhancement of strength and electrical conductivity for a dilute Al–Sc–Zr alloy via heat treatments and cold drawing. J Mater Sci Technol. 2018;35(6):962.CrossRef
[36]
Zurück zum Zitat Sun SP, Li XP, Yang J, Wang HJ, Jiang Y, Yi DQ. Point defect concentrations of L12–Al3X(Sc, Zr, Er). Rare Met. 2018;37(8):699.CrossRef Sun SP, Li XP, Yang J, Wang HJ, Jiang Y, Yi DQ. Point defect concentrations of L12–Al3X(Sc, Zr, Er). Rare Met. 2018;37(8):699.CrossRef
[37]
Zurück zum Zitat van Dalen ME, Seidman DN, Dunand DC. Creep- and coarsening properties of Al–0.06 at% Sc–0.06 at% Ti at 300–450 °C. Acta Mater. 2008;56(15):4369.CrossRef van Dalen ME, Seidman DN, Dunand DC. Creep- and coarsening properties of Al–0.06 at% Sc–0.06 at% Ti at 300–450 °C. Acta Mater. 2008;56(15):4369.CrossRef
[38]
Zurück zum Zitat Luca AD, Seidman DN, Dunand DC. Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al–Zr–Sc–Er–Si alloys. Acta Mater. 2019;165:1.CrossRef Luca AD, Seidman DN, Dunand DC. Effects of Mo and Mn microadditions on strengthening and over-aging resistance of nanoprecipitation-strengthened Al–Zr–Sc–Er–Si alloys. Acta Mater. 2019;165:1.CrossRef
[39]
Zurück zum Zitat Harada Y, Dunand D. Microstructure of Al3Sc with ternary rare-earth additions. Intermetallics. 2009;17(1):17.CrossRef Harada Y, Dunand D. Microstructure of Al3Sc with ternary rare-earth additions. Intermetallics. 2009;17(1):17.CrossRef
[40]
Zurück zum Zitat Karnesky RA, Seidman DN, Dunand DC. Creep of Al-Sc microalloys with rare-earth element additions. Mater Sci Forum. 2006;519–521:1035.CrossRef Karnesky RA, Seidman DN, Dunand DC. Creep of Al-Sc microalloys with rare-earth element additions. Mater Sci Forum. 2006;519–521:1035.CrossRef
[41]
Zurück zum Zitat Karnesky RA, Dunand DC, Seidman DN. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Mater. 2009;57(11):4022.CrossRef Karnesky RA, Dunand DC, Seidman DN. Evolution of nanoscale precipitates in Al microalloyed with Sc and Er. Acta Mater. 2009;57(11):4022.CrossRef
[42]
Zurück zum Zitat Radmilovic V, Ophus C, Marquis EA, Rossell MD, Tolley A, Gautam A, Asta M, Dahmen U. Highly monodisperse core–shell particles created by solid-state reactions. Nat Mater. 2011;10(3):710.CrossRef Radmilovic V, Ophus C, Marquis EA, Rossell MD, Tolley A, Gautam A, Asta M, Dahmen U. Highly monodisperse core–shell particles created by solid-state reactions. Nat Mater. 2011;10(3):710.CrossRef
[43]
Zurück zum Zitat Du G, Deng JW, Wang YL, Yan DS, Rong LJ. Precipitation of (Al, Si)3Sc in an Al–Sc–Si alloy. Scr Mater. 2009;61(3):532.CrossRef Du G, Deng JW, Wang YL, Yan DS, Rong LJ. Precipitation of (Al, Si)3Sc in an Al–Sc–Si alloy. Scr Mater. 2009;61(3):532.CrossRef
[44]
Zurück zum Zitat Dorin T, Ramajayam M, Babaniaris S, Langan TJ. Micro-segregation and precipitates in as-solidified Al–Sc–Zr–(Mg)–(Si)–(Cu) alloys. Mater Charact. 2019;154:353.CrossRef Dorin T, Ramajayam M, Babaniaris S, Langan TJ. Micro-segregation and precipitates in as-solidified Al–Sc–Zr–(Mg)–(Si)–(Cu) alloys. Mater Charact. 2019;154:353.CrossRef
[45]
Zurück zum Zitat Wang ZP, Fang QH, Fan TW, Chen DC, Liu B, Liu F, Ma L, Tang PY. Effects of solute atoms on 9R phase stabilization in high-performance Al alloys: a first-principles study. JOM. 2019;71(6):2041. Wang ZP, Fang QH, Fan TW, Chen DC, Liu B, Liu F, Ma L, Tang PY. Effects of solute atoms on 9R phase stabilization in high-performance Al alloys: a first-principles study. JOM. 2019;71(6):2041.
