Skip to main content
Erschienen in: Rare Metals 2/2021

07.01.2021 | Review

Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries

verfasst von: Fei Wang, Yong Liu, Hui-Jie Wei, Teng-Fei Li, Xun-Hui Xiong, Shi-Zhong Wei, Feng-Zhang Ren, Alex A. Volinsky

Erschienen in: Rare Metals | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recently, to ameliorate the forthcoming energy crisis, sustainable energy conversion and storage devices have been extensively investigated. Potassium-ion batteries (KIBs) have aroused widespread attention in these very active research applications due to their earth abundance and similar low redox potential compared to Li-ion batteries (LIBs). It is critical to develop electrode materials with large ion diffusion channels and robust structures for long cycling performance in KIBs. Metal coordination materials, including metal–organic frameworks, Prussian blue, and Prussian blue analogue, as well as their composites and derivatives, are known as promising materials for high-performance KIBs due to their open frameworks, large interstitial voids, functionality and tailorability. In this review, we give an overview of the recent advances on the application of metal coordination materials in KIBs. In addition, the methods to enhance their K-ion storage properties are summarized and discussed, such as morphology engineering, doping, as well as compositing with other materials. Ultimately, some prospects for future research of metal coordination materials for KIBs are also proposed.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Sui D, Xu LQ, Zhang HT, Sun ZH, Kan B, Ma YF, Chen YS. A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries. Carbon. 2020;157:656. Sui D, Xu LQ, Zhang HT, Sun ZH, Kan B, Ma YF, Chen YS. A 3D cross-linked graphene-based honeycomb carbon composite with excellent confinement effect of organic cathode material for lithium-ion batteries. Carbon. 2020;157:656.
[2]
Zurück zum Zitat Ma XD, Xiong XH, Zou PJ, Liu WZ, Wang F, Liang LW, Liu Y, Yuan CZ, Lin Z. General and scalable fabrication of core–shell metal sulfides@C anchored on 3D N-doped foam toward flexible sodium ion batteries. Small. 2019;15(45):1903259. Ma XD, Xiong XH, Zou PJ, Liu WZ, Wang F, Liang LW, Liu Y, Yuan CZ, Lin Z. General and scalable fabrication of core–shell metal sulfides@C anchored on 3D N-doped foam toward flexible sodium ion batteries. Small. 2019;15(45):1903259.
[3]
Zurück zum Zitat Li YX, Zhai XL, Liu Y, Wei HJ, Ma JQ, Chen M, Liu XM, Zhang WH, Wang GX, Ren FZ, Wei SZ. WO3-based materials as electrocatalysts for hydrogen evolution reaction. Front Mater. 2020;7(105):105. Li YX, Zhai XL, Liu Y, Wei HJ, Ma JQ, Chen M, Liu XM, Zhang WH, Wang GX, Ren FZ, Wei SZ. WO3-based materials as electrocatalysts for hydrogen evolution reaction. Front Mater. 2020;7(105):105.
[4]
Zurück zum Zitat Li JY, Zhang WM, Zhang X, Huo LY, Liang JY, Wu LS, Liu Y, Gao JF, Pang H, Xue HG. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J Mater Chem A. 2020;8(5):2463. Li JY, Zhang WM, Zhang X, Huo LY, Liang JY, Wu LS, Liu Y, Gao JF, Pang H, Xue HG. Copolymer derived micro/meso-porous carbon nanofibers with vacancy-type defects for high-performance supercapacitors. J Mater Chem A. 2020;8(5):2463.
[6]
Zurück zum Zitat Zou PJ, Lin ZH, Fan MN, Wang F, Liu Y, Xiong XH. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl Surf Sci. 2020;504:144506. Zou PJ, Lin ZH, Fan MN, Wang F, Liu Y, Xiong XH. Facile and efficient fabrication of Li3PO4-coated Ni-rich cathode for high-performance lithium-ion battery. Appl Surf Sci. 2020;504:144506.
[7]
Zurück zum Zitat Hao X, Zhao Q, Su S, Zhang S, Ma J, Shen L, Yu Q, Zhao L, Liu Y, Kang F, He YB. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv Energy Mater. 2019;9(34):1901604. Hao X, Zhao Q, Su S, Zhang S, Ma J, Shen L, Yu Q, Zhao L, Liu Y, Kang F, He YB. Constructing multifunctional interphase between Li1.4Al0.4Ti1.6(PO4)3 and Li metal by magnetron sputtering for highly stable solid-state lithium metal batteries. Adv Energy Mater. 2019;9(34):1901604.
[8]
Zurück zum Zitat Wang X, Yang C, Xiong X, Chen G, Huang M, Wang JH, Liu Y, Liu M, Huang K. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li–S batteries. Energy Storage Mater. 2019;16:344. Wang X, Yang C, Xiong X, Chen G, Huang M, Wang JH, Liu Y, Liu M, Huang K. A robust sulfur host with dual lithium polysulfide immobilization mechanism for long cycle life and high capacity Li–S batteries. Energy Storage Mater. 2019;16:344.
[9]
Zurück zum Zitat Zhao Q, Hao X, Su S, Ma J, Hu Y, Liu Y, Kang F, He YB. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J Mater Chem A. 2019;7(26):15871. Zhao Q, Hao X, Su S, Ma J, Hu Y, Liu Y, Kang F, He YB. Expanded-graphite embedded in lithium metal as dendrite-free anode of lithium metal batteries. J Mater Chem A. 2019;7(26):15871.
[10]
Zurück zum Zitat Li Y, Xu Y, Liu Y, Pang H. Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small. 2019;15(36):1902463. Li Y, Xu Y, Liu Y, Pang H. Exposing 001 crystal plane on hexagonal Ni-MOF with surface-grown cross-linked mesh-structures for electrochemical energy storage. Small. 2019;15(36):1902463.
