Skip to main content
Erschienen in: Rare Metals 12/2021

11.06.2021 | Review

Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction

verfasst von: Fei Zhou, Yang Zhou, Gui-Gao Liu, Chen-Tuo Wang, Jun Wang

Erschienen in: Rare Metals | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hydrogen is considered to be an ideal safe and clean energy source, which can be produced by water splitting. The high overpotential of hydrogen evolution reaction (HER) is one of the bottleneck issues for the practical application of water splitting, where high-efficiency electrocatalysts are thus usually required to accommodate and facilitate the reaction. In recent years, a rapid rise in the HER electrocatalysts has been witnessed, especially nanostructured materials. Noble metals are generally regarded as the most effective electrocatalysts for HER, while some other electrocatalysts based on non-noble transition metals, including alloys, chalcogenides, phosphides, carbides and nitrides, can even approach the HER efficiency of noble metal benchmarks. This paper mainly introduces the basic principles of the HER process, evaluates different categories of nanostructured electrocatalytic materials, providing guidance for the design and fabrication of nanostructured HER catalysts. Moreover, recent progress and future research directions regarding the performance of metallic nanostructured materials are also discussed.

Graphic Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
[1]
Zurück zum Zitat Rabi O, Pervaiz E, Zahra R, Ali M, Niazi MBK. An inclusive review on the synthesis of molybdenum carbide and its hybrids as catalyst for electrochemical water splitting. Mol Catal. 2020;494:111116.CrossRef Rabi O, Pervaiz E, Zahra R, Ali M, Niazi MBK. An inclusive review on the synthesis of molybdenum carbide and its hybrids as catalyst for electrochemical water splitting. Mol Catal. 2020;494:111116.CrossRef
[2]
Zurück zum Zitat Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev. 2010;39(11):4206.CrossRef Chen C, Ma W, Zhao J. Semiconductor-mediated photodegradation of pollutants under visible-light irradiation. Chem Soc Rev. 2010;39(11):4206.CrossRef
[3]
Zurück zum Zitat Dong J, Shi Y, Huang C, Wu Q, Zeng T, Yao W. A New and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production. Appl Catal B. 2019;243:27.CrossRef Dong J, Shi Y, Huang C, Wu Q, Zeng T, Yao W. A New and stable Mo-Mo2C modified g-C3N4 photocatalyst for efficient visible light photocatalytic H2 production. Appl Catal B. 2019;243:27.CrossRef
[4]
Zurück zum Zitat Zhou F, Zhou Y, Jiang M, Liang J, Fu C, Wang C, Liu J, Gao H, Kang M, Wang J. Ni-based aligned plate intermetallic nanostructures as effective catalysts for hydrogen evolution reaction. Mater Lett. 2020;272:127831.CrossRef Zhou F, Zhou Y, Jiang M, Liang J, Fu C, Wang C, Liu J, Gao H, Kang M, Wang J. Ni-based aligned plate intermetallic nanostructures as effective catalysts for hydrogen evolution reaction. Mater Lett. 2020;272:127831.CrossRef
[5]
Zurück zum Zitat Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc. 2018;140(25):7748.CrossRef Song F, Bai L, Moysiadou A, Lee S, Hu C, Liardet L, Hu X. Transition metal oxides as electrocatalysts for the oxygen evolution reaction in alkaline solutions: an application-inspired renaissance. J Am Chem Soc. 2018;140(25):7748.CrossRef
[6]
Zurück zum Zitat Iranshahi D, Pourazadi E, Paymooni K, Rahimpour MR, Jahanmiri A, Moghtaderi B. A dynamic membrane reactor concept for naphtha reforming, considering radial-flow patterns for both sweeping gas and reacting materials. Chem Eng J. 2011;178:264.CrossRef Iranshahi D, Pourazadi E, Paymooni K, Rahimpour MR, Jahanmiri A, Moghtaderi B. A dynamic membrane reactor concept for naphtha reforming, considering radial-flow patterns for both sweeping gas and reacting materials. Chem Eng J. 2011;178:264.CrossRef
[7]
Zurück zum Zitat Trane R, Dahl S, Skjøth-Rasmussen MS, Jensen AD. Catalytic steam reforming of bio-oil. Int J Hydrogen Energy. 2012;37(8):6447.CrossRef Trane R, Dahl S, Skjøth-Rasmussen MS, Jensen AD. Catalytic steam reforming of bio-oil. Int J Hydrogen Energy. 2012;37(8):6447.CrossRef
[8]
Zurück zum Zitat Rahimpour MR, Jafari M, Iranshahi D. Progress in catalytic naphtha reforming process: a review. Appl Energy. 2013;109:79.CrossRef Rahimpour MR, Jafari M, Iranshahi D. Progress in catalytic naphtha reforming process: a review. Appl Energy. 2013;109:79.CrossRef
[9]
Zurück zum Zitat Boyano A, Blanco-Marigorta AM, Morosuk T, Tsatsaronis G. Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy. 2011;36(4):2202.CrossRef Boyano A, Blanco-Marigorta AM, Morosuk T, Tsatsaronis G. Exergoenvironmental analysis of a steam methane reforming process for hydrogen production. Energy. 2011;36(4):2202.CrossRef
[10]
Zurück zum Zitat Xu J, Chen L, Tan KF, Borgna A, Saeys M. Effect of boron on the stability of Ni catalysts during steam methane reforming. J Catal. 2009;261(2):158.CrossRef Xu J, Chen L, Tan KF, Borgna A, Saeys M. Effect of boron on the stability of Ni catalysts during steam methane reforming. J Catal. 2009;261(2):158.CrossRef
[11]
Zurück zum Zitat Ligthart DAJM, van Santen RA, Hensen EJM. Influence of particle size on the activity and stability in steam methane reforming of supported Rh nanoparticles. J Catal. 2011;280(2):206.CrossRef Ligthart DAJM, van Santen RA, Hensen EJM. Influence of particle size on the activity and stability in steam methane reforming of supported Rh nanoparticles. J Catal. 2011;280(2):206.CrossRef
[12]
Zurück zum Zitat Seyitoglu SS, Dincer I, Kilicarslan A. Energy and exergy analyses of hydrogen production by coal gasification. Int J Hydrogen Energy. 2017;42(4):2592.CrossRef Seyitoglu SS, Dincer I, Kilicarslan A. Energy and exergy analyses of hydrogen production by coal gasification. Int J Hydrogen Energy. 2017;42(4):2592.CrossRef
[13]
Zurück zum Zitat Burmistrz P, Chmielniak T, Czepirski L, Gazda-Grzywacz M. Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. J Cleaner Prod. 2016;139:858.CrossRef Burmistrz P, Chmielniak T, Czepirski L, Gazda-Grzywacz M. Carbon footprint of the hydrogen production process utilizing subbituminous coal and lignite gasification. J Cleaner Prod. 2016;139:858.CrossRef
[14]
Zurück zum Zitat Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998.CrossRef Seh ZW, Kibsgaard J, Dickens CF, Chorkendorff I, Nørskov JK, Jaramillo TF. Combining theory and experiment in electrocatalysis: insights into materials design. Science. 2017;355(6321):eaad4998.CrossRef
[15]
Zurück zum Zitat Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148.CrossRef Zou X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev. 2015;44(15):5148.CrossRef
[16]
Zurück zum Zitat Kibsgaard J, Chorkendorff I. Considerations for the scaling-up of water splitting catalysts. Nat Energy. 2019;4(6):430.CrossRef Kibsgaard J, Chorkendorff I. Considerations for the scaling-up of water splitting catalysts. Nat Energy. 2019;4(6):430.CrossRef
[17]
Zurück zum Zitat Yin X, Yang L, Gao Q. Core–shell nanostructured electrocatalysts for water splitting. Nanoscale. 2020;12(30):15944.CrossRef Yin X, Yang L, Gao Q. Core–shell nanostructured electrocatalysts for water splitting. Nanoscale. 2020;12(30):15944.CrossRef
[18]
Zurück zum Zitat Wu H, Wang J, Jin W, Wu Z. Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis. Nanoscale. 2020;12(36):18497.CrossRef Wu H, Wang J, Jin W, Wu Z. Recent development of two-dimensional metal–organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis. Nanoscale. 2020;12(36):18497.CrossRef
[19]
Zurück zum Zitat Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science. 2011;334(6060):1256.CrossRef Subbaraman R, Tripkovic D, Strmcnik D, Chang KC, Uchimura M, Paulikas AP, Stamenkovic V, Markovic NM. Enhancing hydrogen evolution activity in water splitting by tailoring Li+-Ni(OH)2-Pt interfaces. Science. 2011;334(6060):1256.CrossRef
[20]
Zurück zum Zitat Shi Z, Nie K, Shao ZJ, Gao B, Lin H, Zhang H, Liu B, Wang Y, Zhang Y, Sun X, Cao XM, Hu P, Gao Q, Tang Y. Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy Environ Sci. 2017;10(5):1262.CrossRef Shi Z, Nie K, Shao ZJ, Gao B, Lin H, Zhang H, Liu B, Wang Y, Zhang Y, Sun X, Cao XM, Hu P, Gao Q, Tang Y. Phosphorus-Mo2C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy Environ Sci. 2017;10(5):1262.CrossRef
[21]
Zurück zum Zitat Lu K, Liu Y, Lin F, Cordova IA, Gao S, Li B, Peng B, Xu H, Kaelin J, Coliz D, Wang C, Shao Y, Cheng Y. LixNiO/Ni heterostructure with strong basic lattice oxygen enables electrocatalytic hydrogen evolution with Pt-like activity. J Am Chem Soc. 2020;142(29):12613.CrossRef Lu K, Liu Y, Lin F, Cordova IA, Gao S, Li B, Peng B, Xu H, Kaelin J, Coliz D, Wang C, Shao Y, Cheng Y. LixNiO/Ni heterostructure with strong basic lattice oxygen enables electrocatalytic hydrogen evolution with Pt-like activity. J Am Chem Soc. 2020;142(29):12613.CrossRef
[22]
Zurück zum Zitat Zhang J, Zhao Y, Guo X, Chen C, Dong CL, Liu RS, Han CP, Li Y, Gogotsi Y, Wang G. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal. 2018;1(12):985.CrossRef Zhang J, Zhao Y, Guo X, Chen C, Dong CL, Liu RS, Han CP, Li Y, Gogotsi Y, Wang G. Single platinum atoms immobilized on an MXene as an efficient catalyst for the hydrogen evolution reaction. Nat Catal. 2018;1(12):985.CrossRef
[23]
Zurück zum Zitat Li M, Duanmu K, Wan C, Cheng T, Zhang L, Dai S, Chen W, Zhao Z, Li P, Fei H, Zhu Y, Yu R, Luo J, Zang K, Lin Z, Ding M, Huang J, Sun H, Guo J, Pan X, Goddard WA, Sautet P, Huang Y, Duan X. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat Catal. 2019;2(6):495.CrossRef Li M, Duanmu K, Wan C, Cheng T, Zhang L, Dai S, Chen W, Zhao Z, Li P, Fei H, Zhu Y, Yu R, Luo J, Zang K, Lin Z, Ding M, Huang J, Sun H, Guo J, Pan X, Goddard WA, Sautet P, Huang Y, Duan X. Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat Catal. 2019;2(6):495.CrossRef
[24]
Zurück zum Zitat Li S, Sun J, Guan J. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin J Catal. 2021;42(4):511.CrossRef Li S, Sun J, Guan J. Strategies to improve electrocatalytic and photocatalytic performance of two-dimensional materials for hydrogen evolution reaction. Chin J Catal. 2021;42(4):511.CrossRef
[25]
Zurück zum Zitat Zhou Y, Luo M, Zhang W, Zhang Z, Meng X, Shen X, Liu H, Zhou M, Zeng X. Topological formation of a Mo–Ni-based hollow structure as a highly efficient electrocatalyst for the hydrogen evolution reaction in alkaline solutions. ACS Appl Mater Interfaces. 2019;11(24):21998.CrossRef Zhou Y, Luo M, Zhang W, Zhang Z, Meng X, Shen X, Liu H, Zhou M, Zeng X. Topological formation of a Mo–Ni-based hollow structure as a highly efficient electrocatalyst for the hydrogen evolution reaction in alkaline solutions. ACS Appl Mater Interfaces. 2019;11(24):21998.CrossRef
[26]
Zurück zum Zitat Ding Z, Bian J, Shuang S, Liu X, Hu Y, Sun C, Yang Y. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv Sustain Syst. 2020;4(5):1900105.CrossRef Ding Z, Bian J, Shuang S, Liu X, Hu Y, Sun C, Yang Y. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv Sustain Syst. 2020;4(5):1900105.CrossRef
[27]
Zurück zum Zitat Hou J, Wu Y, Zhang B, Cao S, Li Z, Sun L. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv Funct Mater. 2019;29(20):1808367.CrossRef Hou J, Wu Y, Zhang B, Cao S, Li Z, Sun L. Rational design of nanoarray architectures for electrocatalytic water splitting. Adv Funct Mater. 2019;29(20):1808367.CrossRef
[28]
Zurück zum Zitat Wang J, Yue X, Yang Y, Sirisomboonchai S, Wang P, Ma X, Abudula A, Guan G. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J Alloys Compd. 2020;819:153346.CrossRef Wang J, Yue X, Yang Y, Sirisomboonchai S, Wang P, Ma X, Abudula A, Guan G. Earth-abundant transition-metal-based bifunctional catalysts for overall electrochemical water splitting: a review. J Alloys Compd. 2020;819:153346.CrossRef
[29]
Zurück zum Zitat Zhang C, Nan H, Tian H, Zheng W. Recent advances in pentlandites for electrochemical water splitting: a short review. J Alloys Compd. 2020;838:155685.CrossRef Zhang C, Nan H, Tian H, Zheng W. Recent advances in pentlandites for electrochemical water splitting: a short review. J Alloys Compd. 2020;838:155685.CrossRef
[30]
Zurück zum Zitat Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis—a review. Mater Sci Energy Technol. 2019;2(3):442. Shiva Kumar S, Himabindu V. Hydrogen production by PEM water electrolysis—a review. Mater Sci Energy Technol. 2019;2(3):442.