[46]
Zurück zum Zitat Dan CY, Chen Z, Ji G, Zhong SY, Li J, Li XR, Brisset F, Sun GA, Wang HW, Ji V. Cube orientation bands observed in largely deformed Al–Sc alloys containing shearable precipitates. Scr Mater. 2019;166:139.CrossRef Dan CY, Chen Z, Ji G, Zhong SY, Li J, Li XR, Brisset F, Sun GA, Wang HW, Ji V. Cube orientation bands observed in largely deformed Al–Sc alloys containing shearable precipitates. Scr Mater. 2019;166:139.CrossRef
[47]
Zurück zum Zitat Chen D, Xia CJ, Liu XM, Wu Y, Wang ML. The effect of alloying elements on the structural stability, and mechanical and electronic properties of Al3Sc: a first-principles study. Materials. 2019;12(9):1539.CrossRef Chen D, Xia CJ, Liu XM, Wu Y, Wang ML. The effect of alloying elements on the structural stability, and mechanical and electronic properties of Al3Sc: a first-principles study. Materials. 2019;12(9):1539.CrossRef
[48]
Zurück zum Zitat Lin JD, Seidman DN, Dunand DC. Improving coarsening resistance of dilute Al–Sc–Zr–Si alloys with Sr or Zn additions. Mater Sci Eng A. 2019;754:447.CrossRef Lin JD, Seidman DN, Dunand DC. Improving coarsening resistance of dilute Al–Sc–Zr–Si alloys with Sr or Zn additions. Mater Sci Eng A. 2019;754:447.CrossRef
[49]
Zurück zum Zitat Sun J, Wang XQ, Guo LJ, Zhang XB, Wang HW. Synthesis of nanoscale spherical TiB2 particles in Al matrix by regulating Sc contents. J Mater Res. 2019;34(7):1258.CrossRef Sun J, Wang XQ, Guo LJ, Zhang XB, Wang HW. Synthesis of nanoscale spherical TiB2 particles in Al matrix by regulating Sc contents. J Mater Res. 2019;34(7):1258.CrossRef
[50]
Zurück zum Zitat Beeri O, Baik SI, Bram AI, Shandalov M, Seidman DN, Dunand DC. Effect of U and Th trace additions on the precipitation strengthening of Al–0.09Sc (at%) alloy. J Mater Sci. 2019;54(5):3485.CrossRef Beeri O, Baik SI, Bram AI, Shandalov M, Seidman DN, Dunand DC. Effect of U and Th trace additions on the precipitation strengthening of Al–0.09Sc (at%) alloy. J Mater Sci. 2019;54(5):3485.CrossRef
[51]
Zurück zum Zitat Okle P, Lin JD, Zhu TY, Dunand DC, Seidman DN. Effect of micro-additions of Ge, In or Sn on precipitation in dilute Al–Sc–Zr alloys. Mater Sci Eng A. 2019;739:427.CrossRef Okle P, Lin JD, Zhu TY, Dunand DC, Seidman DN. Effect of micro-additions of Ge, In or Sn on precipitation in dilute Al–Sc–Zr alloys. Mater Sci Eng A. 2019;739:427.CrossRef
[52]
Zurück zum Zitat Wen SP, Gao KY, Huang H, Wang W, Nie ZR. Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature. J Alloys Compd. 2013;574:92.CrossRef Wen SP, Gao KY, Huang H, Wang W, Nie ZR. Precipitation evolution in Al–Er–Zr alloys during aging at elevated temperature. J Alloys Compd. 2013;574:92.CrossRef
[53]
Zurück zum Zitat Wen SP, Gao KY, Li Y, Huang H, Nie ZR. Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scr Mater. 2011;65(3):592.CrossRef Wen SP, Gao KY, Li Y, Huang H, Nie ZR. Synergetic effect of Er and Zr on the precipitation hardening of Al–Er–Zr alloy. Scr Mater. 2011;65(3):592.CrossRef
[54]