[11]
Zurück zum Zitat Yuan M, Guo X, Liu Y, Pang H. Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. J Mater Chem A. 2019;7(39):22123. Yuan M, Guo X, Liu Y, Pang H. Si-based materials derived from biomass: synthesis and applications in electrochemical energy storage. J Mater Chem A. 2019;7(39):22123.
[12]
Zurück zum Zitat Wang G, Chen C, Chen YH, Kang XW, Yang CH, Wang F, Liu Y, Xiong XH. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium–metal anode. Angew Chem Int Ed Engl. 2020;59(5):2055. Wang G, Chen C, Chen YH, Kang XW, Yang CH, Wang F, Liu Y, Xiong XH. Self-stabilized and strongly adhesive supramolecular polymer protective layer enables ultrahigh-rate and large-capacity lithium–metal anode. Angew Chem Int Ed Engl. 2020;59(5):2055.
[14]
Zurück zum Zitat Wang F, Liu Y, Zhao YF, Wang Y, Wang ZJ, Zhang WH, Ren FZ. Facile synthesis of two-dimensional porous MgCo2O4 nanosheets as anode for lithium-ion batteries. Appl Sci-Basel. 2018;8(1):22. Wang F, Liu Y, Zhao YF, Wang Y, Wang ZJ, Zhang WH, Ren FZ. Facile synthesis of two-dimensional porous MgCo2O4 nanosheets as anode for lithium-ion batteries. Appl Sci-Basel. 2018;8(1):22.
[15]
Zurück zum Zitat Liu Y, Wang HC, Yang KK, Yang YN, Ma JQ, Pan KM, Wang GX, Ren FZ, Pang H. Enhanced electrochemical performance of Sb2O3 as an anode for lithium-ion batteries by a stable cross-linked binder. Appl Sci-Basel. 2019;9(13):2677. Liu Y, Wang HC, Yang KK, Yang YN, Ma JQ, Pan KM, Wang GX, Ren FZ, Pang H. Enhanced electrochemical performance of Sb2O3 as an anode for lithium-ion batteries by a stable cross-linked binder. Appl Sci-Basel. 2019;9(13):2677.
[16]
Zurück zum Zitat Guo XT, Zhang YZ, Zhang F, Li Q, Anjum DH, Liang HF, Liu Y, Liu CS, Alshareef HN, Pang H. A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J Mater Chem A. 2019;7(26):15969. Guo XT, Zhang YZ, Zhang F, Li Q, Anjum DH, Liang HF, Liu Y, Liu CS, Alshareef HN, Pang H. A novel strategy for the synthesis of highly stable ternary SiOx composites for Li-ion-battery anodes. J Mater Chem A. 2019;7(26):15969.
[17]
Zurück zum Zitat Liu G, Cui J, Luo R, Liu Y, Huang X, Wu N, Jin X, Chen H, Tang S, Kim J-K, Liu X. 2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Appl Surf Sci. 2019;469:854. Liu G, Cui J, Luo R, Liu Y, Huang X, Wu N, Jin X, Chen H, Tang S, Kim J-K, Liu X. 2D MoS2 grown on biomass-based hollow carbon fibers for energy storage. Appl Surf Sci. 2019;469:854.
[18]
Zurück zum Zitat Liu Y, Wang Y, Wang F, Lei ZX, Zhang WH, Pan KM, Liu J, Chen M, Wang GX, Ren FZ, Wei SZ. Facile synthesis of antimony tungstate nanosheets as anodes for lithium-ion batteries. Nanomaterials. 2019;9(12):1689. Liu Y, Wang Y, Wang F, Lei ZX, Zhang WH, Pan KM, Liu J, Chen M, Wang GX, Ren FZ, Wei SZ. Facile synthesis of antimony tungstate nanosheets as anodes for lithium-ion batteries. Nanomaterials. 2019;9(12):1689.
[19]
Zurück zum Zitat Wang F, Liu Y, Wei HJ, Wang GX, Ren FZ, Liu XM, Chen M, Volinsky AA, Wei SZ, He Y-B. Graphene induced growth of Sb2WO6 nanosheets for high-performance pseudocapacitive lithium-ion storage. J Alloys Compd. 2020;839:9. Wang F, Liu Y, Wei HJ, Wang GX, Ren FZ, Liu XM, Chen M, Volinsky AA, Wei SZ, He Y-B. Graphene induced growth of Sb2WO6 nanosheets for high-performance pseudocapacitive lithium-ion storage. J Alloys Compd. 2020;839:9.
[20]
Zurück zum Zitat Wang R, Cao X, Zhao D, Zhu L, Xie L, Liu J, Liu Y. Wet-chemistry synthesis of Li4Ti5O12 as anode materials rendering high-rate Li-ion storage. Int J Energy Res. 2020;44(6):4211. Wang R, Cao X, Zhao D, Zhu L, Xie L, Liu J, Liu Y. Wet-chemistry synthesis of Li4Ti5O12 as anode materials rendering high-rate Li-ion storage. Int J Energy Res. 2020;44(6):4211.
[21]
Zurück zum Zitat Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996. Wang BP, Lv R, Lan DS. Preparation and electrochemical properties of Sn/C composites. Rare Met. 2019;38(10):996.
[22]
Zurück zum Zitat Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832. Wu ZH, Yang JY, Yu B, Shi BM, Zhao CR, Yu ZL. Self-healing alginate-carboxymethyl chitosan porous scaffold as an effective binder for silicon anodes in lithium-ion batteries. Rare Met. 2019;38(9):832.
[23]
Zurück zum Zitat Eftekhari A, Jian ZL, Ji XL. Potassium secondary batteries. ACS Appl Mater Int. 2017;9(5):4404. Eftekhari A, Jian ZL, Ji XL. Potassium secondary batteries. ACS Appl Mater Int. 2017;9(5):4404.
[24]
Zurück zum Zitat Sun Yi, Shi PC, Chen JJ, Wu QJ, Liang X, Rui XH, Xiang HF, Yu Y. Development and challenge of advanced nonaqueous sodium ion batteries. Energy Chem. 2020;2(2):100031. Sun Yi, Shi PC, Chen JJ, Wu QJ, Liang X, Rui XH, Xiang HF, Yu Y. Development and challenge of advanced nonaqueous sodium ion batteries. Energy Chem. 2020;2(2):100031.