[31]
Zurück zum Zitat Wei C, Rao RR, Peng J, Huang B, Stephens IE, Risch M, Xu ZJ, Shao-Horn Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv Mater. 2019;31(31):1806296.CrossRef Wei C, Rao RR, Peng J, Huang B, Stephens IE, Risch M, Xu ZJ, Shao-Horn Y. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv Mater. 2019;31(31):1806296.CrossRef
[32]
Zurück zum Zitat Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A. 2015;3(29):14942.CrossRef Zeng M, Li Y. Recent advances in heterogeneous electrocatalysts for the hydrogen evolution reaction. J Mater Chem A. 2015;3(29):14942.CrossRef
[33]
Zurück zum Zitat Li Y. Nanocarbon-based hybrid materials for electrocatalytical energy conversion: novel materials and methods. IEEE Nanatechnol Mag. 2014;8(2):22.CrossRef Li Y. Nanocarbon-based hybrid materials for electrocatalytical energy conversion: novel materials and methods. IEEE Nanatechnol Mag. 2014;8(2):22.CrossRef
[34]
Zurück zum Zitat Krstajić N, Popović M, Grgur B, Vojnović M, Šepa D. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism. J Electroanal Chem. 2001;512(1):16.CrossRef Krstajić N, Popović M, Grgur B, Vojnović M, Šepa D. On the kinetics of the hydrogen evolution reaction on nickel in alkaline solution: Part I. The mechanism. J Electroanal Chem. 2001;512(1):16.CrossRef
[35]
Zurück zum Zitat Yan Y, Xia BY, Zhao B, Wang X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A. 2016;4(45):17587.CrossRef Yan Y, Xia BY, Zhao B, Wang X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A. 2016;4(45):17587.CrossRef
[36]
Zurück zum Zitat Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci. 2014;7(7):2255.CrossRef Durst J, Siebel A, Simon C, Hasché F, Herranz J, Gasteiger HA. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ Sci. 2014;7(7):2255.CrossRef
[37]
Zurück zum Zitat Morales-Guio CG, Stern LA, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev. 2014;43(18):6555.CrossRef Morales-Guio CG, Stern LA, Hu X. Nanostructured hydrotreating catalysts for electrochemical hydrogen evolution. Chem Soc Rev. 2014;43(18):6555.CrossRef
[38]
Zurück zum Zitat Parsons R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc. 1958;54:1053.CrossRef Parsons R. The rate of electrolytic hydrogen evolution and the heat of adsorption of hydrogen. Trans Faraday Soc. 1958;54:1053.CrossRef
[39]
Zurück zum Zitat Joo J, Kim T, Lee J, Choi SI, Lee K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv Mater. 2019;31(14):1806682.CrossRef Joo J, Kim T, Lee J, Choi SI, Lee K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting. Adv Mater. 2019;31(14):1806682.CrossRef
[40]
Zurück zum Zitat Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem Interfacial Electrochem. 1972;39(1):163.CrossRef Trasatti S. Work function, electronegativity, and electrochemical behaviour of metals: III. Electrolytic hydrogen evolution in acid solutions. J Electroanal Chem Interfacial Electrochem. 1972;39(1):163.CrossRef
[41]
Zurück zum Zitat Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005;152(3):J23.CrossRef Nørskov JK, Bligaard T, Logadottir A, Kitchin JR, Chen JG, Pandelov S, Stimming U. Trends in the exchange current for hydrogen evolution. J Electrochem Soc. 2005;152(3):J23.CrossRef
[42]
Zurück zum Zitat Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev. 2010;110(11):6474.CrossRef Cook TR, Dogutan DK, Reece SY, Surendranath Y, Teets TS, Nocera DG. Solar energy supply and storage for the legacy and nonlegacy worlds. Chem Rev. 2010;110(11):6474.CrossRef
[43]
Zurück zum Zitat Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308.CrossRef Hinnemann B, Moses PG, Bonde J, Jørgensen KP, Nielsen JH, Horch S, Chorkendorff I, Nørskov JK. Biomimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution. J Am Chem Soc. 2005;127(15):5308.CrossRef
[44]
Zurück zum Zitat Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater. 2019;31(17):1807134.CrossRef Guo Y, Park T, Yi JW, Henzie J, Kim J, Wang Z, Jiang B, Bando Y, Sugahara Y, Tang J, Yamauchi Y. Nanoarchitectonics for transition-metal-sulfide-based electrocatalysts for water splitting. Adv Mater. 2019;31(17):1807134.CrossRef
[45]
Zurück zum Zitat Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 2016;6(12):8069.CrossRef Anantharaj S, Ede SR, Sakthikumar K, Karthick K, Mishra S, Kundu S. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe Co, and Ni: a review. ACS Catal. 2016;6(12):8069.CrossRef
[46]
Zurück zum Zitat Vesborg PCK, Seger B, Chorkendorff I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett. 2015;6(6):951.CrossRef Vesborg PCK, Seger B, Chorkendorff I. Recent development in hydrogen evolution reaction catalysts and their practical implementation. J Phys Chem Lett. 2015;6(6):951.CrossRef
[47]
Zurück zum Zitat Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45(6):1529.CrossRef Shi Y, Zhang B. Recent advances in transition metal phosphide nanomaterials: synthesis and applications in hydrogen evolution reaction. Chem Soc Rev. 2016;45(6):1529.CrossRef
[48]
Zurück zum Zitat Voiry D, Chhowalla M, Gogotsi Y, Kotov NA, Li Y, Penner RM, Schaak RE, Weiss PS. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano. 2018;12(10):9635.CrossRef Voiry D, Chhowalla M, Gogotsi Y, Kotov NA, Li Y, Penner RM, Schaak RE, Weiss PS. Best practices for reporting electrocatalytic performance of nanomaterials. ACS Nano. 2018;12(10):9635.CrossRef
[49]
Zurück zum Zitat Bard AJ, Faulkner LR, Leddy R, Zoski CG. Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons Inc; 1980. 102. Bard AJ, Faulkner LR, Leddy R, Zoski CG. Electrochemical Methods: Fundamentals and Applications. New York: John Wiley & Sons Inc; 1980. 102.
[50]
Zurück zum Zitat Liu K, Zhong H, Meng F, Zhang X, Yan J, Jiang Q. Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting. Mater Chem Front. 2017;1(11):2155.CrossRef Liu K, Zhong H, Meng F, Zhang X, Yan J, Jiang Q. Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting. Mater Chem Front. 2017;1(11):2155.CrossRef
[51]
Zurück zum Zitat Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci Adv. 2016;2(3):e1501602.CrossRef Zheng J, Sheng W, Zhuang Z, Xu B, Yan Y. Universal dependence of hydrogen oxidation and evolution reaction activity of platinum-group metals on pH and hydrogen binding energy. Sci Adv. 2016;2(3):e1501602.CrossRef
[52]
Zurück zum Zitat Xing YF, Zhou Y, Sun YB, Chi C, Shi Y, Wang FB, Xia XH. Bifunctional mechanism of hydrogen oxidation reaction on atomic level tailored-Ru@Pt core-shell nanoparticles with tunable Pt layers. J Electroanal Chem. 2020;872:114348.CrossRef Xing YF, Zhou Y, Sun YB, Chi C, Shi Y, Wang FB, Xia XH. Bifunctional mechanism of hydrogen oxidation reaction on atomic level tailored-Ru@Pt core-shell nanoparticles with tunable Pt layers. J Electroanal Chem. 2020;872:114348.CrossRef
[53]
Zurück zum Zitat Green CL, Kucernak A. Determination of the platinum and ruthenium surface areas in platinumruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J Phys Chem B. 2002;106(5):1036.CrossRef Green CL, Kucernak A. Determination of the platinum and ruthenium surface areas in platinumruthenium alloy electrocatalysts by underpotential deposition of copper. I. Unsupported catalysts. J Phys Chem B. 2002;106(5):1036.CrossRef
[54]
Zurück zum Zitat Büchele S, Martín AJ, Mitchell S, Krumeich F, Collins SM, Xi S, Borgna A, Pérez-Ramírez J. Structure sensitivity and evolution of nickel-bearing nitrogen-doped carbons in the electrochemical reduction of CO2. ACS Catal. 2020;10(5):3444.CrossRef Büchele S, Martín AJ, Mitchell S, Krumeich F, Collins SM, Xi S, Borgna A, Pérez-Ramírez J. Structure sensitivity and evolution of nickel-bearing nitrogen-doped carbons in the electrochemical reduction of CO2. ACS Catal. 2020;10(5):3444.CrossRef
[55]
Zurück zum Zitat Hong Y, Choi CH, Choi SI. Catalytic surface specificity of Ni(OH)2-decorated Pt nanocubes for the hydrogen evolution reaction in an alkaline electrolyte. Chemsuschem. 2019;12(17):4021.CrossRef Hong Y, Choi CH, Choi SI. Catalytic surface specificity of Ni(OH)2-decorated Pt nanocubes for the hydrogen evolution reaction in an alkaline electrolyte. Chemsuschem. 2019;12(17):4021.CrossRef
[56]
Zurück zum Zitat Smiljanić M, Rakočević Z, Štrbac S. Electrocatalysis of hydrogen evolution reaction on tri-metallic Rh@Pd/Pt(poly) electrode. Int J Hydrogen Energy. 2018;43(5):2763.CrossRef Smiljanić M, Rakočević Z, Štrbac S. Electrocatalysis of hydrogen evolution reaction on tri-metallic Rh@Pd/Pt(poly) electrode. Int J Hydrogen Energy. 2018;43(5):2763.CrossRef
[57]
Zurück zum Zitat Sheng W, Myint M, Chen JG, Yan Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci. 2013;6(5):1509.CrossRef Sheng W, Myint M, Chen JG, Yan Y. Correlating the hydrogen evolution reaction activity in alkaline electrolytes with the hydrogen binding energy on monometallic surfaces. Energy Environ Sci. 2013;6(5):1509.CrossRef
[58]
Zurück zum Zitat Wei C, Sun S, Mandler D, Wang X, Qiao SZ, Xu ZJ. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev. 2019;48(9):2518.CrossRef Wei C, Sun S, Mandler D, Wang X, Qiao SZ, Xu ZJ. Approaches for measuring the surface areas of metal oxide electrocatalysts for determining their intrinsic electrocatalytic activity. Chem Soc Rev. 2019;48(9):2518.CrossRef
[59]
Zurück zum Zitat McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc. 2015;137(13):4347.CrossRef McCrory CCL, Jung S, Ferrer IM, Chatman SM, Peters JC, Jaramillo TF. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. J Am Chem Soc. 2015;137(13):4347.CrossRef
[60]
Zurück zum Zitat Zhang L, Si R, Liu H, Chen N, Wang Q, Adair K, Wang Z, Chen J, Song Z, Li J, Banis MN, Li R, Sham TK, Gu M, Liu LM, Botton GA, Sun X. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat Commun. 2019;10(1):4936.CrossRef Zhang L, Si R, Liu H, Chen N, Wang Q, Adair K, Wang Z, Chen J, Song Z, Li J, Banis MN, Li R, Sham TK, Gu M, Liu LM, Botton GA, Sun X. Atomic layer deposited Pt-Ru dual-metal dimers and identifying their active sites for hydrogen evolution reaction. Nat Commun. 2019;10(1):4936.CrossRef
[61]
Zurück zum Zitat Zhang L, Doyle-Davis K, Sun X. Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ Sci. 2019;12(2):492.CrossRef Zhang L, Doyle-Davis K, Sun X. Pt-based electrocatalysts with high atom utilization efficiency: from nanostructures to single atoms. Energy Environ Sci. 2019;12(2):492.CrossRef
[62]
Zurück zum Zitat Mao J, He CT, Pei J, Chen W, He D, He Y, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat Commun. 2018;9(1):4958.CrossRef Mao J, He CT, Pei J, Chen W, He D, He Y, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice. Nat Commun. 2018;9(1):4958.CrossRef
[63]
Zurück zum Zitat Wang P, Jiang K, Wang G, Yao J, Huang X. Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew Chem Int Ed. 2016;55(41):12859.CrossRef Wang P, Jiang K, Wang G, Yao J, Huang X. Phase and interface engineering of platinum–nickel nanowires for efficient electrochemical hydrogen evolution. Angew Chem Int Ed. 2016;55(41):12859.CrossRef
[64]
Zurück zum Zitat Wang Y, Zhuo H, Zhang X, Li Y, Yang J, Liu Y, Dai X, Li M, Zhao H, Cui M, Wang H, Li J. Interfacial synergy of ultralong jagged Pt85Mo15–S nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution. J Mater Chem A. 2019;7(42):24328.CrossRef Wang Y, Zhuo H, Zhang X, Li Y, Yang J, Liu Y, Dai X, Li M, Zhao H, Cui M, Wang H, Li J. Interfacial synergy of ultralong jagged Pt85Mo15–S nanowires with abundant active sites on enhanced hydrogen evolution in an alkaline solution. J Mater Chem A. 2019;7(42):24328.CrossRef
[65]
Zurück zum Zitat Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun. 2015;6(1):6430.CrossRef Yin H, Zhao S, Zhao K, Muqsit A, Tang H, Chang L, Zhao H, Gao Y, Tang Z. Ultrathin platinum nanowires grown on single-layered nickel hydroxide with high hydrogen evolution activity. Nat Commun. 2015;6(1):6430.CrossRef
[66]
Zurück zum Zitat Liu G, Zhou W, Chen B, Zhang Q, Cui X, Li B, Lai Z, Chen Y, Zhang Z, Gu L, Zhang H. Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy. 2019;66:104173.CrossRef Liu G, Zhou W, Chen B, Zhang Q, Cui X, Li B, Lai Z, Chen Y, Zhang Z, Gu L, Zhang H. Synthesis of RuNi alloy nanostructures composed of multilayered nanosheets for highly efficient electrocatalytic hydrogen evolution. Nano Energy. 2019;66:104173.CrossRef