Zurück zum Zitat Wu H, Wen SP, Wu XL, Gao KY, Huang H, Wang W, Nie ZR. A study of precipitation strengthening and recrystallization behavior in dilute Al–Er–Hf–Zr alloys. Mater Sci Eng A. 2015;639:307.CrossRef Wu H, Wen SP, Wu XL, Gao KY, Huang H, Wang W, Nie ZR. A study of precipitation strengthening and recrystallization behavior in dilute Al–Er–Hf–Zr alloys. Mater Sci Eng A. 2015;639:307.CrossRef
[55]
Zurück zum Zitat Wen SP, Xing ZB, Huang H, Li BL, Wang Z, Nie ZR. The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy. Mater Sci Eng A. 2009;516:42.CrossRef Wen SP, Xing ZB, Huang H, Li BL, Wang Z, Nie ZR. The effect of erbium on the microstructure and mechanical properties of Al–Mg–Mn–Zr alloy. Mater Sci Eng A. 2009;516:42.CrossRef
[56]
Zurück zum Zitat Zhang YZ, Gu J, Tian Y, Gao HY, Wang J, Sun BD. Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys. Mater Sci Eng A. 2014;616:132.CrossRef Zhang YZ, Gu J, Tian Y, Gao HY, Wang J, Sun BD. Microstructural evolution and mechanical property of Al–Zr and Al–Zr–Y alloys. Mater Sci Eng A. 2014;616:132.CrossRef
[57]
Zurück zum Zitat Marquis EA, Seidman DN, Asta M, Woodward C. Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: experiments and computations. Acta Mater. 2006;54(1):119.CrossRef Marquis EA, Seidman DN, Asta M, Woodward C. Composition evolution of nanoscale Al3Sc precipitates in an Al–Mg–Sc alloy: experiments and computations. Acta Mater. 2006;54(1):119.CrossRef
[58]
Zurück zum Zitat Marquis EA, Seidman DN, Asta M, Woodward C, Ozoliņš V. Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: experiments and computations. Phys Rev Lett. 2003;91(23):036101.CrossRef Marquis EA, Seidman DN, Asta M, Woodward C, Ozoliņš V. Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: experiments and computations. Phys Rev Lett. 2003;91(23):036101.CrossRef
[59]
Zurück zum Zitat Feng L, Li JG, Mao YZ. Strengthening and toughening mechanism of high-Mg low-Sc Al–Mg–Sc–Zr alloy. Rare Met Mater Eng. 2019;48(9):2857. Feng L, Li JG, Mao YZ. Strengthening and toughening mechanism of high-Mg low-Sc Al–Mg–Sc–Zr alloy. Rare Met Mater Eng. 2019;48(9):2857.
[60]
Zurück zum Zitat Tang L, Peng XY, Huang JW, Ma AB, Deng Y, Xu GF. Microstructure and mechanical properties of severely deformed Al–Mg–Sc–Zr alloy and their evolution during annealing. Mater Sci Eng A. 2019;754:295.CrossRef Tang L, Peng XY, Huang JW, Ma AB, Deng Y, Xu GF. Microstructure and mechanical properties of severely deformed Al–Mg–Sc–Zr alloy and their evolution during annealing. Mater Sci Eng A. 2019;754:295.CrossRef
[61]
Zurück zum Zitat Li RD, Chen H, Chen C, Zhu HB, Wang MB, Yuan TC, Song B. Selective laser melting of gas atomized Al–3.02Mg–0.2Sc–0.1Zr alloy powder: microstructure and mechanical properties. Adv Eng Mater. 2019;21(3):1800650.CrossRef Li RD, Chen H, Chen C, Zhu HB, Wang MB, Yuan TC, Song B. Selective laser melting of gas atomized Al–3.02Mg–0.2Sc–0.1Zr alloy powder: microstructure and mechanical properties. Adv Eng Mater. 2019;21(3):1800650.CrossRef
[62]
Zurück zum Zitat Luo XE, Fang HJ, Liu H, Yan Y, Zhu HL, Yu K. Effect of Sc and Zr on Al–6(Mn, Fe) Phase in Al–Mg–Mn Alloys. Mater Trans. 2019;60(5):737.CrossRef Luo XE, Fang HJ, Liu H, Yan Y, Zhu HL, Yu K. Effect of Sc and Zr on Al–6(Mn, Fe) Phase in Al–Mg–Mn Alloys. Mater Trans. 2019;60(5):737.CrossRef