[25]
Zurück zum Zitat Chen Y, Zhuo SM, Li ZY, Wang CL. Redox polymers for rechargeable metal-ion batteries. Energy Chem. 2020;2(2):100030. Chen Y, Zhuo SM, Li ZY, Wang CL. Redox polymers for rechargeable metal-ion batteries. Energy Chem. 2020;2(2):100030.
[26]
Zurück zum Zitat Yu M, Yin Z, Yan G, Wang Z, Guo H, Li G, Liu Y, Li L, Wang J. Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-doped mesoporous carbon nanofiber. J Power Sources. 2020;449:227514. Yu M, Yin Z, Yan G, Wang Z, Guo H, Li G, Liu Y, Li L, Wang J. Synergy of interlayer expansion and capacitive contribution promoting sodium ion storage in S, N-doped mesoporous carbon nanofiber. J Power Sources. 2020;449:227514.
[27]
Zurück zum Zitat Luo W, Wan JY, Ozdemir B, Bao WZ, Chen YN, Dai JQ, Lin H, Xu Y, Gu F, Barone V, Hu LB. Potassium ion batteries with graphitic materials. Nano Lett. 2015;15(11):7671. Luo W, Wan JY, Ozdemir B, Bao WZ, Chen YN, Dai JQ, Lin H, Xu Y, Gu F, Barone V, Hu LB. Potassium ion batteries with graphitic materials. Nano Lett. 2015;15(11):7671.
[28]
Zurück zum Zitat Jian ZL, Xing ZY, Bommier C, Li ZF, Ji XL. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater. 2016;6(3):1501874. Jian ZL, Xing ZY, Bommier C, Li ZF, Ji XL. Hard carbon microspheres: potassium-ion anode versus sodium-ion anode. Adv Energy Mater. 2016;6(3):1501874.
[29]
Zurück zum Zitat Du M, Li Q, Zhao Y, Liu CS, Pang H. A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coord Chem Rev. 2020;416:213341. Du M, Li Q, Zhao Y, Liu CS, Pang H. A review of electrochemical energy storage behaviors based on pristine metal–organic frameworks and their composites. Coord Chem Rev. 2020;416:213341.
[30]
Zurück zum Zitat Zhou AJ, Cheng WJ, Wang W, Zhao Q, Xie J, Zhang WX, Gao HC, Xue LG, Li JZ. Hexacyanoferrate-type prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv Energy Mater. 2020;35:2000943. Zhou AJ, Cheng WJ, Wang W, Zhao Q, Xie J, Zhang WX, Gao HC, Xue LG, Li JZ. Hexacyanoferrate-type prussian blue analogs: principles and advances toward high-performance sodium and potassium ion batteries. Adv Energy Mater. 2020;35:2000943.
[31]
Zurück zum Zitat Zheng SS, Xue HG, Pang H. Supercapacitors based on metal coordination materials. Coord Chem Rev. 2018;373:2. Zheng SS, Xue HG, Pang H. Supercapacitors based on metal coordination materials. Coord Chem Rev. 2018;373:2.
[32]
Zurück zum Zitat Li C, Hu X, Hu B. Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim Acta. 2017;253:439. Li C, Hu X, Hu B. Cobalt(II) dicarboxylate-based metal-organic framework for long-cycling and high-rate potassium-ion battery anode. Electrochim Acta. 2017;253:439.
[33]
Zurück zum Zitat An Y, Fei H, Zhang Z, Ci L, Xiong S, Feng J. A titanium-based metal–organic framework as an ultralong cycle-life anode for PIBs. Chem Commun. 2017;53(59):8360. An Y, Fei H, Zhang Z, Ci L, Xiong S, Feng J. A titanium-based metal–organic framework as an ultralong cycle-life anode for PIBs. Chem Commun. 2017;53(59):8360.
[34]
Zurück zum Zitat Li C, Wang KB, Li JZ, Zhang QC. Nanostructured potassium-organic framework as an effective anode for potassium-ion batteries with a long cycle life. Nanoscale. 2020;12(14):7870. Li C, Wang KB, Li JZ, Zhang QC. Nanostructured potassium-organic framework as an effective anode for potassium-ion batteries with a long cycle life. Nanoscale. 2020;12(14):7870.
[35]
Zurück zum Zitat Liao J, Hu Q, Mu J, He X, Wang S, Chen C. A vanadium-based metal-organic phosphate framework material K2(VO)2(HPO4)2(C2O4) as a cathode for potassium-ion batteries. Chem Commun. 2019;55(5):659. Liao J, Hu Q, Mu J, He X, Wang S, Chen C. A vanadium-based metal-organic phosphate framework material K2(VO)2(HPO4)2(C2O4) as a cathode for potassium-ion batteries. Chem Commun. 2019;55(5):659.
[36]
Zurück zum Zitat Deng QJ, Feng SS, Hui P, Chen HT, Tian CC, Yang R, Xu YH. Exploration of low-cost microporous Fe(III)-based organic framework as anode material for potassium-ion batteries. J Alloys Compd. 2020;830:154714. Deng QJ, Feng SS, Hui P, Chen HT, Tian CC, Yang R, Xu YH. Exploration of low-cost microporous Fe(III)-based organic framework as anode material for potassium-ion batteries. J Alloys Compd. 2020;830:154714.
[37]
Zurück zum Zitat Liu S, Yang B, Zhou J, Song H. Nitrogen-rich carbon-onion-constructed nanosheets: an ultrafast and ultrastable dual anode material for sodium and potassium storage. J Mater Chem A. 2019;7(31):18499. Liu S, Yang B, Zhou J, Song H. Nitrogen-rich carbon-onion-constructed nanosheets: an ultrafast and ultrastable dual anode material for sodium and potassium storage. J Mater Chem A. 2019;7(31):18499.