[67]
Zurück zum Zitat Wang X, Bai L, Lu J, Zhang X, Liu D, Yang H, Wang J, Chu PK, Ramakrishna S, Yu XF. Rapid activation of platinum with black phosphorus for efficient hydrogen evolution. Angew Chem Int Ed. 2019;58(52):19060.CrossRef Wang X, Bai L, Lu J, Zhang X, Liu D, Yang H, Wang J, Chu PK, Ramakrishna S, Yu XF. Rapid activation of platinum with black phosphorus for efficient hydrogen evolution. Angew Chem Int Ed. 2019;58(52):19060.CrossRef
[68]
Zurück zum Zitat Zhang L, Han L, Liu H, Liu X, Luo J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew Chem Int Ed. 2017;56(44):13694.CrossRef Zhang L, Han L, Liu H, Liu X, Luo J. Potential-cycling synthesis of single platinum atoms for efficient hydrogen evolution in neutral media. Angew Chem Int Ed. 2017;56(44):13694.CrossRef
[69]
Zurück zum Zitat Cheng X, Li Y, Zheng L, Yan Y, Zhang Y, Chen G, Sun S, Zhang J. Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy Environ Sci. 2017;10(11):2450.CrossRef Cheng X, Li Y, Zheng L, Yan Y, Zhang Y, Chen G, Sun S, Zhang J. Highly active, stable oxidized platinum clusters as electrocatalysts for the hydrogen evolution reaction. Energy Environ Sci. 2017;10(11):2450.CrossRef
[70]
Zurück zum Zitat Luo Z, Ouyang Y, Zhang H, Xiao M, Ge J, Jiang Z, Wang J, Tang D, Cao X, Liu C, Xing W. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat Commun. 2018;9(1):2120.CrossRef Luo Z, Ouyang Y, Zhang H, Xiao M, Ge J, Jiang Z, Wang J, Tang D, Cao X, Liu C, Xing W. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution. Nat Commun. 2018;9(1):2120.CrossRef
[71]
Zurück zum Zitat Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA, Sun X. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun. 2016;7(1):13638.CrossRef Cheng N, Stambula S, Wang D, Banis MN, Liu J, Riese A, Xiao B, Li R, Sham TK, Liu LM, Botton GA, Sun X. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction. Nat Commun. 2016;7(1):13638.CrossRef
[72]
Zurück zum Zitat Liu D, Li X, Chen S, Yan H, Wang C, Wu C, Haleem YA, Duan S, Lu J, Ge B, Ajayan PM, Luo Y, Jiang J, Song L. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy. 2019;4(6):512.CrossRef Liu D, Li X, Chen S, Yan H, Wang C, Wu C, Haleem YA, Duan S, Lu J, Ge B, Ajayan PM, Luo Y, Jiang J, Song L. Atomically dispersed platinum supported on curved carbon supports for efficient electrocatalytic hydrogen evolution. Nat Energy. 2019;4(6):512.CrossRef
[73]
Zurück zum Zitat Cheng X, Lu Y, Zheng L, Cui Y, Niibe M, Tokushima T, Li H, Zhang Y, Chen G, Sun S, Zhang J. Charge redistribution within platinum–nitrogen coordination structure to boost hydrogen evolution. Nano Energy. 2020;73:104739.CrossRef Cheng X, Lu Y, Zheng L, Cui Y, Niibe M, Tokushima T, Li H, Zhang Y, Chen G, Sun S, Zhang J. Charge redistribution within platinum–nitrogen coordination structure to boost hydrogen evolution. Nano Energy. 2020;73:104739.CrossRef
[74]
Zurück zum Zitat Bai S, Wang C, Deng M, Gong M, Bai Y, Jiang J, Xiong Y. Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt–Pd–graphene stack structures. Angew Chem Int Ed. 2014;53(45):12120.CrossRef Bai S, Wang C, Deng M, Gong M, Bai Y, Jiang J, Xiong Y. Surface polarization matters: enhancing the hydrogen-evolution reaction by shrinking Pt shells in Pt–Pd–graphene stack structures. Angew Chem Int Ed. 2014;53(45):12120.CrossRef
[75]
Zurück zum Zitat Yang X, Xu W, Cao S, Zhu S, Liang Y, Cui Z, Yang X, Li Z, Wu S, Inoue A, Chen L. An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production. Appl Catal B. 2019;246:156.CrossRef Yang X, Xu W, Cao S, Zhu S, Liang Y, Cui Z, Yang X, Li Z, Wu S, Inoue A, Chen L. An amorphous nanoporous PdCuNi-S hybrid electrocatalyst for highly efficient hydrogen production. Appl Catal B. 2019;246:156.CrossRef
[76]
Zurück zum Zitat Du Y, Ni K, Zhai Q, Yun Y, Xu Y, Sheng H, Zhu Y, Zhu M. Facile air oxidative induced dealloying of hierarchical branched PtCu nanodendrites with enhanced activity for hydrogen evolution. Appl Catal A. 2018;557:72.CrossRef Du Y, Ni K, Zhai Q, Yun Y, Xu Y, Sheng H, Zhu Y, Zhu M. Facile air oxidative induced dealloying of hierarchical branched PtCu nanodendrites with enhanced activity for hydrogen evolution. Appl Catal A. 2018;557:72.CrossRef
[77]
Zurück zum Zitat Du L, Feng D, Xing X, Wang C, Armatas GS, Yang D. Uniform palladium-nickel nanowires arrays for stable hydrogen leakage detection and efficient hydrogen evolution reaction. Chem Eng J. 2020;400:125864.CrossRef Du L, Feng D, Xing X, Wang C, Armatas GS, Yang D. Uniform palladium-nickel nanowires arrays for stable hydrogen leakage detection and efficient hydrogen evolution reaction. Chem Eng J. 2020;400:125864.CrossRef
[78]
Zurück zum Zitat Fang S, Zhu X, Liu X, Gu J, Liu W, Wang D, Zhang W, Lin Y, Lu J, Wei S, Li Y, Yao T. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat Commun. 2020;11(1):1029.CrossRef Fang S, Zhu X, Liu X, Gu J, Liu W, Wang D, Zhang W, Lin Y, Lu J, Wei S, Li Y, Yao T. Uncovering near-free platinum single-atom dynamics during electrochemical hydrogen evolution reaction. Nat Commun. 2020;11(1):1029.CrossRef
[79]
Zurück zum Zitat Han Z, Zhang RL, Duan JJ, Wang AJ, Zhang QL, Huang H, Feng JJ. Platinum-rhodium alloyed dendritic nanoassemblies: an all-pH efficient and stable electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy. 2020;45(11):6110.CrossRef Han Z, Zhang RL, Duan JJ, Wang AJ, Zhang QL, Huang H, Feng JJ. Platinum-rhodium alloyed dendritic nanoassemblies: an all-pH efficient and stable electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy. 2020;45(11):6110.CrossRef
[80]
Zurück zum Zitat Mahmood J, Li F, Jung SM, Okyay MS, Ahmad I, Kim SJ, Park N, Jeong HY, Baek JB. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nanotechnol. 2017;12(5):441.CrossRef Mahmood J, Li F, Jung SM, Okyay MS, Ahmad I, Kim SJ, Park N, Jeong HY, Baek JB. An efficient and pH-universal ruthenium-based catalyst for the hydrogen evolution reaction. Nat Nanotechnol. 2017;12(5):441.CrossRef
[81]
Zurück zum Zitat Jiang Y, Wu X, Yan Y, Luo S, Li X, Huang J, Zhang H, Yang D. Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Small. 2019;15(12):1805474.CrossRef Jiang Y, Wu X, Yan Y, Luo S, Li X, Huang J, Zhang H, Yang D. Coupling PtNi ultrathin nanowires with MXenes for boosting electrocatalytic hydrogen evolution in both acidic and alkaline solutions. Small. 2019;15(12):1805474.CrossRef
[82]
Zurück zum Zitat Zhang L, Roling LT, Wang X, Vara M, Chi M, Liu J, Choi SI, Park J, Herron JA, Xie Z, Mavrikakis M, Xia Y. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science. 2015;349(6246):412.CrossRef Zhang L, Roling LT, Wang X, Vara M, Chi M, Liu J, Choi SI, Park J, Herron JA, Xie Z, Mavrikakis M, Xia Y. Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science. 2015;349(6246):412.CrossRef
[83]
Zurück zum Zitat Marcinkowski MD, Darby MT, Liu J, Wimble JM, Lucci FR, Lee S, Michaelides A, Flytzani-Stephanopoulos M, Stamatakis M, Sykes ECH. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat Chem. 2018;10(3):325.CrossRef Marcinkowski MD, Darby MT, Liu J, Wimble JM, Lucci FR, Lee S, Michaelides A, Flytzani-Stephanopoulos M, Stamatakis M, Sykes ECH. Pt/Cu single-atom alloys as coke-resistant catalysts for efficient C–H activation. Nat Chem. 2018;10(3):325.CrossRef
[84]
Zurück zum Zitat Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, KirklA I, Duan X, Huang Y. General synthesis and definitive structural identification of Mn4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal. 2018;1(1):63.CrossRef Fei H, Dong J, Feng Y, Allen CS, Wan C, Volosskiy B, Li M, Zhao Z, Wang Y, Sun H, An P, Chen W, Guo Z, Lee C, Chen D, Shakir I, Liu M, Hu T, Li Y, KirklA I, Duan X, Huang Y. General synthesis and definitive structural identification of Mn4C4 single-atom catalysts with tunable electrocatalytic activities. Nat Catal. 2018;1(1):63.CrossRef
[85]
Zurück zum Zitat Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486(7401):43.CrossRef Debe MK. Electrocatalyst approaches and challenges for automotive fuel cells. Nature. 2012;486(7401):43.CrossRef
[86]
Zurück zum Zitat Tian N, Lu BA, Yang XD, Huang R, Jiang YX, Zhou ZY, Sun SG. Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochem Energy Rev. 2018;1(1):54.CrossRef Tian N, Lu BA, Yang XD, Huang R, Jiang YX, Zhou ZY, Sun SG. Rational design and synthesis of low-temperature fuel cell electrocatalysts. Electrochem Energy Rev. 2018;1(1):54.CrossRef
[87]
Zurück zum Zitat Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci. 2015;8(5):1594.CrossRef Deng J, Li H, Xiao J, Tu Y, Deng D, Yang H, Tian H, Li J, Ren P, Bao X. Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ Sci. 2015;8(5):1594.CrossRef
[88]
Zurück zum Zitat Tavakkoli M, Holmberg N, Kronberg R, Jiang H, Sainio J, Kauppinen EI, Kallio T, Laasonen K. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 2017;7(5):3121.CrossRef Tavakkoli M, Holmberg N, Kronberg R, Jiang H, Sainio J, Kauppinen EI, Kallio T, Laasonen K. Electrochemical activation of single-walled carbon nanotubes with pseudo-atomic-scale platinum for the hydrogen evolution reaction. ACS Catal. 2017;7(5):3121.CrossRef
[89]
Zurück zum Zitat Qiu HJ, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed. 2015;54(47):14031.CrossRef Qiu HJ, Ito Y, Cong W, Tan Y, Liu P, Hirata A, Fujita T, Tang Z, Chen M. Nanoporous graphene with single-atom nickel dopants: an efficient and stable catalyst for electrochemical hydrogen production. Angew Chem Int Ed. 2015;54(47):14031.CrossRef
[90]
Zurück zum Zitat Fan L, Liu PF, Yan X, Gu L, Yang ZZ, Yang HG, Qiu S, Yao X. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun. 2016;7(1):10667.CrossRef Fan L, Liu PF, Yan X, Gu L, Yang ZZ, Yang HG, Qiu S, Yao X. Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat Commun. 2016;7(1):10667.CrossRef
[91]
Zurück zum Zitat Fei H, Dong J, Arellano-Jiménez MJ, Ye G, Dong Kim N, Samuel ELG, Peng Z, Zhu Z, Qin F, Bao J, Yacaman MJ, Ajayan PM, Chen D, Tour JM. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun. 2015;6(1):8668.CrossRef Fei H, Dong J, Arellano-Jiménez MJ, Ye G, Dong Kim N, Samuel ELG, Peng Z, Zhu Z, Qin F, Bao J, Yacaman MJ, Ajayan PM, Chen D, Tour JM. Atomic cobalt on nitrogen-doped graphene for hydrogen generation. Nat Commun. 2015;6(1):8668.CrossRef
[92]
Zurück zum Zitat Zhao X, Li YG. Two-electron oxygen reduction reaction by high-loading molybdenum single-atom catalysts. Rare Met. 2020;39(5):455.CrossRef Zhao X, Li YG. Two-electron oxygen reduction reaction by high-loading molybdenum single-atom catalysts. Rare Met. 2020;39(5):455.CrossRef
[93]
Zurück zum Zitat Jin H, Sultan S, Ha M, Tiwari JN, Kim MG, Kim KS. Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution. Adv Funct Mater. 2020;30(25):2000531.CrossRef Jin H, Sultan S, Ha M, Tiwari JN, Kim MG, Kim KS. Simple and scalable mechanochemical synthesis of noble metal catalysts with single atoms toward highly efficient hydrogen evolution. Adv Funct Mater. 2020;30(25):2000531.CrossRef
[94]
Zurück zum Zitat Guan J, Wen X, Zhang Q, Duan Z. Atomic rhodium catalysts for hydrogen evolution and oxygen reduction reactions. Carbon. 2020;164:121.CrossRef Guan J, Wen X, Zhang Q, Duan Z. Atomic rhodium catalysts for hydrogen evolution and oxygen reduction reactions. Carbon. 2020;164:121.CrossRef
[95]
Zurück zum Zitat Su Z, Pang R, Ren X, Li S. Synergetic role of charge transfer and strain engineering in improving the catalysis of Pd single-atom-thick motifs stabilized on a defect-free MoS2/Ag(Au)(111) heterostructure. J Mater Chem A. 2020;8(33):17238.CrossRef Su Z, Pang R, Ren X, Li S. Synergetic role of charge transfer and strain engineering in improving the catalysis of Pd single-atom-thick motifs stabilized on a defect-free MoS2/Ag(Au)(111) heterostructure. J Mater Chem A. 2020;8(33):17238.CrossRef
[96]
Zurück zum Zitat Wu C, Ding S, Liu D, Li D, Chen S, Wang H, Qi Z, Ge B, Song L. A unique Ru-N4-P coordinated structure synergistically waking up the nonmetal p active site for hydrogen production. Research. 2020;2020:5860712. Wu C, Ding S, Liu D, Li D, Chen S, Wang H, Qi Z, Ge B, Song L. A unique Ru-N4-P coordinated structure synergistically waking up the nonmetal p active site for hydrogen production. Research. 2020;2020:5860712.