[63]
Zurück zum Zitat Chanyathunyaroj K, Patakham U, Kou S, Limmaneevichitr C. Mechanical properties of squeeze-cast Al–7Si–0.3Mg alloys with Sc-modified Fe-rich intermetallic compounds. Rare Met. 2018;37(9):769.CrossRef Chanyathunyaroj K, Patakham U, Kou S, Limmaneevichitr C. Mechanical properties of squeeze-cast Al–7Si–0.3Mg alloys with Sc-modified Fe-rich intermetallic compounds. Rare Met. 2018;37(9):769.CrossRef
[64]
Zurück zum Zitat Lu Z, Zhang LJ, Wang J, Yao QL, Rao GH, Zhou HY. Understanding of strengthening and toughening mechanisms for Sc-modified Al–Si–(Mg) series casting alloys designed by computational thermodynamics. J Alloys Compd. 2019;805:415.CrossRef Lu Z, Zhang LJ, Wang J, Yao QL, Rao GH, Zhou HY. Understanding of strengthening and toughening mechanisms for Sc-modified Al–Si–(Mg) series casting alloys designed by computational thermodynamics. J Alloys Compd. 2019;805:415.CrossRef
[65]
Zurück zum Zitat Kobayashi KF, Hogan LM. The crystal growth of silicon in Al–Si alloys. J Mater Sci. 1985;20(4):1961.CrossRef Kobayashi KF, Hogan LM. The crystal growth of silicon in Al–Si alloys. J Mater Sci. 1985;20(4):1961.CrossRef
[66]
Zurück zum Zitat Mao GL, Yan H, Zhu CC, Wu Z, Gao WL. The varied mechanisms of yttrium (Y) modifying a hypoeutectic Al–Si alloy under conditions of different cooling rates. J Alloys Compd. 2019;806:909.CrossRef Mao GL, Yan H, Zhu CC, Wu Z, Gao WL. The varied mechanisms of yttrium (Y) modifying a hypoeutectic Al–Si alloy under conditions of different cooling rates. J Alloys Compd. 2019;806:909.CrossRef
[67]
Zurück zum Zitat Yu SS, Wang RC, Peng CQ, Cai ZY, Wu X, Feng Y, Wang XF. Effect of minor scandium addition on the microstructure and properties of Al–50Si alloys for electronic packaging. J Mater Sci Mater Electron. 2019;30:20770–7.CrossRef Yu SS, Wang RC, Peng CQ, Cai ZY, Wu X, Feng Y, Wang XF. Effect of minor scandium addition on the microstructure and properties of Al–50Si alloys for electronic packaging. J Mater Sci Mater Electron. 2019;30:20770–7.CrossRef
[68]
Zurück zum Zitat Chen Y, Liu CY, Ma ZY, Huang HF, Peng YH, Hou YF. Effect of Sc addition on the microstructure, mechanical properties, and damping capacity of Al–20Zn alloy. Mater Charact. 2019;157:109892.CrossRef Chen Y, Liu CY, Ma ZY, Huang HF, Peng YH, Hou YF. Effect of Sc addition on the microstructure, mechanical properties, and damping capacity of Al–20Zn alloy. Mater Charact. 2019;157:109892.CrossRef
[69]
Zurück zum Zitat Jia QB, Rometsch P, Kurnsteiner P, Chao Q, Huang AJ, Weyland M, Bourgeois L, Wu XH. Selective laser melting of a high strength Al–Mn–Sc alloy: alloy design and strengthening mechanisms. Acta Mater. 2019;171:108.CrossRef Jia QB, Rometsch P, Kurnsteiner P, Chao Q, Huang AJ, Weyland M, Bourgeois L, Wu XH. Selective laser melting of a high strength Al–Mn–Sc alloy: alloy design and strengthening mechanisms. Acta Mater. 2019;171:108.CrossRef
[70]
Zurück zum Zitat Suwanpreecha C, Pandee P, Patakham U, Limmaneevichitr C. New generation of eutectic Al–Ni casting alloys for elevated temperature services. Mater Sci Eng A. 2018;709:46.CrossRef Suwanpreecha C, Pandee P, Patakham U, Limmaneevichitr C. New generation of eutectic Al–Ni casting alloys for elevated temperature services. Mater Sci Eng A. 2018;709:46.CrossRef