[38]
Zurück zum Zitat Li Y, Yang C, Zheng F, Ou X, Pan Q, Liu Y, Wang G. High pyridine N-doped porous carbon derived from metal–organic frameworks for boosting potassium-ion storage. J Mater Chem A. 2018;6(37):17959. Li Y, Yang C, Zheng F, Ou X, Pan Q, Liu Y, Wang G. High pyridine N-doped porous carbon derived from metal–organic frameworks for boosting potassium-ion storage. J Mater Chem A. 2018;6(37):17959.
[39]
Zurück zum Zitat Xiong P, Zhao X, Xu Y. Nitrogen-doped carbon nanotubes derived from metal–organic frameworks for potassium-ion battery anodes. Chemsuschem. 2018;11(1):202. Xiong P, Zhao X, Xu Y. Nitrogen-doped carbon nanotubes derived from metal–organic frameworks for potassium-ion battery anodes. Chemsuschem. 2018;11(1):202.
[40]
Zurück zum Zitat Lu G, Wang H, Zheng Y, Zhang H, Yang Y, Shi J, Huang M, Liu W. Metal–organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage. Electrochim Acta. 2019;319:541. Lu G, Wang H, Zheng Y, Zhang H, Yang Y, Shi J, Huang M, Liu W. Metal–organic framework derived N-doped CNT@ porous carbon for high-performance sodium- and potassium-ion storage. Electrochim Acta. 2019;319:541.
[41]
Zurück zum Zitat Li D, Cheng X, Xu R, Wu Y, Zhou X, Ma C, Yu Y. Manipulation of 2D carbon nanoplates with a core–shell structure for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(34):19929. Li D, Cheng X, Xu R, Wu Y, Zhou X, Ma C, Yu Y. Manipulation of 2D carbon nanoplates with a core–shell structure for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(34):19929.
[42]
Zurück zum Zitat Li J, Li Y, Ma X, Zhang K, Hu J, Yang C, Liu M. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem Eng J. 2020;384:123328. Li J, Li Y, Ma X, Zhang K, Hu J, Yang C, Liu M. A honeycomb-like nitrogen-doped carbon as high-performance anode for potassium-ion batteries. Chem Eng J. 2020;384:123328.
[43]
Zurück zum Zitat Zhang W, Jiang X, Wang X, Kaneti YV, Chen Y, Liu J, Jiang JS, Yamauchi Y, Hu M. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Ed Engl. 2017;56(29):8435. Zhang W, Jiang X, Wang X, Kaneti YV, Chen Y, Liu J, Jiang JS, Yamauchi Y, Hu M. Spontaneous weaving of graphitic carbon networks synthesized by pyrolysis of ZIF-67 crystals. Angew Chem Int Ed Engl. 2017;56(29):8435.
[44]
Zurück zum Zitat Zhou X, Chen L, Zhang W, Wang J, Liu Z, Zeng S, Xu R, Wu Y, Ye S, Feng Y, Cheng X, Peng Z, Li X, Yu Y. Three-dimensional ordered macroporous metal–organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019;19(8):4965. Zhou X, Chen L, Zhang W, Wang J, Liu Z, Zeng S, Xu R, Wu Y, Ye S, Feng Y, Cheng X, Peng Z, Li X, Yu Y. Three-dimensional ordered macroporous metal–organic framework single crystal-derived nitrogen-doped hierarchical porous carbon for high-performance potassium-ion batteries. Nano Lett. 2019;19(8):4965.
[45]
Zurück zum Zitat Li Y, Zhong W, Yang C, Zheng F, Pan Q, Liu Y, Wang G, Xiong X, Liu M. N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem Eng J. 2019;358:1147. Li Y, Zhong W, Yang C, Zheng F, Pan Q, Liu Y, Wang G, Xiong X, Liu M. N/S codoped carbon microboxes with expanded interlayer distance toward excellent potassium storage. Chem Eng J. 2019;358:1147.
[46]
Zurück zum Zitat Lu J, Wang C, Yu H, Gong S, Xia G, Jiang P, Xu P, Yang K, Chen Q. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv Funct Mater. 2019;29(49):1906126. Lu J, Wang C, Yu H, Gong S, Xia G, Jiang P, Xu P, Yang K, Chen Q. Oxygen/fluorine dual-doped porous carbon nanopolyhedra enabled ultrafast and highly stable potassium storage. Adv Funct Mater. 2019;29(49):1906126.
[47]
Zurück zum Zitat Xia GL, Wang CL, Jiang P, Lu J, Diao JF, Chen QW. Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(19):12317. Xia GL, Wang CL, Jiang P, Lu J, Diao JF, Chen QW. Nitrogen/oxygen co-doped mesoporous carbon octahedrons for high-performance potassium-ion batteries. J Mater Chem A. 2019;7(19):12317.
[48]
Zurück zum Zitat Yan C, Gu X, Zhang L, Wang Y, Yan L, Liu D, Li L, Dai P, Zhao X. Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. J Mater Chem A. 2018;6(36):17371. Yan C, Gu X, Zhang L, Wang Y, Yan L, Liu D, Li L, Dai P, Zhao X. Highly dispersed Zn nanoparticles confined in a nanoporous carbon network: promising anode materials for sodium and potassium ion batteries. J Mater Chem A. 2018;6(36):17371.
[49]
Zurück zum Zitat Su S, Liu Q, Wang J, Fan L, Ma R, Chen S, Han X, Lu B. Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl Mater Int. 2019;11(25):22474. Su S, Liu Q, Wang J, Fan L, Ma R, Chen S, Han X, Lu B. Control of SEI formation for stable potassium-ion battery anodes by Bi-MOF-derived nanocomposites. ACS Appl Mater Int. 2019;11(25):22474.
[50]
Zurück zum Zitat Cheng N, Zhao JG, Fan L, Liu ZM, Chen SH, Ding HB, Yu XZ, Liu ZG, Lu BG. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem Commun. 2019;55(83):12511. Cheng N, Zhao JG, Fan L, Liu ZM, Chen SH, Ding HB, Yu XZ, Liu ZG, Lu BG. Sb-MOFs derived Sb nanoparticles@porous carbon for high performance potassium-ion batteries anode. Chem Commun. 2019;55(83):12511.