[97]
Zurück zum Zitat Peng J, Chen Y, Wang K, Tang Z, Chen S. High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution. Int J Hydrogen Energy. 2020;45(38):18840.CrossRef Peng J, Chen Y, Wang K, Tang Z, Chen S. High-performance Ru-based electrocatalyst composed of Ru nanoparticles and Ru single atoms for hydrogen evolution reaction in alkaline solution. Int J Hydrogen Energy. 2020;45(38):18840.CrossRef
[98]
Zurück zum Zitat Yan B, Liu D, Feng X, Shao M, Zhang Y. Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv Funct Mater. 2020;30(31):2003007.CrossRef Yan B, Liu D, Feng X, Shao M, Zhang Y. Ru species supported on MOF-derived N-doped TiO2/C hybrids as efficient electrocatalytic/photocatalytic hydrogen evolution reaction catalysts. Adv Funct Mater. 2020;30(31):2003007.CrossRef
[99]
Zurück zum Zitat Liu Q, Yang L, Sun P, Liu H, Zhao J, Ma X, Wang Y, Zhang Z. Ru catalyst supported on nitrogen-doped nanotubes as high efficiency electrocatalysts for hydrogen evolution in alkaline media. RSC Adv. 2020;10(38):22297.CrossRef Liu Q, Yang L, Sun P, Liu H, Zhao J, Ma X, Wang Y, Zhang Z. Ru catalyst supported on nitrogen-doped nanotubes as high efficiency electrocatalysts for hydrogen evolution in alkaline media. RSC Adv. 2020;10(38):22297.CrossRef
[100]
Zurück zum Zitat Xu H, Shang H, Wang C, Du Y. Ultrafine Pt-based nanowires for advanced catalysis. Adv Funct Mater. 2020;30(28):2000793.CrossRef Xu H, Shang H, Wang C, Du Y. Ultrafine Pt-based nanowires for advanced catalysis. Adv Funct Mater. 2020;30(28):2000793.CrossRef
[101]
Zurück zum Zitat Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, Zhang Q, Gu L, Merinov BV, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard WA, Huang Y, Duan X. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science. 2016;354(6318):1414.CrossRef Li M, Zhao Z, Cheng T, Fortunelli A, Chen CY, Yu R, Zhang Q, Gu L, Merinov BV, Lin Z, Zhu E, Yu T, Jia Q, Guo J, Zhang L, Goddard WA, Huang Y, Duan X. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science. 2016;354(6318):1414.CrossRef
[102]
Zurück zum Zitat Xiao Q, Cai M, Balogh MP, Tessema MM, Lu Y. Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts. Nano Res. 2012;5(3):145.CrossRef Xiao Q, Cai M, Balogh MP, Tessema MM, Lu Y. Symmetric growth of Pt ultrathin nanowires from dumbbell nuclei for use as oxygen reduction catalysts. Nano Res. 2012;5(3):145.CrossRef
[103]
Zurück zum Zitat Shen Y, Gong B, Xiao K, Wang L. In situ assembly of ultrathin PtRh nanowires to graphene nanosheets as highly efficient electrocatalysts for the oxidation of ethanol. ACS Appl Mater Interfaces. 2017;9(4):3535.CrossRef Shen Y, Gong B, Xiao K, Wang L. In situ assembly of ultrathin PtRh nanowires to graphene nanosheets as highly efficient electrocatalysts for the oxidation of ethanol. ACS Appl Mater Interfaces. 2017;9(4):3535.CrossRef
[104]
Zurück zum Zitat Huang L, Han Y, Zhang X, Fang Y, Dong S. One-step synthesis of ultrathin PtxPb nerve-like nanowires as robust catalysts for enhanced methanol electrooxidation. Nanoscale. 2017;9(1):201.CrossRef Huang L, Han Y, Zhang X, Fang Y, Dong S. One-step synthesis of ultrathin PtxPb nerve-like nanowires as robust catalysts for enhanced methanol electrooxidation. Nanoscale. 2017;9(1):201.CrossRef
[105]
Zurück zum Zitat Jiang B, Liao F, Sun Y, Cheng Y, Shao M. Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template. Nanoscale. 2017;9(28):10138.CrossRef Jiang B, Liao F, Sun Y, Cheng Y, Shao M. Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template. Nanoscale. 2017;9(28):10138.CrossRef
[106]
Zurück zum Zitat Xie Y, Cai J, Wu Y, Zang Y, Zheng X, Ye J, Cui P, Niu S, Liu Y, Zhu J, Liu X, Wang G, Qian Y. Boosting water dissociation kinetics on Pt–Ni nanowires by N-induced orbital tuning. Adv Mater. 2019;31(16):1807780.CrossRef Xie Y, Cai J, Wu Y, Zang Y, Zheng X, Ye J, Cui P, Niu S, Liu Y, Zhu J, Liu X, Wang G, Qian Y. Boosting water dissociation kinetics on Pt–Ni nanowires by N-induced orbital tuning. Adv Mater. 2019;31(16):1807780.CrossRef
[107]
Zurück zum Zitat Chen G, Xu C, Huang X, Ye J, Gu L, Li G, Tang Z, Wu B, Yang H, Zhao Z, Zhou Z, Fu G, Zheng N. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat Mater. 2016;15(5):564.CrossRef Chen G, Xu C, Huang X, Ye J, Gu L, Li G, Tang Z, Wu B, Yang H, Zhao Z, Zhou Z, Fu G, Zheng N. Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat Mater. 2016;15(5):564.CrossRef
[108]
Zurück zum Zitat Zhang L, Li N, Gao F, Hou L, Xu Z. Insulin amyloid fibrils: an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity. J Am Chem Soc. 2012;134(28):11326.CrossRef Zhang L, Li N, Gao F, Hou L, Xu Z. Insulin amyloid fibrils: an excellent platform for controlled synthesis of ultrathin superlong platinum nanowires with high electrocatalytic activity. J Am Chem Soc. 2012;134(28):11326.CrossRef
[109]
Zurück zum Zitat Yang J, Ji Y, Shao Q, Zhang N, Li Y, Huang X. A universal strategy to metal wavy nanowires for efficient electrochemical water splitting at pH-universal conditions. Adv Funct Mater. 2018;28(41):1803722.CrossRef Yang J, Ji Y, Shao Q, Zhang N, Li Y, Huang X. A universal strategy to metal wavy nanowires for efficient electrochemical water splitting at pH-universal conditions. Adv Funct Mater. 2018;28(41):1803722.CrossRef
[110]
Zurück zum Zitat Shao Q, Lu K, Huang X. Platinum group nanowires for efficient electrocatalysis. Small Methods. 2019;3(5):1800545.CrossRef Shao Q, Lu K, Huang X. Platinum group nanowires for efficient electrocatalysis. Small Methods. 2019;3(5):1800545.CrossRef
[111]
Zurück zum Zitat Pohl MD, Watzele S, Calle-Vallejo F, Bandarenka AS. Nature of highly active electrocatalytic sites for the hydrogen evolution reaction at Pt electrodes in acidic media. ACS Omega. 2017;2(11):8141.CrossRef Pohl MD, Watzele S, Calle-Vallejo F, Bandarenka AS. Nature of highly active electrocatalytic sites for the hydrogen evolution reaction at Pt electrodes in acidic media. ACS Omega. 2017;2(11):8141.CrossRef
[112]
Zurück zum Zitat Huang H, Li K, Chen Z, Luo L, Gu Y, Zhang D, Ma C, Si R, Yang J, Peng Z, Zeng J. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J Am Chem Soc. 2017;139(24):8152.CrossRef Huang H, Li K, Chen Z, Luo L, Gu Y, Zhang D, Ma C, Si R, Yang J, Peng Z, Zeng J. Achieving remarkable activity and durability toward oxygen reduction reaction based on ultrathin Rh-doped Pt nanowires. J Am Chem Soc. 2017;139(24):8152.CrossRef
[113]
Zurück zum Zitat Bu L, Guo S, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao J, Guo J, Huang X. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat Commun. 2016;7(1):11850.CrossRef Bu L, Guo S, Zhang X, Shen X, Su D, Lu G, Zhu X, Yao J, Guo J, Huang X. Surface engineering of hierarchical platinum-cobalt nanowires for efficient electrocatalysis. Nat Commun. 2016;7(1):11850.CrossRef
[114]
Zurück zum Zitat Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun. 2013;4(1):1444.CrossRef Huang X, Zeng Z, Bao S, Wang M, Qi X, Fan Z, Zhang H. Solution-phase epitaxial growth of noble metal nanostructures on dispersible single-layer molybdenum disulfide nanosheets. Nat Commun. 2013;4(1):1444.CrossRef
[115]
Zurück zum Zitat Deng J, Ren P, Deng D, Yu L, Yang F, Bao X. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ Sci. 2014;7(6):1919.CrossRef Deng J, Ren P, Deng D, Yu L, Yang F, Bao X. Highly active and durable non-precious-metal catalysts encapsulated in carbon nanotubes for hydrogen evolution reaction. Energy Environ Sci. 2014;7(6):1919.CrossRef
[116]
Zurück zum Zitat Zhou F, Zhou Y, Wang J, Liang J, Gao H, Kang M. Enlightening from γ, γ′ and β phase transformations in Al-Co-Ni alloy system: a review. Curr Opin Solid State Mater Sci. 2019;23(6):100784.CrossRef Zhou F, Zhou Y, Wang J, Liang J, Gao H, Kang M. Enlightening from γ, γ′ and β phase transformations in Al-Co-Ni alloy system: a review. Curr Opin Solid State Mater Sci. 2019;23(6):100784.CrossRef
[117]
Zurück zum Zitat Sun JS, Wen Z, Han LP, Chen ZW, Lang XY, Jiang Q. Nonprecious intermetallic Al7Cu4Ni nanocrystals seamlessly integrated in freestanding bimodal nanoporous copper for efficient hydrogen evolution catalysis. Adv Funct Mater. 2018;28(14):1706127.CrossRef Sun JS, Wen Z, Han LP, Chen ZW, Lang XY, Jiang Q. Nonprecious intermetallic Al7Cu4Ni nanocrystals seamlessly integrated in freestanding bimodal nanoporous copper for efficient hydrogen evolution catalysis. Adv Funct Mater. 2018;28(14):1706127.CrossRef
[118]
Zurück zum Zitat Zhou Y, Liu H, Zhu S, Liang Y, Wu S, Li Z, Cui Z, Chang C, Yang X, Inoue A. Highly efficient and self-standing nanoporous NiO/Al3Ni2 electrocatalyst for hydrogen evolution reaction. ACS Appl Energy Mater. 2019;2(11):7913.CrossRef Zhou Y, Liu H, Zhu S, Liang Y, Wu S, Li Z, Cui Z, Chang C, Yang X, Inoue A. Highly efficient and self-standing nanoporous NiO/Al3Ni2 electrocatalyst for hydrogen evolution reaction. ACS Appl Energy Mater. 2019;2(11):7913.CrossRef
[119]
Zurück zum Zitat Jia Z, Yang T, Sun L, Zhao Y, Li W, Luan J, Lyu F, Zhang LC, Kruzic JJ, Kai JJ, Huang JC, Lu J, Liu CT. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv Mater. 2020;32(21):2000385.CrossRef Jia Z, Yang T, Sun L, Zhao Y, Li W, Luan J, Lyu F, Zhang LC, Kruzic JJ, Kai JJ, Huang JC, Lu J, Liu CT. A novel multinary intermetallic as an active electrocatalyst for hydrogen evolution. Adv Mater. 2020;32(21):2000385.CrossRef
[120]
Zurück zum Zitat Laszczyńska A, Szczygieł I. Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings. Int J Hydrogen Energy. 2020;45(1):508.CrossRef Laszczyńska A, Szczygieł I. Electrocatalytic activity for the hydrogen evolution of the electrodeposited Co–Ni–Mo, Co–Ni and Co–Mo alloy coatings. Int J Hydrogen Energy. 2020;45(1):508.CrossRef
[121]
Zurück zum Zitat Rodene DD, Eladgham EH, Gupta RB, Arachchige IU, Tallapally V. Crystal structure and composition-dependent electrocatalytic activity of Ni–Mo nanoalloys for water splitting to produce hydrogen. ACS Appl Energy Mater. 2019;2(10):7112.CrossRef Rodene DD, Eladgham EH, Gupta RB, Arachchige IU, Tallapally V. Crystal structure and composition-dependent electrocatalytic activity of Ni–Mo nanoalloys for water splitting to produce hydrogen. ACS Appl Energy Mater. 2019;2(10):7112.CrossRef
[122]
Zurück zum Zitat Cao J, Li H, Pu J, Zeng S, Liu L, Zhang L, Luo F, Ma L, Zhou K, Wei Q. Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy. 2019;44(45):24712.CrossRef Cao J, Li H, Pu J, Zeng S, Liu L, Zhang L, Luo F, Ma L, Zhou K, Wei Q. Hierarchical NiMo alloy microtubes on nickel foam as an efficient electrocatalyst for hydrogen evolution reaction. Int J Hydrogen Energy. 2019;44(45):24712.CrossRef