[71]
Zurück zum Zitat Belov NA, Alabin AN, Eskin DG. Improving the properties of cold-rolled Al–6%Ni sheets by alloying and heat treatment. Scr Mater. 2004;50(1):89.CrossRef Belov NA, Alabin AN, Eskin DG. Improving the properties of cold-rolled Al–6%Ni sheets by alloying and heat treatment. Scr Mater. 2004;50(1):89.CrossRef
[72]
Zurück zum Zitat Nakagawa YG, Weatherly GC. The thermal stability of the rod Al3Ni–Al eutectic. Acta Metall. 1972;20(3):345.CrossRef Nakagawa YG, Weatherly GC. The thermal stability of the rod Al3Ni–Al eutectic. Acta Metall. 1972;20(3):345.CrossRef
[73]
Zurück zum Zitat Fan Y, Makhlouf M. The Al–Al3Ni eutectic reaction: crystallography and mechanism of formation. Metall Mater Trans. 2015;46(9):3808.CrossRef Fan Y, Makhlouf M. The Al–Al3Ni eutectic reaction: crystallography and mechanism of formation. Metall Mater Trans. 2015;46(9):3808.CrossRef
[74]
Zurück zum Zitat Suwanpreecha C, Toinin JP, Michi RA, Pandee P, Dunand DC, Limmaneevichitr C. Strengthening mechanisms in Al–Ni–Sc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates. Acta Mater. 2019;164:334.CrossRef Suwanpreecha C, Toinin JP, Michi RA, Pandee P, Dunand DC, Limmaneevichitr C. Strengthening mechanisms in Al–Ni–Sc alloys containing Al3Ni microfibers and Al3Sc nanoprecipitates. Acta Mater. 2019;164:334.CrossRef
[75]
Zurück zum Zitat Chen BA, Pan L, Wang RH, Liu G, Cheng PM, Xiao L, Sun J. Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition. Mater Sci Eng A. 2011;530:607.CrossRef Chen BA, Pan L, Wang RH, Liu G, Cheng PM, Xiao L, Sun J. Effect of solution treatment on precipitation behaviors and age hardening response of Al–Cu alloys with Sc addition. Mater Sci Eng A. 2011;530:607.CrossRef
[76]
Zurück zum Zitat Jiang L, Li JK, Liu G, Wang RH, Chen BA, Zhang JY, Sun J, Yang MX, Yang G, Yang J, Cao XZ. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition. Mater Sci Eng A. 2015;637:139.CrossRef Jiang L, Li JK, Liu G, Wang RH, Chen BA, Zhang JY, Sun J, Yang MX, Yang G, Yang J, Cao XZ. Length-scale dependent microalloying effects on precipitation behaviors and mechanical properties of Al–Cu alloys with minor Sc addition. Mater Sci Eng A. 2015;637:139.CrossRef
[77]
Zurück zum Zitat Gao YH, Kuang J, Liu G, Sun J. Effect of minor Sc and Fe co-addition on the microstructure and mechanical properties of Al–Cu alloys during homogenization treatment. Mater Sci Eng A. 2019;746:11.CrossRef Gao YH, Kuang J, Liu G, Sun J. Effect of minor Sc and Fe co-addition on the microstructure and mechanical properties of Al–Cu alloys during homogenization treatment. Mater Sci Eng A. 2019;746:11.CrossRef
[78]
Zurück zum Zitat Gao YH, Yang C, Zhang JY, Cao LF, Liu G, Sun J, Ma E. Stabilizing nanoprecipitates in Al–Cu alloys for creep resistance at 300 °C. Mater Res Lett. 2019;7(1):18.CrossRef Gao YH, Yang C, Zhang JY, Cao LF, Liu G, Sun J, Ma E. Stabilizing nanoprecipitates in Al–Cu alloys for creep resistance at 300 °C. Mater Res Lett. 2019;7(1):18.CrossRef