[51]
Zurück zum Zitat Miao W, Zhao X, Wang R, Liu Y, Li L, Zhang Z, Zhang W. Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: a promising anode for potassium ion battery. J Colloid Interface Sci. 2019;556:432. Miao W, Zhao X, Wang R, Liu Y, Li L, Zhang Z, Zhang W. Carbon shell encapsulated cobalt phosphide nanoparticles embedded in carbon nanotubes supported on carbon nanofibers: a promising anode for potassium ion battery. J Colloid Interface Sci. 2019;556:432.
[53]
Zurück zum Zitat Xu X, Feng J, Liu J, Lv F, Hu R, Fang F, Yang L, Ouyang L, Zhu M. Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim Acta. 2019;312:224. Xu X, Feng J, Liu J, Lv F, Hu R, Fang F, Yang L, Ouyang L, Zhu M. Robust spindle-structured FeP@C for high-performance alkali-ion batteries anode. Electrochim Acta. 2019;312:224.
[54]
Zurück zum Zitat Zhang ZF, Wu CX, Chen ZH, Li HY, Cao HJ, Luo XJ, Fang ZB, Zhu YY. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J Mater Chem A. 2020;8(6):3369. Zhang ZF, Wu CX, Chen ZH, Li HY, Cao HJ, Luo XJ, Fang ZB, Zhu YY. Spatially confined synthesis of a flexible and hierarchically porous three-dimensional graphene/FeP hollow nanosphere composite anode for highly efficient and ultrastable potassium ion storage. J Mater Chem A. 2020;8(6):3369.
[55]
Zurück zum Zitat Miao W, Zhang Y, Li H, Zhang Z, Li L, Yu Z, Zhang W. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J Mater Chem A. 2019;7(10):5504. Miao W, Zhang Y, Li H, Zhang Z, Li L, Yu Z, Zhang W. ZIF-8/ZIF-67-derived 3D amorphous carbon-encapsulated CoS/NCNTs supported on CoS-coated carbon nanofibers as an advanced potassium-ion battery anode. J Mater Chem A. 2019;7(10):5504.
[56]
Zurück zum Zitat Rui B, Li J, Chang L, Wang H, Lin L, Guo Y, Nie P. Engineering MoS2 nanosheets anchored on metal organic frameworks derived carbon polyhedra for superior lithium and potassium storage. Front Energy Res. 2019;7:142. Rui B, Li J, Chang L, Wang H, Lin L, Guo Y, Nie P. Engineering MoS2 nanosheets anchored on metal organic frameworks derived carbon polyhedra for superior lithium and potassium storage. Front Energy Res. 2019;7:142.
[57]
Zurück zum Zitat Yang C, Feng J, Zhang Y, Yang Q, Li P, Arlt T, Lai F, Wang J, Yin C, Wang W, Qian G, Cui L, Yang W, Chen Y, Manke I. Multidimensional integrated chalcogenides nanoarchitecture achieves highly stable and ultrafast potassium-ion storage. Small. 2019;15(44):1903720. Yang C, Feng J, Zhang Y, Yang Q, Li P, Arlt T, Lai F, Wang J, Yin C, Wang W, Qian G, Cui L, Yang W, Chen Y, Manke I. Multidimensional integrated chalcogenides nanoarchitecture achieves highly stable and ultrafast potassium-ion storage. Small. 2019;15(44):1903720.
[58]
Zurück zum Zitat Han Y, Li W, Zhou K, Wu X, Wu H, Wu X, Shi Q, Diao G, Chen M. Bimetallic sulfide Co9S8/N-C@MoS2 dodecahedral heterogeneous nanocages for boosted Li/K storage. Chemnanomat. 2020;6(1):132. Han Y, Li W, Zhou K, Wu X, Wu H, Wu X, Shi Q, Diao G, Chen M. Bimetallic sulfide Co9S8/N-C@MoS2 dodecahedral heterogeneous nanocages for boosted Li/K storage. Chemnanomat. 2020;6(1):132.
[59]
Zurück zum Zitat Xie J, Zhu Y, Zhuang N, Lei H, Zhu W, Fu Y, Javed MS, Li J, Mai W. Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale. 2018;10(36):17092. Xie J, Zhu Y, Zhuang N, Lei H, Zhu W, Fu Y, Javed MS, Li J, Mai W. Rational design of metal organic framework-derived FeS2 hollow nanocages@reduced graphene oxide for K-ion storage. Nanoscale. 2018;10(36):17092.
[60]
Zurück zum Zitat Ma G, Li C, Liu F, Majeed MK, Feng Z, Cui Y, Yang J, Qian Y. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018;10:241. Ma G, Li C, Liu F, Majeed MK, Feng Z, Cui Y, Yang J, Qian Y. Metal-organic framework-derived Co0.85Se nanoparticles in N-doped carbon as a high-rate and long-lifespan anode material for potassium ion batteries. Mater. Today Energy 2018;10:241.
[61]
Zurück zum Zitat Etogo CA, Huang H, Hong H, Liu G, Zhang L. Metal–organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 2020;24:167. Etogo CA, Huang H, Hong H, Liu G, Zhang L. Metal–organic-frameworks-engaged formation of Co0.85Se@C nanoboxes embedded in carbon nanofibers film for enhanced potassium-ion storage. Energy Storage Mater. 2020;24:167.
[62]
Zurück zum Zitat Hu Y, Lu T, Zhang Y, Sun Y, Liu J, Wei D, Ju Z, Zhuang Q. Highly dispersed ZnSe nanoparticles embedded in N-doped porous carbon matrix as an anode for potassium ion batteries. Part Part Syst Char. 2019;36(10):1900199. Hu Y, Lu T, Zhang Y, Sun Y, Liu J, Wei D, Ju Z, Zhuang Q. Highly dispersed ZnSe nanoparticles embedded in N-doped porous carbon matrix as an anode for potassium ion batteries. Part Part Syst Char. 2019;36(10):1900199.