[123]
Zurück zum Zitat Lu X, Cai M, Huang J, Xu C. Ultrathin and porous Mo-doped Ni nanosheet arrays as high-efficient electrocatalysts for hydrogen evolution reaction. J Colloid Interface Sci. 2020;562:307.CrossRef Lu X, Cai M, Huang J, Xu C. Ultrathin and porous Mo-doped Ni nanosheet arrays as high-efficient electrocatalysts for hydrogen evolution reaction. J Colloid Interface Sci. 2020;562:307.CrossRef
[124]
Zurück zum Zitat Deng J, Ren P, Deng D, Bao X. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed. 2015;54(7):2100.CrossRef Deng J, Ren P, Deng D, Bao X. Enhanced electron penetration through an ultrathin graphene layer for highly efficient catalysis of the hydrogen evolution reaction. Angew Chem Int Ed. 2015;54(7):2100.CrossRef
[125]
Zurück zum Zitat Tavakkoli M, Kallio T, Reynaud O, Nasibulin AG, Johans C, Sainio J, Jiang H, Kauppinen EI, Laasonen K. Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew Chem Int Ed. 2015;54(15):4535.CrossRef Tavakkoli M, Kallio T, Reynaud O, Nasibulin AG, Johans C, Sainio J, Jiang H, Kauppinen EI, Laasonen K. Single-shell carbon-encapsulated iron nanoparticles: synthesis and high electrocatalytic activity for hydrogen evolution reaction. Angew Chem Int Ed. 2015;54(15):4535.CrossRef
[126]
Zurück zum Zitat Karuppasamy K, Jothi VR, Vikraman D, Prasanna K, Maiyalagan T, Sang BI, Yi SC, Kim HS. Metal-organic framework derived NiMo polyhedron as an efficient hydrogen evolution reaction electrocatalyst. Appl Surf Sci. 2019;478:916.CrossRef Karuppasamy K, Jothi VR, Vikraman D, Prasanna K, Maiyalagan T, Sang BI, Yi SC, Kim HS. Metal-organic framework derived NiMo polyhedron as an efficient hydrogen evolution reaction electrocatalyst. Appl Surf Sci. 2019;478:916.CrossRef
[127]
Zurück zum Zitat Jiang L, Ji SJ, Xue HG, Suen NT. HER activity of MxNi1-x (M = Cr, Mo and W; x ≈ 0.2) alloy in acid and alkaline media. Int J Hydrogen Energy. 2020;45(35):17533.CrossRef Jiang L, Ji SJ, Xue HG, Suen NT. HER activity of MxNi1-x (M = Cr, Mo and W; x ≈ 0.2) alloy in acid and alkaline media. Int J Hydrogen Energy. 2020;45(35):17533.CrossRef
[128]
Zurück zum Zitat Xie Z, Zou Y, Deng L, Jiang J. Self-supporting Ni-M (M = Mo, Ge, Sn) alloy nanosheets via topotactic transformation of oxometallate intercalated layered nickel hydroxide salts: synthesis and application for electrocatalytic hydrogen evolution reaction. Adv Mater Interfaces. 2020;7(6):1901949.CrossRef Xie Z, Zou Y, Deng L, Jiang J. Self-supporting Ni-M (M = Mo, Ge, Sn) alloy nanosheets via topotactic transformation of oxometallate intercalated layered nickel hydroxide salts: synthesis and application for electrocatalytic hydrogen evolution reaction. Adv Mater Interfaces. 2020;7(6):1901949.CrossRef
[129]
Zurück zum Zitat Kjartansdóttir CK, Nielsen LP, Møller P. Development of durable and efficient electrodes for large-scale alkaline water electrolysis. Int J Hydrogen Energy. 2013;38(20):8221.CrossRef Kjartansdóttir CK, Nielsen LP, Møller P. Development of durable and efficient electrodes for large-scale alkaline water electrolysis. Int J Hydrogen Energy. 2013;38(20):8221.CrossRef
[130]
Zurück zum Zitat Los P, Rami A, Lasia A. Hydrogen evolution reaction on Ni-Al electrodes. J Appl Electrochem. 1993;23(2):135.CrossRef Los P, Rami A, Lasia A. Hydrogen evolution reaction on Ni-Al electrodes. J Appl Electrochem. 1993;23(2):135.CrossRef
[131]
Zurück zum Zitat Dong H, Lei T, He Y, Xu N, Huang B, Liu CT. Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction. Int J Hydrogen Energy. 2011;36(19):12112.CrossRef Dong H, Lei T, He Y, Xu N, Huang B, Liu CT. Electrochemical performance of porous Ni3Al electrodes for hydrogen evolution reaction. Int J Hydrogen Energy. 2011;36(19):12112.CrossRef
[132]
Zurück zum Zitat Cherepanov PV, Melnyk I, Skorb EV, Fratzl P, Zolotoyabko E, Dubrovinskaia N, Dubrovinsky L, Avadhut YS, Senker J, Leppert L, Kümmel S, Andreeva DV. The use of ultrasonic cavitation for near-surface structuring of robust and low-cost AlNi catalysts for hydrogen production. Green Chem. 2015;17(5):2745.CrossRef Cherepanov PV, Melnyk I, Skorb EV, Fratzl P, Zolotoyabko E, Dubrovinskaia N, Dubrovinsky L, Avadhut YS, Senker J, Leppert L, Kümmel S, Andreeva DV. The use of ultrasonic cavitation for near-surface structuring of robust and low-cost AlNi catalysts for hydrogen production. Green Chem. 2015;17(5):2745.CrossRef
[133]
Zurück zum Zitat Wijten JHJ, Mandemaker LDB, van Eeden TC, Dubbeld JE, Weckhuysen BM. In situ study on Ni–Mo stability in a water-splitting device: effect of catalyst substrate and electric potential. Chemsuschem. 2020;13(12):3172.CrossRef Wijten JHJ, Mandemaker LDB, van Eeden TC, Dubbeld JE, Weckhuysen BM. In situ study on Ni–Mo stability in a water-splitting device: effect of catalyst substrate and electric potential. Chemsuschem. 2020;13(12):3172.CrossRef
[134]
Zurück zum Zitat Patil RB, House SD, Mantri A, Yang JC, McKone JR. Direct observation of Ni–Mo bimetallic catalyst formation via thermal reduction of nickel molybdate nanorods. ACS Catal. 2020;10(18):10390.CrossRef Patil RB, House SD, Mantri A, Yang JC, McKone JR. Direct observation of Ni–Mo bimetallic catalyst formation via thermal reduction of nickel molybdate nanorods. ACS Catal. 2020;10(18):10390.CrossRef
[135]
Zurück zum Zitat Wang Y, Zhang G, Xu W, Wan P, Lu Z, Li Y, Sun X. A 3D nanoporous Ni–Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution. ChemElectroChem. 2014;1(7):1138.CrossRef Wang Y, Zhang G, Xu W, Wan P, Lu Z, Li Y, Sun X. A 3D nanoporous Ni–Mo electrocatalyst with negligible overpotential for alkaline hydrogen evolution. ChemElectroChem. 2014;1(7):1138.CrossRef
[136]
Zurück zum Zitat Raj IA, Vasu KI. Transition metal-based hydrogen electrodes in alkaline solution — electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem. 1990;20(1):32.CrossRef Raj IA, Vasu KI. Transition metal-based hydrogen electrodes in alkaline solution — electrocatalysis on nickel based binary alloy coatings. J Appl Electrochem. 1990;20(1):32.CrossRef
[137]
Zurück zum Zitat Raj IA, Vasu KI. Transition metal-based cathodes for hydrogen evolution in alkaline solution: electrocatalysis on nickel-based ternary electrolytic codeposits. J Appl Electrochem. 1992;22(5):471.CrossRef Raj IA, Vasu KI. Transition metal-based cathodes for hydrogen evolution in alkaline solution: electrocatalysis on nickel-based ternary electrolytic codeposits. J Appl Electrochem. 1992;22(5):471.CrossRef
[138]
Zurück zum Zitat Jakšić MM. Hypo–hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions. Electrochim Acta. 2000;45(25):4085.CrossRef Jakšić MM. Hypo–hyper-d-electronic interactive nature of synergism in catalysis and electrocatalysis for hydrogen reactions. Electrochim Acta. 2000;45(25):4085.CrossRef
[139]
Zurück zum Zitat Ng JWD, García-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo TF. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy. 2016;1(5):16053.CrossRef Ng JWD, García-Melchor M, Bajdich M, Chakthranont P, Kirk C, Vojvodic A, Jaramillo TF. Gold-supported cerium-doped NiOx catalysts for water oxidation. Nat Energy. 2016;1(5):16053.CrossRef
[140]
Zurück zum Zitat Tran PD, Tran TV, Orio M, Torelli S, Truong QD, Nayuki K, Sasaki Y, Chiam SY, Yi R, Honma I, Barber J, Artero V. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat Mater. 2016;15(6):640.CrossRef Tran PD, Tran TV, Orio M, Torelli S, Truong QD, Nayuki K, Sasaki Y, Chiam SY, Yi R, Honma I, Barber J, Artero V. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat Mater. 2016;15(6):640.CrossRef
[141]
Zurück zum Zitat Chen W-F, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew Chem Int Ed. 2012;51(25):6131.CrossRef Chen W-F, Sasaki K, Ma C, Frenkel AI, Marinkovic N, Muckerman JT, Zhu Y, Adzic RR. Hydrogen-evolution catalysts based on non-noble metal nickel–molybdenum nitride nanosheets. Angew Chem Int Ed. 2012;51(25):6131.CrossRef
[142]
Zurück zum Zitat Kuang P, Tong T, Fan K, Yu J. In situ fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017;7(9):6179.CrossRef Kuang P, Tong T, Fan K, Yu J. In situ fabrication of Ni–Mo bimetal sulfide hybrid as an efficient electrocatalyst for hydrogen evolution over a wide pH range. ACS Catal. 2017;7(9):6179.CrossRef
[143]
Zurück zum Zitat Lu J, Xiong T, Zhou W, Yang L, Tang Z, Chen S. Metal nickel foam as an efficient and stable electrode for hydrogen evolution reaction in acidic electrolyte under reasonable overpotentials. ACS Appl Mater Interfaces. 2016;8(8):5065.CrossRef Lu J, Xiong T, Zhou W, Yang L, Tang Z, Chen S. Metal nickel foam as an efficient and stable electrode for hydrogen evolution reaction in acidic electrolyte under reasonable overpotentials. ACS Appl Mater Interfaces. 2016;8(8):5065.CrossRef
[144]
Zurück zum Zitat Wang P, Jia T, Wang B. A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. J Power Sources. 2020;474:228621.CrossRef Wang P, Jia T, Wang B. A critical review: 1D/2D nanostructured self-supported electrodes for electrochemical water splitting. J Power Sources. 2020;474:228621.CrossRef
[145]
Zurück zum Zitat Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev. 2015;44(9):2702.CrossRef Voiry D, Mohite A, Chhowalla M. Phase engineering of transition metal dichalcogenides. Chem Soc Rev. 2015;44(9):2702.CrossRef
[146]
Zurück zum Zitat Han B, Hu YH. MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci Eng. 2016;4(5):285.CrossRef Han B, Hu YH. MoS2 as a co-catalyst for photocatalytic hydrogen production from water. Energy Sci Eng. 2016;4(5):285.CrossRef
[147]
Zurück zum Zitat Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci USA. 2005;102(30):10451.CrossRef Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK. Two-dimensional atomic crystals. Proc Natl Acad Sci USA. 2005;102(30):10451.CrossRef
[148]
Zurück zum Zitat Ataca C, Şahin H, Ciraci S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C. 2012;116(16):8983.CrossRef Ataca C, Şahin H, Ciraci S. Stable, single-layer MX2 transition-metal oxides and dichalcogenides in a honeycomb-like structure. J Phys Chem C. 2012;116(16):8983.CrossRef
[149]
Zurück zum Zitat Zhao X, Ning S, Fu W, Pennycook SJ, Loh KP. Differentiating polymorphs in molybdenum disulfide via electron microscopy. Adv Mater. 2018;30(47):1802397.CrossRef Zhao X, Ning S, Fu W, Pennycook SJ, Loh KP. Differentiating polymorphs in molybdenum disulfide via electron microscopy. Adv Mater. 2018;30(47):1802397.CrossRef
[150]