[79]
Zurück zum Zitat Zhao MQ, Xing Y, Jia ZH, Liu Q, Wu XZ. Effects of heating rate on the hardness and microstructure of Al–Cu and Al–Cu–Zr–Ti–V alloys. J Alloys Compd. 2016;686:312.CrossRef Zhao MQ, Xing Y, Jia ZH, Liu Q, Wu XZ. Effects of heating rate on the hardness and microstructure of Al–Cu and Al–Cu–Zr–Ti–V alloys. J Alloys Compd. 2016;686:312.CrossRef
[80]
Zurück zum Zitat Hu H, Zhao MQ, Wu XZ, Jia ZH, Wang R, Li WG, Liu Q. The structural stability, mechanical properties and stacking fault energy of Al3Zr precipitates in Al–Cu–Zr alloys: HRTEM observations and first-principles calculations. J Alloys Compd. 2016;681:96.CrossRef Hu H, Zhao MQ, Wu XZ, Jia ZH, Wang R, Li WG, Liu Q. The structural stability, mechanical properties and stacking fault energy of Al3Zr precipitates in Al–Cu–Zr alloys: HRTEM observations and first-principles calculations. J Alloys Compd. 2016;681:96.CrossRef
[81]
Zurück zum Zitat Biswas A, Siegel DJ, Seidman DN. Simultaneous segregation at coherent and semicoherent heterophase interfaces. Phys Rev Lett. 2010;105(7):076102.CrossRef Biswas A, Siegel DJ, Seidman DN. Simultaneous segregation at coherent and semicoherent heterophase interfaces. Phys Rev Lett. 2010;105(7):076102.CrossRef
[82]
Zurück zum Zitat Chen BA, Liu G, Wang RH, Zhang JY, Jiang L, Song JJ, Sun J. Effect of interfacial solute segregation on ductile fracture of Al–Cu–Sc alloys. Acta Mater. 2013;61(3):1676.CrossRef Chen BA, Liu G, Wang RH, Zhang JY, Jiang L, Song JJ, Sun J. Effect of interfacial solute segregation on ductile fracture of Al–Cu–Sc alloys. Acta Mater. 2013;61(3):1676.CrossRef
[83]
Zurück zum Zitat Yang C, Zhang P, Shao D, Wang RH, Cao LF, Zhang JY, Liu G, Chen BA, Sun J. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al–Cu alloys with minor Sc addition. Acta Mater. 2016;119:68.CrossRef Yang C, Zhang P, Shao D, Wang RH, Cao LF, Zhang JY, Liu G, Chen BA, Sun J. The influence of Sc solute partitioning on the microalloying effect and mechanical properties of Al–Cu alloys with minor Sc addition. Acta Mater. 2016;119:68.CrossRef
[84]
Zurück zum Zitat Shin DW, Shyam A, Lee SK, Yamamoto Y, Haynes JA. Solute segregation at the Al/θ′–Al2Cu interface in Al–Cu alloys. Acta Mater. 2017;141:327.CrossRef Shin DW, Shyam A, Lee SK, Yamamoto Y, Haynes JA. Solute segregation at the Al/θ′–Al2Cu interface in Al–Cu alloys. Acta Mater. 2017;141:327.CrossRef
[85]
Zurück zum Zitat Dorin T, Ramajayam M, Lamb J, Langan T. Effect of Sc and Zr additions on the microstructure/strength of Al–Cu binary alloys. Mater Sci Eng A. 2017;707:58.CrossRef Dorin T, Ramajayam M, Lamb J, Langan T. Effect of Sc and Zr additions on the microstructure/strength of Al–Cu binary alloys. Mater Sci Eng A. 2017;707:58.CrossRef
[86]
Zurück zum Zitat Yao DM, Zhao WG, Zhao HL, Qiu F, Jiang QC. High creep resistance behavior of the casting Al–Cu alloy modified by La. Scr Mater. 2009;61(3):1153.CrossRef Yao DM, Zhao WG, Zhao HL, Qiu F, Jiang QC. High creep resistance behavior of the casting Al–Cu alloy modified by La. Scr Mater. 2009;61(3):1153.CrossRef
[87]