[63]
Zurück zum Zitat Yuan JJ, Liu W, Zhang XK, Zhang YH, Yang WT, Lai WD, Li XK, Zhang JJ, Li XF. MOF derived ZnSe–FeSe2/RGO nanocomposites with enhanced sodium/potassium storage. J Power Sources. 2020;455:227937. Yuan JJ, Liu W, Zhang XK, Zhang YH, Yang WT, Lai WD, Li XK, Zhang JJ, Li XF. MOF derived ZnSe–FeSe2/RGO nanocomposites with enhanced sodium/potassium storage. J Power Sources. 2020;455:227937.
[64]
Zurück zum Zitat Eftekhari A. Potassium secondary cell based on Prussian blue cathode. J Power Sources. 2004;126(1–2):221. Eftekhari A. Potassium secondary cell based on Prussian blue cathode. J Power Sources. 2004;126(1–2):221.
[65]
Zurück zum Zitat Zhou L, Zhang M, Wang Y, Zhu Y, Fu L, Liu X, Wu Y, Huang W. Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim Acta. 2017;232:106. Zhou L, Zhang M, Wang Y, Zhu Y, Fu L, Liu X, Wu Y, Huang W. Cubic Prussian blue crystals from a facile one-step synthesis as positive electrode material for superior potassium-ion capacitors. Electrochim Acta. 2017;232:106.
[66]
Zurück zum Zitat Su D, McDonagh A, Qiao SZ, Wang G. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv Mater. 2017;29(1):1604007. Su D, McDonagh A, Qiao SZ, Wang G. High-capacity aqueous potassium-ion batteries for large-scale energy storage. Adv Mater. 2017;29(1):1604007.
[67]
Zurück zum Zitat Liao J, Hu Q, Yu Y, Wang H, Tang Z, Wen Z, Chen C. A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. J Mater Chem A. 2017;5(36):19017. Liao J, Hu Q, Yu Y, Wang H, Tang Z, Wen Z, Chen C. A potassium-rich iron hexacyanoferrate/dipotassium terephthalate@carbon nanotube composite used for K-ion full-cells with an optimized electrolyte. J Mater Chem A. 2017;5(36):19017.
[68]
Zurück zum Zitat Zhang C, Xu Y, Zhou M, Liang L, Dong H, Wu M, Yang Y, Lei Y. Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv Funct Mater. 2017;27(4):1604307. Zhang C, Xu Y, Zhou M, Liang L, Dong H, Wu M, Yang Y, Lei Y. Potassium Prussian blue nanoparticles: a low-cost cathode material for potassium-ion batteries. Adv Funct Mater. 2017;27(4):1604307.
[69]
Zurück zum Zitat Qin M, Ren W, Meng J, Wang X, Yao X, Ke Y, Li Q, Ma L. Realizing superior prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly. ACS Sustain Chem Eng. 2019;7(13):11564. Qin M, Ren W, Meng J, Wang X, Yao X, Ke Y, Li Q, Ma L. Realizing superior prussian blue positive electrode for potassium storage via ultrathin nanosheet assembly. ACS Sustain Chem Eng. 2019;7(13):11564.
[70]
Zurück zum Zitat Chong S, Chen Y, Zheng Y, Tan Q, Shu C, Liu Y, Guo Z. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J Mater Chem A. 2017;5(43):22465. Chong S, Chen Y, Zheng Y, Tan Q, Shu C, Liu Y, Guo Z. Potassium ferrous ferricyanide nanoparticles as a high capacity and ultralong life cathode material for nonaqueous potassium-ion batteries. J Mater Chem A. 2017;5(43):22465.
[71]
Zurück zum Zitat Huang B, Liu Y, Lu Z, Shen M, Zhou J, Ren J, Li X, Liao S. Prussian Blue K2FeFe(CN)6 doped with nickel as a superior cathode: an efficient strategy to enhance potassium storage performance. ACS Sustain Chem Eng. 2019;7(19):16659. Huang B, Liu Y, Lu Z, Shen M, Zhou J, Ren J, Li X, Liao S. Prussian Blue K2FeFe(CN)6 doped with nickel as a superior cathode: an efficient strategy to enhance potassium storage performance. ACS Sustain Chem Eng. 2019;7(19):16659.
[72]
Zurück zum Zitat Huang B, Shao Y, Liu Y, Lu Z, Lu X, Liao S. Improving potassium-ion batteries by optimizing the composition of prussian blue cathode. ACS Appl Energy Mater. 2019;2(9):6528. Huang B, Shao Y, Liu Y, Lu Z, Lu X, Liao S. Improving potassium-ion batteries by optimizing the composition of prussian blue cathode. ACS Appl Energy Mater. 2019;2(9):6528.
[73]
Zurück zum Zitat Wessells CD, Peddada SV, Huggins RA, Cui Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 2011;11(12):5421. Wessells CD, Peddada SV, Huggins RA, Cui Y. Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. Nano Lett. 2011;11(12):5421.
[74]
Zurück zum Zitat Lee HW, Pasta M, Wang RY, Ruffo R, Cui Y. Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes. Faraday Discuss. 2014;176:69. Lee HW, Pasta M, Wang RY, Ruffo R, Cui Y. Effect of the alkali insertion ion on the electrochemical properties of nickel hexacyanoferrate electrodes. Faraday Discuss. 2014;176:69.
[75]
Zurück zum Zitat Zheng J, Deng W, Hu Z, Zhuo Z, Liu F, Chen H, Lin Y, Yang W, Amine K, Li R, Lu J, Pan F. Asymmetric K/Li-ion battery based on intercalation selectivity. ACS Energy Lett. 2018;3(1):65. Zheng J, Deng W, Hu Z, Zhuo Z, Liu F, Chen H, Lin Y, Yang W, Amine K, Li R, Lu J, Pan F. Asymmetric K/Li-ion battery based on intercalation selectivity. ACS Energy Lett. 2018;3(1):65.