Zurück zum Zitat Xu Z, Lu J, Zheng X, Chen B, Luo Y, Tahir MN, Huang B, Xia X, Pan X. A critical review on the applications and potential risks of emerging MoS2 nanomaterials. J Hazard Mater. 2020;399:123057.CrossRef Xu Z, Lu J, Zheng X, Chen B, Luo Y, Tahir MN, Huang B, Xia X, Pan X. A critical review on the applications and potential risks of emerging MoS2 nanomaterials. J Hazard Mater. 2020;399:123057.CrossRef
[151]
Zurück zum Zitat Beal AR, Knights JC, Liang WY. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J Phys C Solid State Phys. 1972;5(24):3540.CrossRef Beal AR, Knights JC, Liang WY. Transmission spectra of some transition metal dichalcogenides. II. Group VIA: trigonal prismatic coordination. J Phys C Solid State Phys. 1972;5(24):3540.CrossRef
[152]
Zurück zum Zitat Yan Y, Xia B, Xu Z, Wang X. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 2014;4(6):1693.CrossRef Yan Y, Xia B, Xu Z, Wang X. Recent development of molybdenum sulfides as advanced electrocatalysts for hydrogen evolution reaction. ACS Catal. 2014;4(6):1693.CrossRef
[153]
Zurück zum Zitat Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas NJ, Nordlander P, Ajayan PM, Lou J, Fang Z. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv Mater. 2014;26(37):6467.CrossRef Kang Y, Najmaei S, Liu Z, Bao Y, Wang Y, Zhu X, Halas NJ, Nordlander P, Ajayan PM, Lou J, Fang Z. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv Mater. 2014;26(37):6467.CrossRef
[154]
Zurück zum Zitat Zou W, Zhou Q, Zhang X, Hu X. Dissolved oxygen and visible light irradiation drive the structural alterations and phytotoxicity mitigation of single-layer molybdenum disulfide. Environ Sci Technol. 2019;53(13):7759.CrossRef Zou W, Zhou Q, Zhang X, Hu X. Dissolved oxygen and visible light irradiation drive the structural alterations and phytotoxicity mitigation of single-layer molybdenum disulfide. Environ Sci Technol. 2019;53(13):7759.CrossRef
[155]
Zurück zum Zitat Yang D, Sandoval SJ, Divigalpitiya WMR, Irwin JC, Frindt RF. Structure of single-molecular-layer MoS2. Phys Rev B. 1991;43(14):12053.CrossRef Yang D, Sandoval SJ, Divigalpitiya WMR, Irwin JC, Frindt RF. Structure of single-molecular-layer MoS2. Phys Rev B. 1991;43(14):12053.CrossRef
[156]
Zurück zum Zitat Tributsch H, Bennett JC. Electrochemistry and photochemistry of MoS2 layer crystals. I J Electroanal Chem Interfacial Electrochem. 1977;81(1):97.CrossRef Tributsch H, Bennett JC. Electrochemistry and photochemistry of MoS2 layer crystals. I J Electroanal Chem Interfacial Electrochem. 1977;81(1):97.CrossRef
[157]
Zurück zum Zitat Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100.CrossRef Jaramillo TF, Jørgensen KP, Bonde J, Nielsen JH, Horch S, Chorkendorff I. Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. Science. 2007;317(5834):100.CrossRef
[158]
Zurück zum Zitat Karunadasa HI, Montalvo E, Sun Y, Majda M, Long JR, Chang CJ. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science. 2012;335(6069):698.CrossRef Karunadasa HI, Montalvo E, Sun Y, Majda M, Long JR, Chang CJ. A molecular MoS2 edge site mimic for catalytic hydrogen generation. Science. 2012;335(6069):698.CrossRef
[159]
Zurück zum Zitat Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater. 2012;11(11):963.CrossRef Kibsgaard J, Chen Z, Reinecke BN, Jaramillo TF. Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat Mater. 2012;11(11):963.CrossRef
[160]
Zurück zum Zitat Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc. 2011;133(19):7296.CrossRef Li Y, Wang H, Xie L, Liang Y, Hong G, Dai H. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Chem Soc. 2011;133(19):7296.CrossRef
[161]
Zurück zum Zitat Brorson M, Carlsson A, Topsøe H. The morphology of MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM. Catal Today. 2007;123(1):31.CrossRef Brorson M, Carlsson A, Topsøe H. The morphology of MoS2, WS2, Co–Mo–S, Ni–Mo–S and Ni–W–S nanoclusters in hydrodesulfurization catalysts revealed by HAADF-STEM. Catal Today. 2007;123(1):31.CrossRef
[162]
Zurück zum Zitat Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009;140:219.CrossRef Bonde J, Moses PG, Jaramillo TF, Nørskov JK, Chorkendorff I. Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discuss. 2009;140:219.CrossRef
[163]
Zurück zum Zitat Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev. 2013;42(5):1934.CrossRef Huang X, Zeng Z, Zhang H. Metal dichalcogenide nanosheets: preparation, properties and applications. Chem Soc Rev. 2013;42(5):1934.CrossRef
[164]
Zurück zum Zitat Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013;135(28):10274.CrossRef Lukowski MA, Daniel AS, Meng F, Forticaux A, Li L, Jin S. Enhanced hydrogen evolution catalysis from chemically exfoliated metallic MoS2 nanosheets. J Am Chem Soc. 2013;135(28):10274.CrossRef
[165]
Zurück zum Zitat Wang H, Lu Z, Xu S, Kong D, Cha JJ, Zheng G, Hsu PC, Yan K, Bradshaw D, Prinz FB, Cui Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc Natl Acad Sci USA. 2013;110(49):19701.CrossRef Wang H, Lu Z, Xu S, Kong D, Cha JJ, Zheng G, Hsu PC, Yan K, Bradshaw D, Prinz FB, Cui Y. Electrochemical tuning of vertically aligned MoS2 nanofilms and its application in improving hydrogen evolution reaction. Proc Natl Acad Sci USA. 2013;110(49):19701.CrossRef
[166]
Zurück zum Zitat Morales-Guio CG, Hu X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc Chem Res. 2014;47(8):2671.CrossRef Morales-Guio CG, Hu X. Amorphous molybdenum sulfides as hydrogen evolution catalysts. Acc Chem Res. 2014;47(8):2671.CrossRef
[167]
Zurück zum Zitat Merki D, Fierro S, Vrubel H, Hu X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci. 2011;2(7):1262.CrossRef Merki D, Fierro S, Vrubel H, Hu X. Amorphous molybdenum sulfide films as catalysts for electrochemical hydrogen production in water. Chem Sci. 2011;2(7):1262.CrossRef
[168]
Zurück zum Zitat Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2012;2(9):1916.CrossRef Benck JD, Chen Z, Kuritzky LY, Forman AJ, Jaramillo TF. Amorphous molybdenum sulfide catalysts for electrochemical hydrogen production: insights into the origin of their catalytic activity. ACS Catal. 2012;2(9):1916.CrossRef
[169]
Zurück zum Zitat Liu Q, Li X, He Q, Khalil A, Liu D, Xiang T, Wu X, Song L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: applications for visible-light-driven photocatalytic hydrogen evolution. Small. 2015;11(41):5556.CrossRef Liu Q, Li X, He Q, Khalil A, Liu D, Xiang T, Wu X, Song L. Gram-scale aqueous synthesis of stable few-layered 1T-MoS2: applications for visible-light-driven photocatalytic hydrogen evolution. Small. 2015;11(41):5556.CrossRef
[170]
Zurück zum Zitat Yu Y, Nam GH, He Q, Wu XJ, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran FR, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H. High phase-purity 1T’-MoS2- and 1T’-MoSe2-layered crystals. Nat Chem. 2018;10(6):638.CrossRef Yu Y, Nam GH, He Q, Wu XJ, Zhang K, Yang Z, Chen J, Ma Q, Zhao M, Liu Z, Ran FR, Wang X, Li H, Huang X, Li B, Xiong Q, Zhang Q, Liu Z, Gu L, Du Y, Huang W, Zhang H. High phase-purity 1T’-MoS2- and 1T’-MoSe2-layered crystals. Nat Chem. 2018;10(6):638.CrossRef
[171]
Zurück zum Zitat Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P, Cao X, Song B, Jin S. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater. 2017;29(28):1700311.CrossRef Yin Y, Zhang Y, Gao T, Yao T, Zhang X, Han J, Wang X, Zhang Z, Xu P, Zhang P, Cao X, Song B, Jin S. Synergistic phase and disorder engineering in 1T-MoSe2 nanosheets for enhanced hydrogen-evolution reaction. Adv Mater. 2017;29(28):1700311.CrossRef
[172]
Zurück zum Zitat Gao B, Du X, Ma Y, Li Y, Li Y, Ding S, Song Z, Xiao C. 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Appl Catal B. 2020;263:117750.CrossRef Gao B, Du X, Ma Y, Li Y, Li Y, Ding S, Song Z, Xiao C. 3D flower-like defected MoS2 magnetron-sputtered on candle soot for enhanced hydrogen evolution reaction. Appl Catal B. 2020;263:117750.CrossRef
[173]
Zurück zum Zitat Qi K, Cui X, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L, Zhang Q, Ma J, Gong Y, Lv F, Wang K, Huang H, Zhang W, Guo S, Zheng W, Liu P. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat Commun. 2019;10(1):5231.CrossRef Qi K, Cui X, Gu L, Yu S, Fan X, Luo M, Xu S, Li N, Zheng L, Zhang Q, Ma J, Gong Y, Lv F, Wang K, Huang H, Zhang W, Guo S, Zheng W, Liu P. Single-atom cobalt array bound to distorted 1T MoS2 with ensemble effect for hydrogen evolution catalysis. Nat Commun. 2019;10(1):5231.CrossRef
[174]
Zurück zum Zitat Che Q, Li Q, Chen X, Tan Y, Xu X. Assembling amorphous (Fe-Ni)Cox-OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Appl Catal B. 2020;263:118338.CrossRef Che Q, Li Q, Chen X, Tan Y, Xu X. Assembling amorphous (Fe-Ni)Cox-OH/Ni3S2 nanohybrids with S-vacancy and interfacial effects as an ultra-highly efficient electrocatalyst: inner investigation of mechanism for alkaline water-to-hydrogen/oxygen conversion. Appl Catal B. 2020;263:118338.CrossRef
[175]
Zurück zum Zitat Carim AI, Saadi FH, Soriaga MP, Lewis NS. Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. J Mater Chem A. 2014;2(34):13835.CrossRef Carim AI, Saadi FH, Soriaga MP, Lewis NS. Electrocatalysis of the hydrogen-evolution reaction by electrodeposited amorphous cobalt selenide films. J Mater Chem A. 2014;2(34):13835.CrossRef
[176]
Zurück zum Zitat Wang X, Wang J, Sun X, Wei S, Cui L, Yang W, Liu J. Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res. 2018;11(2):988.CrossRef Wang X, Wang J, Sun X, Wei S, Cui L, Yang W, Liu J. Hierarchical coral-like NiMoS nanohybrids as highly efficient bifunctional electrocatalysts for overall urea electrolysis. Nano Res. 2018;11(2):988.CrossRef
[177]
Zurück zum Zitat Lukowski MA, Daniel AS, English CR, Meng F, Forticaux A, Hamers RJ, Jin S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ Sci. 2014;7(8):2608.CrossRef Lukowski MA, Daniel AS, English CR, Meng F, Forticaux A, Hamers RJ, Jin S. Highly active hydrogen evolution catalysis from metallic WS2 nanosheets. Energy Environ Sci. 2014;7(8):2608.CrossRef
[178]
Zurück zum Zitat Chen R, Song Y, Wang Z, Gao Y, Sheng Y, Shu Z, Zhang J, Li X. Porous nickel disulfide/reduced graphene oxide nanohybrids with improved electrocatalytic performance for hydrogen evolution. Catal Commun. 2016;85:26.CrossRef Chen R, Song Y, Wang Z, Gao Y, Sheng Y, Shu Z, Zhang J, Li X. Porous nickel disulfide/reduced graphene oxide nanohybrids with improved electrocatalytic performance for hydrogen evolution. Catal Commun. 2016;85:26.CrossRef
[179]