Zurück zum Zitat Wang WT, Zhang XM, Gao ZG, Jia YZ, Ye LY, Zheng DW, Liu L. Influences of Ce addition on the microstructures and mechanical properties of 2519A aluminum alloy plate. J Alloys Compd. 2010;491:366.CrossRef Wang WT, Zhang XM, Gao ZG, Jia YZ, Ye LY, Zheng DW, Liu L. Influences of Ce addition on the microstructures and mechanical properties of 2519A aluminum alloy plate. J Alloys Compd. 2010;491:366.CrossRef
[88]
Zurück zum Zitat Xiao DH, Wang JN, Ding DY, Yang HL. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al–Cu–Mg–Ag alloy. J Alloys Compd. 2003;352:84.CrossRef Xiao DH, Wang JN, Ding DY, Yang HL. Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al–Cu–Mg–Ag alloy. J Alloys Compd. 2003;352:84.CrossRef
[89]
Zurück zum Zitat Bai S, Yi XL, Liu GH, Liu ZY, Wang J, Zhao JG. Effect of Sc addition on the microstructures and age-hardening behavior of an Al–Cu–Mg–Ag alloy. Mater Sci Eng. 2019;756:258.CrossRef Bai S, Yi XL, Liu GH, Liu ZY, Wang J, Zhao JG. Effect of Sc addition on the microstructures and age-hardening behavior of an Al–Cu–Mg–Ag alloy. Mater Sci Eng. 2019;756:258.CrossRef
[90]
Zurück zum Zitat Gupta AK, Lloyd DJ, Court SA. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater Sci Eng A. 2001;316:11.CrossRef Gupta AK, Lloyd DJ, Court SA. Precipitation hardening in Al–Mg–Si alloys with and without excess Si. Mater Sci Eng A. 2001;316:11.CrossRef
[91]
Zurück zum Zitat Zhong H, Rometsch PA, Estrin Y. The influence of Si and Mg content on the microstructure, tensile ductility, and stretch formability of 6xxx alloys. Metall Mater Trans A. 2013;44(13):3970.CrossRef Zhong H, Rometsch PA, Estrin Y. The influence of Si and Mg content on the microstructure, tensile ductility, and stretch formability of 6xxx alloys. Metall Mater Trans A. 2013;44(13):3970.CrossRef
[92]
Zurück zum Zitat Jiang SY, Wang RH. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys. J Mater Sci Technol. 2019;35(7):1354.CrossRef Jiang SY, Wang RH. Grain size-dependent Mg/Si ratio effect on the microstructure and mechanical/electrical properties of Al–Mg–Si–Sc alloys. J Mater Sci Technol. 2019;35(7):1354.CrossRef
[93]
Zurück zum Zitat Dorin T, Ramajayam M, Babaniaris S, Jiang L, Langan TJ. Precipitation sequence in Al–Mg–Si–Sc–Zr alloys during isochronal aging. Materialia. 2019;8(1):100437.CrossRef Dorin T, Ramajayam M, Babaniaris S, Jiang L, Langan TJ. Precipitation sequence in Al–Mg–Si–Sc–Zr alloys during isochronal aging. Materialia. 2019;8(1):100437.CrossRef
[94]
Zurück zum Zitat Liu YH, Yan LM, Hou XH, Huang DN, Zhang JB, Shen J. Precipitates and corrosion resistance of an Al–Zn–Mg–Cu–Zr plate with different percentage reduction per passes. Rare Met. 2018;37(5):381.CrossRef Liu YH, Yan LM, Hou XH, Huang DN, Zhang JB, Shen J. Precipitates and corrosion resistance of an Al–Zn–Mg–Cu–Zr plate with different percentage reduction per passes. Rare Met. 2018;37(5):381.CrossRef
[95]
Zurück zum Zitat Deng Y, Yin ZM, Zhao K, Duan JQ, Hu J, He ZB. Effects of Sc and Zr microalloying additions and aging time at 120 °C on the corrosion behaviour of an Al–Zn–Mg alloy. Corros Sci. 2012;65(1):288.CrossRef Deng Y, Yin ZM, Zhao K, Duan JQ, Hu J, He ZB. Effects of Sc and Zr microalloying additions and aging time at 120 °C on the corrosion behaviour of an Al–Zn–Mg alloy. Corros Sci. 2012;65(1):288.CrossRef