[76]
Zurück zum Zitat Deng L, Yang Z, Tan L, Zeng L, Zhu Y, Guo L. Investigation of the Prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv Mater. 2018;30(31):1802510. Deng L, Yang Z, Tan L, Zeng L, Zhu Y, Guo L. Investigation of the Prussian blue analog Co3[Co(CN)6]2 as an anode material for nonaqueous potassium-ion batteries. Adv Mater. 2018;30(31):1802510.
[77]
Zurück zum Zitat Bie XF, Kubota K, Hosaka T, Chihara K, Komaba S. A novel K-ion battery: hexacyanoferrate(II)/graphite cell. J Mater Chem A. 2017;5(9):4325. Bie XF, Kubota K, Hosaka T, Chihara K, Komaba S. A novel K-ion battery: hexacyanoferrate(II)/graphite cell. J Mater Chem A. 2017;5(9):4325.
[78]
Zurück zum Zitat Jiang X, Zhang T, Yang L, Li G, Lee JY. A Fe/Mn-based prussian blue analogue as a K-rich cathode material for potassium-ion batteries. Chemelectrochem. 2017;4(9):2237. Jiang X, Zhang T, Yang L, Li G, Lee JY. A Fe/Mn-based prussian blue analogue as a K-rich cathode material for potassium-ion batteries. Chemelectrochem. 2017;4(9):2237.
[79]
Zurück zum Zitat Xue LG, Li YT, Gao HC, Zhou WD, Lu XJ, Kaveevivitchai W, Manthiram A, Goodenough JB. Low-cost high energy potassium cathode. J Am Chem Soc. 2017;139(6):2164. Xue LG, Li YT, Gao HC, Zhou WD, Lu XJ, Kaveevivitchai W, Manthiram A, Goodenough JB. Low-cost high energy potassium cathode. J Am Chem Soc. 2017;139(6):2164.
[80]
Zurück zum Zitat Luo Y, Shen B, Guo B, Hu L, Xu Q, Zhan R, Zhang Y, Bao S, Xu M. Potassium titanium hexacyanoferrate as a cathode material for potassium-ion batteries. J Phys Chem Solids. 2018;122:31. Luo Y, Shen B, Guo B, Hu L, Xu Q, Zhan R, Zhang Y, Bao S, Xu M. Potassium titanium hexacyanoferrate as a cathode material for potassium-ion batteries. J Phys Chem Solids. 2018;122:31.
[81]
Zurück zum Zitat Islas-Vargas C, Guevara-Garcia A, Oliver-Tolentino M, Ramos-Sanchez G, Gonzalez I, Galvan M. Experimental and theoretical investigation on the origin of the high intercalation voltage of K2Zn3[Fe(CN)6]2 cathode. J Electrochem Soc. 2018;166(3):A5139. Islas-Vargas C, Guevara-Garcia A, Oliver-Tolentino M, Ramos-Sanchez G, Gonzalez I, Galvan M. Experimental and theoretical investigation on the origin of the high intercalation voltage of K2Zn3[Fe(CN)6]2 cathode. J Electrochem Soc. 2018;166(3):A5139.
[82]
Zurück zum Zitat Heo JW, Chae MS, Hyoung J, Hong S-T. Rhombohedral potassium–zinc hexacyanoferrate as a cathode material for nonaqueous potassium-ion batteries. Inorg Chem. 2019;58(5):3065. Heo JW, Chae MS, Hyoung J, Hong S-T. Rhombohedral potassium–zinc hexacyanoferrate as a cathode material for nonaqueous potassium-ion batteries. Inorg Chem. 2019;58(5):3065.
[83]
Zurück zum Zitat Zhang L, Chen L, Zhou X, Liu Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater. 2015;5(2):1400930. Zhang L, Chen L, Zhou X, Liu Z. Towards high-voltage aqueous metal-ion batteries beyond 1.5 V: the zinc/zinc hexacyanoferrate system. Adv Energy Mater. 2015;5(2):1400930.
[84]
Zurück zum Zitat Wu X, Jian Z, Li Z, Ji X. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem Commun. 2017;77:54. Wu X, Jian Z, Li Z, Ji X. Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries. Electrochem Commun. 2017;77:54.
[85]
Zurück zum Zitat Padigi P, Thiebes J, Swan M, Goncher G, Evans D, Solanki R. Prussian Green: a high rate capacity cathode for potassium ion batteries. Electrochim Acta. 2015;166:32. Padigi P, Thiebes J, Swan M, Goncher G, Evans D, Solanki R. Prussian Green: a high rate capacity cathode for potassium ion batteries. Electrochim Acta. 2015;166:32.
[86]
Zurück zum Zitat He G, Nazar LF. Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017;2(5):1122. He G, Nazar LF. Crystallite size control of prussian white analogues for nonaqueous potassium-ion batteries. ACS Energy Lett. 2017;2(5):1122.
[87]
Zurück zum Zitat Li C, Wang X, Deng W, Liu C, Chen J, Li R, Xue M. Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of prussian white analogues. Chemelectrochem. 2018;5(24):3887. Li C, Wang X, Deng W, Liu C, Chen J, Li R, Xue M. Size engineering and crystallinity control enable high-capacity aqueous potassium-ion storage of prussian white analogues. Chemelectrochem. 2018;5(24):3887.
[88]
Zurück zum Zitat Sun YP, Xie J, Zhao XB, Zhuang DG, Zhang GL. Prussian blue cathode material: preparation by ion-exchange method and electrochemical potassium-storage performance. Chin J Inorg Chem. 2020;36(1):106. Sun YP, Xie J, Zhao XB, Zhuang DG, Zhang GL. Prussian blue cathode material: preparation by ion-exchange method and electrochemical potassium-storage performance. Chin J Inorg Chem. 2020;36(1):106.