Zurück zum Zitat Miremadi BK, Morrison SR. The intercalation and exfoliation of tungsten disulfide. J Appl Phys. 1988;63(10):4970.CrossRef Miremadi BK, Morrison SR. The intercalation and exfoliation of tungsten disulfide. J Appl Phys. 1988;63(10):4970.CrossRef
[180]
Zurück zum Zitat Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed. 2014;53(30):7860.CrossRef Cheng L, Huang W, Gong Q, Liu C, Liu Z, Li Y, Dai H. Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew Chem Int Ed. 2014;53(30):7860.CrossRef
[181]
Zurück zum Zitat Tsai C, Chan K, Abild-Pedersen F, Nørskov JK. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys. 2014;16(26):13156.CrossRef Tsai C, Chan K, Abild-Pedersen F, Nørskov JK. Active edge sites in MoSe2 and WSe2 catalysts for the hydrogen evolution reaction: a density functional study. Phys Chem Chem Phys. 2014;16(26):13156.CrossRef
[182]
Zurück zum Zitat Wang H, Kong D, Johanes P, Cha JJ, Zheng G, Yan K, Liu N, Cui Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013;13(7):3426.CrossRef Wang H, Kong D, Johanes P, Cha JJ, Zheng G, Yan K, Liu N, Cui Y. MoSe2 and WSe2 nanofilms with vertically aligned molecular layers on curved and rough surfaces. Nano Lett. 2013;13(7):3426.CrossRef
[183]
Zurück zum Zitat Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc. 2014;136(28):10053.CrossRef Faber MS, Dziedzic R, Lukowski MA, Kaiser NS, Ding Q, Jin S. High-performance electrocatalysis using metallic cobalt pyrite (CoS2) micro- and nanostructures. J Am Chem Soc. 2014;136(28):10053.CrossRef
[184]
Zurück zum Zitat Voiry D, Yamaguchi H, Li J, Silva R, Alves DCB, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater. 2013;12(9):850.CrossRef Voiry D, Yamaguchi H, Li J, Silva R, Alves DCB, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat Mater. 2013;12(9):850.CrossRef
[185]
Zurück zum Zitat Zhai L, Benedict Lo TW, Xu Z-L, Potter J, Mo J, Guo X, Tang CC, Edman Tsang SC, Lau SP. In situ phase transformation on nickel-based selenides for enhanced hydrogen evolution reaction in alkaline medium. ACS Energy Lett. 2020;5(8):2483.CrossRef Zhai L, Benedict Lo TW, Xu Z-L, Potter J, Mo J, Guo X, Tang CC, Edman Tsang SC, Lau SP. In situ phase transformation on nickel-based selenides for enhanced hydrogen evolution reaction in alkaline medium. ACS Energy Lett. 2020;5(8):2483.CrossRef
[186]
Zurück zum Zitat Huang C, Yu L, Zhang W, Xiao Q, Zhou J, Zhang Y, An P, Zhang J, Yu Y. N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl Catal B. 2020;276:119137.CrossRef Huang C, Yu L, Zhang W, Xiao Q, Zhou J, Zhang Y, An P, Zhang J, Yu Y. N-doped Ni-Mo based sulfides for high-efficiency and stable hydrogen evolution reaction. Appl Catal B. 2020;276:119137.CrossRef
[187]
Zurück zum Zitat Zhang H, Yu L, Chen T, Zhou W, Lou XW. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv Funct Mater. 2018;28(51):1807086.CrossRef Zhang H, Yu L, Chen T, Zhou W, Lou XW. Surface modulation of hierarchical MoS2 nanosheets by Ni single atoms for enhanced electrocatalytic hydrogen evolution. Adv Funct Mater. 2018;28(51):1807086.CrossRef
[188]
Zurück zum Zitat Ren JT, Chen L, Yang DD, Yuan ZY. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Appl Catal B. 2020;263:118352.CrossRef Ren JT, Chen L, Yang DD, Yuan ZY. Molybdenum-based nanoparticles (Mo2C, MoP and MoS2) coupled heteroatoms-doped carbon nanosheets for efficient hydrogen evolution reaction. Appl Catal B. 2020;263:118352.CrossRef
[189]
Zurück zum Zitat Wang X, Sun P, Qin J, Wang J, Xiao Y, Cao M. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. Nanoscale. 2016;8(19):10330.CrossRef Wang X, Sun P, Qin J, Wang J, Xiao Y, Cao M. A three-dimensional porous MoP@C hybrid as a high-capacity, long-cycle life anode material for lithium-ion batteries. Nanoscale. 2016;8(19):10330.CrossRef
[190]
Zurück zum Zitat Pu Z, Wei S, Chen Z, Mu S. Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range. Appl Catal B. 2016;196:193.CrossRef Pu Z, Wei S, Chen Z, Mu S. Flexible molybdenum phosphide nanosheet array electrodes for hydrogen evolution reaction in a wide pH range. Appl Catal B. 2016;196:193.CrossRef
[191]
Zurück zum Zitat Zhu W, Tang C, Liu D, Wang J, Asiri AM, Sun X. A self-standing nanoporous MoP2 nanosheet array: an advanced pH-universal catalytic electrode for the hydrogen evolution reaction. J Mater Chem A. 2016;4(19):7169.CrossRef Zhu W, Tang C, Liu D, Wang J, Asiri AM, Sun X. A self-standing nanoporous MoP2 nanosheet array: an advanced pH-universal catalytic electrode for the hydrogen evolution reaction. J Mater Chem A. 2016;4(19):7169.CrossRef
[192]
Zurück zum Zitat Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Sun K, Yan YM. Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution. J Mater Chem A. 2016;4(1):59.CrossRef Deng C, Ding F, Li X, Guo Y, Ni W, Yan H, Sun K, Yan YM. Templated-preparation of a three-dimensional molybdenum phosphide sponge as a high performance electrode for hydrogen evolution. J Mater Chem A. 2016;4(1):59.CrossRef
[193]
Zurück zum Zitat Tian J, Liu Q, Asiri AM, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc. 2014;136(21):7587.CrossRef Tian J, Liu Q, Asiri AM, Sun X. Self-supported nanoporous cobalt phosphide nanowire arrays: an efficient 3D hydrogen-evolving cathode over the wide range of pH 0–14. J Am Chem Soc. 2014;136(21):7587.CrossRef
[194]
Zurück zum Zitat Liang Q, Jin H, Wang Z, Xiong Y, Yuan S, Zeng X, He D, Mu S. Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy. 2019;57:746.CrossRef Liang Q, Jin H, Wang Z, Xiong Y, Yuan S, Zeng X, He D, Mu S. Metal-organic frameworks derived reverse-encapsulation Co-NC@Mo2C complex for efficient overall water splitting. Nano Energy. 2019;57:746.CrossRef
[195]
Zurück zum Zitat Pi C, Huang C, Yang Y, Song H, Zhang X, Zheng Y, Gao B, Fu J, Chu PK, Huo K. In situ formation of N-doped carbon-coated porous MoP nanowires: a highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range. Appl Catal B. 2020;263:118358.CrossRef Pi C, Huang C, Yang Y, Song H, Zhang X, Zheng Y, Gao B, Fu J, Chu PK, Huo K. In situ formation of N-doped carbon-coated porous MoP nanowires: a highly efficient electrocatalyst for hydrogen evolution reaction in a wide pH range. Appl Catal B. 2020;263:118358.CrossRef
[196]
Zurück zum Zitat Yang L, Liu R, Jiao L. Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting. Adv Funct Mater. 2020;30(14):1909618.CrossRef Yang L, Liu R, Jiao L. Electronic redistribution: construction and modulation of interface engineering on CoP for enhancing overall water splitting. Adv Funct Mater. 2020;30(14):1909618.CrossRef
[197]
Zurück zum Zitat Dai D, Wei B, Li Y, Ma X, Liang S, Wang S, Xu L. Self-supported Hierarchical Fe(PO3)2@Cu3P nanotube arrays for efficient hydrogen evolution in alkaline media. J Alloys Compd. 2020;820:153185.CrossRef Dai D, Wei B, Li Y, Ma X, Liang S, Wang S, Xu L. Self-supported Hierarchical Fe(PO3)2@Cu3P nanotube arrays for efficient hydrogen evolution in alkaline media. J Alloys Compd. 2020;820:153185.CrossRef
[198]
Zurück zum Zitat Li ZB, Wang J, Liu XJ, Li R, Wang H, Wu Y, Wang XZ, Lu ZP. Self-supported NiCoP/nanoporous copper as highly active electrodes for hydrogen evolution reaction. Scr Mater. 2019;173:51.CrossRef Li ZB, Wang J, Liu XJ, Li R, Wang H, Wu Y, Wang XZ, Lu ZP. Self-supported NiCoP/nanoporous copper as highly active electrodes for hydrogen evolution reaction. Scr Mater. 2019;173:51.CrossRef
[199]
Zurück zum Zitat Cai J, Song Y, Zang Y, Niu S, Wu Y, Xie Y, Zheng X, Liu Y, Lin Y, Liu X, Wang G, Qian Y. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci Adv. 2020;6(1):eaaw8113.CrossRef Cai J, Song Y, Zang Y, Niu S, Wu Y, Xie Y, Zheng X, Liu Y, Lin Y, Liu X, Wang G, Qian Y. N-induced lattice contraction generally boosts the hydrogen evolution catalysis of P-rich metal phosphides. Sci Adv. 2020;6(1):eaaw8113.CrossRef
[200]
Zurück zum Zitat Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew Chem Int Ed. 2014;53(47):12855.CrossRef Jiang P, Liu Q, Liang Y, Tian J, Asiri AM, Sun X. A cost-effective 3D hydrogen evolution cathode with high catalytic activity: FeP nanowire array as the active phase. Angew Chem Int Ed. 2014;53(47):12855.CrossRef
[201]
Zurück zum Zitat Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater. 2015;27(10):3769.CrossRef Callejas JF, Read CG, Popczun EJ, McEnaney JM, Schaak RE. Nanostructured Co2P electrocatalyst for the hydrogen evolution reaction and direct comparison with morphologically equivalent CoP. Chem Mater. 2015;27(10):3769.CrossRef
[202]
Zurück zum Zitat Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C. Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A. 2015;3(4):1656.CrossRef Pan Y, Liu Y, Zhao J, Yang K, Liang J, Liu D, Hu W, Liu D, Liu Y, Liu C. Monodispersed nickel phosphide nanocrystals with different phases: synthesis, characterization and electrocatalytic properties for hydrogen evolution. J Mater Chem A. 2015;3(4):1656.CrossRef
[203]
Zurück zum Zitat Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(25):9267.CrossRef Popczun EJ, McKone JR, Read CG, Biacchi AJ, Wiltrout AM, Lewis NS, Schaak RE. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(25):9267.CrossRef
[204]
Zurück zum Zitat Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang JY, Lim KH, Wang X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci. 2014;7(8):2624.CrossRef Xiao P, Sk MA, Thia L, Ge X, Lim RJ, Wang JY, Lim KH, Wang X. Molybdenum phosphide as an efficient electrocatalyst for the hydrogen evolution reaction. Energy Environ Sci. 2014;7(8):2624.CrossRef
[205]
Zurück zum Zitat Yu Y, Peng Z, Asif M, Wang H, Wang W, Wu Z, Wang Z, Qiu X, Tan H, Liu H. FeP nanocrystals embedded in N-doped carbon nanosheets for efficient electrocatalytic hydrogen generation over a broad pH range. ACS Sustain Chem Eng. 2018;6(9):11587.CrossRef Yu Y, Peng Z, Asif M, Wang H, Wang W, Wu Z, Wang Z, Qiu X, Tan H, Liu H. FeP nanocrystals embedded in N-doped carbon nanosheets for efficient electrocatalytic hydrogen generation over a broad pH range. ACS Sustain Chem Eng. 2018;6(9):11587.CrossRef
[206]
Zurück zum Zitat Huang C, Pi C, Zhang X, Ding K, Qin P, Fu J, Peng X, Gao B, Chu P, K, Huo K. In situ synthesis of MoP nanoflakes intercalated N-doped graphene nanobelts from MoO3–amine hybrid for high-efficient hydrogen evolution reaction. Small 2018;14(25):1800667. Huang C, Pi C, Zhang X, Ding K, Qin P, Fu J, Peng X, Gao B, Chu P, K, Huo K. In situ synthesis of MoP nanoflakes intercalated N-doped graphene nanobelts from MoO3–amine hybrid for high-efficient hydrogen evolution reaction. Small 2018;14(25):1800667.