[96]
Zurück zum Zitat Shi YJ, Pan QL, Li MJ, Huang X, Li B. Effect of Sc and Zr additions on corrosion behaviour of Al–Zn–Mg–Cu alloys. J Alloys Compd. 2014;612:42.CrossRef Shi YJ, Pan QL, Li MJ, Huang X, Li B. Effect of Sc and Zr additions on corrosion behaviour of Al–Zn–Mg–Cu alloys. J Alloys Compd. 2014;612:42.CrossRef
[97]
Zurück zum Zitat Wang Y, Xiong BQ, Li ZH, Huang SH, Wen K, Li XW, Zhang YA. As-cast microstructure of Al–Zn–Mg–Cu–Zr alloy containing trace amount of Sc. Rare Met. 2019;38(4):343.CrossRef Wang Y, Xiong BQ, Li ZH, Huang SH, Wen K, Li XW, Zhang YA. As-cast microstructure of Al–Zn–Mg–Cu–Zr alloy containing trace amount of Sc. Rare Met. 2019;38(4):343.CrossRef
[98]
Zurück zum Zitat Deng Y, Yin ZM, Zhao K, Duan JQ, He ZB. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J Alloys Compd. 2012;530:71.CrossRef Deng Y, Yin ZM, Zhao K, Duan JQ, He ZB. Effects of Sc and Zr microalloying additions on the microstructure and mechanical properties of new Al–Zn–Mg alloys. J Alloys Compd. 2012;530:71.CrossRef
[99]
Zurück zum Zitat Li G, Zhao NQ, Liu T, Li JJ, He CN, Shi CS, Liu EZ, Sha JW. Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al–Zn–Mg–Sc–Zr alloys. Mater Sci Eng A. 2014;617:219.CrossRef Li G, Zhao NQ, Liu T, Li JJ, He CN, Shi CS, Liu EZ, Sha JW. Effect of Sc/Zr ratio on the microstructure and mechanical properties of new type of Al–Zn–Mg–Sc–Zr alloys. Mater Sci Eng A. 2014;617:219.CrossRef
[100]
Zurück zum Zitat Liu L, Cui XY, Jiang JT, Zhang B, Nomoto K, Zhen L, Ringer SP. Segregation of the major alloying elements to Al–3(Sc, Zr) precipitates in an Al–Zn–Mg–Cu–Sc–Zr alloy. Mater Charact. 2019;157:109898.CrossRef Liu L, Cui XY, Jiang JT, Zhang B, Nomoto K, Zhen L, Ringer SP. Segregation of the major alloying elements to Al–3(Sc, Zr) precipitates in an Al–Zn–Mg–Cu–Sc–Zr alloy. Mater Charact. 2019;157:109898.CrossRef
[101]
Zurück zum Zitat Zhang F, Su XK, Chen ZY, Nie ZR. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al–Zn–Mg–Cu aluminum alloy. Mater Des. 2015;67(2):483.CrossRef Zhang F, Su XK, Chen ZY, Nie ZR. Effect of welding parameters on microstructure and mechanical properties of friction stir welded joints of a super high strength Al–Zn–Mg–Cu aluminum alloy. Mater Des. 2015;67(2):483.CrossRef
[102]
Zurück zum Zitat Wu H, Wen SP, Huang H, Gao KY, Wu XL, Wang W, Nie ZR. Hot deformation behavior and processing map of a new type Al–Zn–Mg–Er–Zr alloy. J Alloys Compd. 2015;685:869.CrossRef Wu H, Wen SP, Huang H, Gao KY, Wu XL, Wang W, Nie ZR. Hot deformation behavior and processing map of a new type Al–Zn–Mg–Er–Zr alloy. J Alloys Compd. 2015;685:869.CrossRef
Metadaten
Titel
Microalloying Al alloys with Sc: a review
verfasst von
Jin-Yu Zhang
Yi-Han Gao
Chong Yang
Peng Zhang
Jie Kuang
Gang Liu
Jun Sun
Publikationsdatum
26.05.2020
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 6/2020
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01433-1

Weitere Artikel der Ausgabe 6/2020

Rare Metals 6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.