[89]
Zurück zum Zitat Husmann S, Zarbin AJG. Cation effect on the structure and properties of hexacyanometallates-based nanocomposites: improving cathode performance in aqueous metal-ions batteries. Electrochim Acta. 2018;283:1339. Husmann S, Zarbin AJG. Cation effect on the structure and properties of hexacyanometallates-based nanocomposites: improving cathode performance in aqueous metal-ions batteries. Electrochim Acta. 2018;283:1339.
[90]
Zurück zum Zitat Nossol E, Souza VHR, Zarbin AJG. Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. J Colloid Interface Sci. 2016;478:107. Nossol E, Souza VHR, Zarbin AJG. Carbon nanotube/Prussian blue thin films as cathodes for flexible, transparent and ITO-free potassium secondary battery. J Colloid Interface Sci. 2016;478:107.
[91]
Zurück zum Zitat Zhu YH, Yin YH, Yang X, Sun T, Wang S, Jiang YS, Yan JM, Zhang XB. Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries. Angew Chem Int Ed Engl. 2017;56(27):7881. Zhu YH, Yin YH, Yang X, Sun T, Wang S, Jiang YS, Yan JM, Zhang XB. Transformation of rusty stainless-steel meshes into stable, low-cost, and binder-free cathodes for high-performance potassium-ion batteries. Angew Chem Int Ed Engl. 2017;56(27):7881.
[92]
Zurück zum Zitat Sun Y, Liu C, Xie J, Zhuang D, Zheng W, Zhao X. Potassium manganese hexacyanoferrate/graphene as a high-performance cathode for potassium-ion batteries. New J Chem. 2019;43(29):11618. Sun Y, Liu C, Xie J, Zhuang D, Zheng W, Zhao X. Potassium manganese hexacyanoferrate/graphene as a high-performance cathode for potassium-ion batteries. New J Chem. 2019;43(29):11618.
[93]
Zurück zum Zitat Morant-Giner M, Sanchis-Gual R, Romero J, Alberola A, Garcia-Cruz L, Agouram S, Galbiati M, Padial NM, Waerenborgh JC, Marti-Gastaldo C, Tatay S, Forment-Aliaga A, Coronado E. Prussian Blue@MoS2 layer composites as highly efficient cathodes for sodium– and potassium-ion batteries. Adv Funct Mater. 2018;28(27):1706125. Morant-Giner M, Sanchis-Gual R, Romero J, Alberola A, Garcia-Cruz L, Agouram S, Galbiati M, Padial NM, Waerenborgh JC, Marti-Gastaldo C, Tatay S, Forment-Aliaga A, Coronado E. Prussian Blue@MoS2 layer composites as highly efficient cathodes for sodium– and potassium-ion batteries. Adv Funct Mater. 2018;28(27):1706125.
[94]
Zurück zum Zitat Xue L, Li L, Huang Y, Huang R, Wu F, Chen R. Polypyrrole-modified prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl Mater Int. 2019;11(25):22339. Xue L, Li L, Huang Y, Huang R, Wu F, Chen R. Polypyrrole-modified prussian blue cathode material for potassium ion batteries via in situ polymerization coating. ACS Appl Mater Int. 2019;11(25):22339.
[95]
[96]
Zurück zum Zitat Chen X, Zeng S, Muheiyati H, Zhai Y, Li C, Ding X, Wang L, Wang D, Xu L, He Y, Qian Y. Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li–S batteries. Acs Energy Lett. 2019;4(7):1496. Chen X, Zeng S, Muheiyati H, Zhai Y, Li C, Ding X, Wang L, Wang D, Xu L, He Y, Qian Y. Double-shelled Ni–Fe–P/N-doped carbon nanobox derived from a prussian blue analogue as an electrode material for K-ion batteries and Li–S batteries. Acs Energy Lett. 2019;4(7):1496.
[97]
Zurück zum Zitat Wang J, Wang B, Liu X, Bai J, Wang H, Wang G. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem Eng J. 2020;382:1706125. Wang J, Wang B, Liu X, Bai J, Wang H, Wang G. Prussian blue analogs (PBA) derived porous bimetal (Mn, Fe) selenide with carbon nanotubes as anode materials for sodium and potassium ion batteries. Chem Eng J. 2020;382:1706125.
[98]
Zurück zum Zitat Stilwell DE, Park KH, Miles MH. Electrochemical studies of the factors influencing the cycle stability of Prussian blue films. J Appl Electrochem. 1992;22(4):325. Stilwell DE, Park KH, Miles MH. Electrochemical studies of the factors influencing the cycle stability of Prussian blue films. J Appl Electrochem. 1992;22(4):325.
[99]
Zurück zum Zitat Zampardi G, Sokolov SV, Batchelor-McAuley C, Compton RG. Potassium (de-)insertion processes in prussian blue particles: ensemble versus single nanoparticle behaviour. Chem-Eur J. 2017;23(57):14338. Zampardi G, Sokolov SV, Batchelor-McAuley C, Compton RG. Potassium (de-)insertion processes in prussian blue particles: ensemble versus single nanoparticle behaviour. Chem-Eur J. 2017;23(57):14338.
[100]
Zurück zum Zitat Xiao X, Zhang G, Xu Y, Zhang H, Guo X, Liu Y, Pang H. A new strategy for the controllable growth of MOF@PBA architectures. J Mater Chem A. 2019;7(29):17266. Xiao X, Zhang G, Xu Y, Zhang H, Guo X, Liu Y, Pang H. A new strategy for the controllable growth of MOF@PBA architectures. J Mater Chem A. 2019;7(29):17266.
Metadaten
Titel
Recent advances and perspective in metal coordination materials-based electrode materials for potassium-ion batteries
verfasst von
Fei Wang
Yong Liu
Hui-Jie Wei
Teng-Fei Li
Xun-Hui Xiong
Shi-Zhong Wei
Feng-Zhang Ren
Alex A. Volinsky
Publikationsdatum
07.01.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 2/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-020-01649-1

Weitere Artikel der Ausgabe 2/2021

Rare Metals 2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.