[207]
Zurück zum Zitat Wang M-Q, Ye C, Liu H, Xu M, Bao S-J. Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values. Angew Chem Int Ed. 2018;57(7):1963.CrossRef Wang M-Q, Ye C, Liu H, Xu M, Bao S-J. Nanosized metal phosphides embedded in nitrogen-doped porous carbon nanofibers for enhanced hydrogen evolution at all pH values. Angew Chem Int Ed. 2018;57(7):1963.CrossRef
[208]
Zurück zum Zitat Liu P, Rodriguez JA. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J Am Chem Soc. 2005;127(42):14871.CrossRef Liu P, Rodriguez JA. Catalysts for hydrogen evolution from the [NiFe] hydrogenase to the Ni2P(001) surface: the importance of ensemble effect. J Am Chem Soc. 2005;127(42):14871.CrossRef
[209]
Zurück zum Zitat Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev. 2013;113(10):7981.CrossRef Carenco S, Portehault D, Boissière C, Mézailles N, Sanchez C. Nanoscaled metal borides and phosphides: recent developments and perspectives. Chem Rev. 2013;113(10):7981.CrossRef
[210]
Zurück zum Zitat Blanchard PER, Grosvenor AP, Cavell RG, Mar A. X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr−Ni). Chem Mater. 2008;20(22):7081.CrossRef Blanchard PER, Grosvenor AP, Cavell RG, Mar A. X-ray photoelectron and absorption spectroscopy of metal-rich phosphides M2P and M3P (M = Cr−Ni). Chem Mater. 2008;20(22):7081.CrossRef
[211]
Zurück zum Zitat Ma Y, Guan G, Hao X, Cao J, Abudula A. Molybdenum carbide as alternative catalyst for hydrogen production—a review. Renewable Sustain Energy Rev. 2017;75:1101.CrossRef Ma Y, Guan G, Hao X, Cao J, Abudula A. Molybdenum carbide as alternative catalyst for hydrogen production—a review. Renewable Sustain Energy Rev. 2017;75:1101.CrossRef
[212]
Zurück zum Zitat Hwu HH, Chen JG. Surface chemistry of transition metal carbides. Chem Rev. 2005;105(1):185.CrossRef Hwu HH, Chen JG. Surface chemistry of transition metal carbides. Chem Rev. 2005;105(1):185.CrossRef
[213]
Zurück zum Zitat Wang J, Li X, Wei B, Sun R, Yu W, Hoh HY, Xu H, Li J, Ge X, Chen Z, Su C. Activating basal planes of NiPS3 for hydrogen evolution by nonmetal heteroatom doping. Adv Funct Mater. 2020;30(12):1908708.CrossRef Wang J, Li X, Wei B, Sun R, Yu W, Hoh HY, Xu H, Li J, Ge X, Chen Z, Su C. Activating basal planes of NiPS3 for hydrogen evolution by nonmetal heteroatom doping. Adv Funct Mater. 2020;30(12):1908708.CrossRef
[214]
Zurück zum Zitat Wang J, Zhu R, Cheng J, Song Y, Mao M, Chen F, Cheng Y. Co, Mo2C encapsulated in N-doped carbon nanofiber as self-supported electrocatalyst for hydrogen evolution reaction. Chem Eng J. 2020;397:125481.CrossRef Wang J, Zhu R, Cheng J, Song Y, Mao M, Chen F, Cheng Y. Co, Mo2C encapsulated in N-doped carbon nanofiber as self-supported electrocatalyst for hydrogen evolution reaction. Chem Eng J. 2020;397:125481.CrossRef
[215]
Zurück zum Zitat Lu C, Tranca D, Zhang J, Rodríguez Hernández F, Su Y, Zhuang X, Zhang F, Seifert G, Feng X. Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano. 2017;11(4):3933.CrossRef Lu C, Tranca D, Zhang J, Rodríguez Hernández F, Su Y, Zhuang X, Zhang F, Seifert G, Feng X. Molybdenum carbide-embedded nitrogen-doped porous carbon nanosheets as electrocatalysts for water splitting in alkaline media. ACS Nano. 2017;11(4):3933.CrossRef
[216]
Zurück zum Zitat Ojha K, Saha S, Kolev H, Kumar B, Ganguli AK. Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2016;193:268.CrossRef Ojha K, Saha S, Kolev H, Kumar B, Ganguli AK. Composites of graphene-Mo2C rods: highly active and stable electrocatalyst for hydrogen evolution reaction. Electrochim Acta. 2016;193:268.CrossRef
[217]
Zurück zum Zitat Cui W, Cheng N, Liu Q, Ge C, Asiri AM, Sun X. Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 2014;4(8):2658.CrossRef Cui W, Cheng N, Liu Q, Ge C, Asiri AM, Sun X. Mo2C nanoparticles decorated graphitic carbon sheets: biopolymer-derived solid-state synthesis and application as an efficient electrocatalyst for hydrogen generation. ACS Catal. 2014;4(8):2658.CrossRef
[218]
Zurück zum Zitat Pu J, Cao J, Ma L, Zhou K, Yu Z, Yin D, Wei Q. Novel three-dimensional Mo2C/carbon nanotubes composites for hydrogen evolution reaction. Mater Lett. 2020;277:128386.CrossRef Pu J, Cao J, Ma L, Zhou K, Yu Z, Yin D, Wei Q. Novel three-dimensional Mo2C/carbon nanotubes composites for hydrogen evolution reaction. Mater Lett. 2020;277:128386.CrossRef
[219]
Zurück zum Zitat Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(51):19186.CrossRef Cao B, Veith GM, Neuefeind JC, Adzic RR, Khalifah PG. Mixed close-packed cobalt molybdenum nitrides as non-noble metal electrocatalysts for the hydrogen evolution reaction. J Am Chem Soc. 2013;135(51):19186.CrossRef
[220]
Zurück zum Zitat Jing S, Zhang L, Luo L, Lu J, Yin S, Shen PK, Tsiakaras P. N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl Catal B. 2018;224:533.CrossRef Jing S, Zhang L, Luo L, Lu J, Yin S, Shen PK, Tsiakaras P. N-doped porous molybdenum carbide nanobelts as efficient catalysts for hydrogen evolution reaction. Appl Catal B. 2018;224:533.CrossRef
[221]
Zurück zum Zitat Ying L, Sun S, Liu W, Zhu H, Zhu Z, Liu A, Yang L, Lu S, Duan F, Yang C, Du M. Heterointerface engineering in bimetal alloy/metal carbide for superior hydrogen evolution reaction. Renewable Energy. 2020;161:1036.CrossRef Ying L, Sun S, Liu W, Zhu H, Zhu Z, Liu A, Yang L, Lu S, Duan F, Yang C, Du M. Heterointerface engineering in bimetal alloy/metal carbide for superior hydrogen evolution reaction. Renewable Energy. 2020;161:1036.CrossRef
[222]
Zurück zum Zitat Kou Z, Zhang L, Ma Y, Liu X, Zang W, Zhang J, Huang S, Du Y, Cheetham AK, Wang J. 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Appl Catal B. 2019;243:678. Kou Z, Zhang L, Ma Y, Liu X, Zang W, Zhang J, Huang S, Du Y, Cheetham AK, Wang J. 2D carbide nanomeshes and their assembling into 3D microflowers for efficient water splitting. Appl Catal B. 2019;243:678.
[223]
Zurück zum Zitat Wan C, Regmi YN, Leonard BM. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed. 2014;53(25):6407.CrossRef Wan C, Regmi YN, Leonard BM. Multiple phases of molybdenum carbide as electrocatalysts for the hydrogen evolution reaction. Angew Chem Int Ed. 2014;53(25):6407.CrossRef
[224]
Zurück zum Zitat Chen WF, Muckerman JT, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun. 2013;49(79):8896.CrossRef Chen WF, Muckerman JT, Fujita E. Recent developments in transition metal carbides and nitrides as hydrogen evolution electrocatalysts. Chem Commun. 2013;49(79):8896.CrossRef
[225]
Zurück zum Zitat Chen JG. Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem Rev. 1996;96(4):1477.CrossRef Chen JG. Carbide and nitride overlayers on early transition metal surfaces: preparation, characterization, and reactivities. Chem Rev. 1996;96(4):1477.CrossRef
[226]
Zurück zum Zitat King LA, Hubert MA, Capuano C, Manco J, Danilovic N, Valle E, Hellstern TR, Ayers K, Jaramillo TF. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat Nanotechnol. 2019;14(11):1071.CrossRef King LA, Hubert MA, Capuano C, Manco J, Danilovic N, Valle E, Hellstern TR, Ayers K, Jaramillo TF. A non-precious metal hydrogen catalyst in a commercial polymer electrolyte membrane electrolyser. Nat Nanotechnol. 2019;14(11):1071.CrossRef
[227]
Zurück zum Zitat Rowsell JLC, Yaghi OM. Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 2004;73(1):3.CrossRef Rowsell JLC, Yaghi OM. Metal–organic frameworks: a new class of porous materials. Microporous Mesoporous Mater. 2004;73(1):3.CrossRef
[228]
Zurück zum Zitat Kitagawa S, Matsuda R. Chemistry of coordination space of porous coordination polymers. Coord Chem Rev. 2007;251(21):2490.CrossRef Kitagawa S, Matsuda R. Chemistry of coordination space of porous coordination polymers. Coord Chem Rev. 2007;251(21):2490.CrossRef
[229]
Zurück zum Zitat Zhou J, Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem Soc Rev. 2017;46(22):6927.CrossRef Zhou J, Wang B. Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage. Chem Soc Rev. 2017;46(22):6927.CrossRef
[230]
Zurück zum Zitat Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999;402(6759):276.CrossRef Li H, Eddaoudi M, O’Keeffe M, Yaghi OM. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature. 1999;402(6759):276.CrossRef
[231]
Zurück zum Zitat Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005;310(5751):1166.CrossRef Côté AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM. Porous, crystalline, covalent organic frameworks. Science. 2005;310(5751):1166.CrossRef
[232]
Zurück zum Zitat Van Vleet MJ, Weng T, Li X, Schmidt JR. In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem Rev. 2018;118(7):3681.CrossRef Van Vleet MJ, Weng T, Li X, Schmidt JR. In situ, time-resolved, and mechanistic studies of metal–organic framework nucleation and growth. Chem Rev. 2018;118(7):3681.CrossRef
[233]
Zurück zum Zitat Yang Q, Xu Q, Jiang HL. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev. 2017;46(15):4774.CrossRef Yang Q, Xu Q, Jiang HL. Metal–organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis. Chem Soc Rev. 2017;46(15):4774.CrossRef
[234]
Zurück zum Zitat Howarth AJ, Liu Y, Li P, Li Z, Wang TC, Hupp JT, Farha OK. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater. 2016;1(3):15018.CrossRef Howarth AJ, Liu Y, Li P, Li Z, Wang TC, Hupp JT, Farha OK. Chemical, thermal and mechanical stabilities of metal–organic frameworks. Nat Rev Mater. 2016;1(3):15018.CrossRef
[235]
Zurück zum Zitat Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev. 2012;112(2):869.CrossRef Li JR, Sculley J, Zhou HC. Metal–organic frameworks for separations. Chem Rev. 2012;112(2):869.CrossRef
[236]
Zurück zum Zitat Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Metal–organic frameworks in biomedicine. Chem Rev. 2012;112(2):1232.CrossRef Horcajada P, Gref R, Baati T, Allan PK, Maurin G, Couvreur P, Férey G, Morris RE, Serre C. Metal–organic frameworks in biomedicine. Chem Rev. 2012;112(2):1232.CrossRef
[237]
Zurück zum Zitat Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chem Rev. 2012;112(2):1126.CrossRef Cui Y, Yue Y, Qian G, Chen B. Luminescent functional metal–organic frameworks. Chem Rev. 2012;112(2):1126.CrossRef
[238]
Zurück zum Zitat Furukawa H, Go YB, Ko N, Park YK, Uribe-Romo FJ, Kim J, O’Keeffe M, Yaghi OM. Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem. 2011;50(18):9147.CrossRef Furukawa H, Go YB, Ko N, Park YK, Uribe-Romo FJ, Kim J, O’Keeffe M, Yaghi OM. Isoreticular expansion of metal–organic frameworks with triangular and square building units and the lowest calculated density for porous crystals. Inorg Chem. 2011;50(18):9147.CrossRef
[239]
Zurück zum Zitat Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM. Ultrahigh porosity in metal-organic frameworks. Science. 2010;329(5990):424.CrossRef Furukawa H, Ko N, Go YB, Aratani N, Choi SB, Choi E, Yazaydin AÖ, Snurr RQ, O’Keeffe M, Kim J, Yaghi OM. Ultrahigh porosity in metal-organic frameworks. Science. 2010;329(5990):424.CrossRef
[240]
Zurück zum Zitat Grünker R, Bon V, Müller P, Stoeck U, Krause S, Mueller U, Senkovska I, Kaskel S. A new metal–organic framework with ultra-high surface area. Chem Commun. 2014;50(26):3450.CrossRef Grünker R, Bon V, Müller P, Stoeck U, Krause S, Mueller U, Senkovska I, Kaskel S. A new metal–organic framework with ultra-high surface area. Chem Commun. 2014;50(26):3450.CrossRef
[241]
Zurück zum Zitat Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 2012;134(36):15016.CrossRef Farha OK, Eryazici I, Jeong NC, Hauser BG, Wilmer CE, Sarjeant AA, Snurr RQ, Nguyen ST, Yazaydın AÖ, Hupp JT. Metal–organic framework materials with ultrahigh surface areas: is the sky the limit? J Am Chem Soc. 2012;134(36):15016.CrossRef
[242]
Zurück zum Zitat Cheng F, Wang L, Wang H, Lei C, Yang B, Li Z, Zhang Q, Lei L, Wang S, Hou Y. Boosting alkaline hydrogen evolution and Zn–H2O cell induced by interfacial electron transfer. Nano Energy. 2020;71:104621.CrossRef Cheng F, Wang L, Wang H, Lei C, Yang B, Li Z, Zhang Q, Lei L, Wang S, Hou Y. Boosting alkaline hydrogen evolution and Zn–H2O cell induced by interfacial electron transfer. Nano Energy. 2020;71:104621.CrossRef
[243]
Zurück zum Zitat Yu XY, Yu L, Wu HB, Lou XW. Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem Int Ed. 2015;54(18):5331.CrossRef Yu XY, Yu L, Wu HB, Lou XW. Formation of nickel sulfide nanoframes from metal–organic frameworks with enhanced pseudocapacitive and electrocatalytic properties. Angew Chem Int Ed. 2015;54(18):5331.CrossRef
[244]
Zurück zum Zitat Lin HW, Senthil Raja D, Chuah XF, Hsieh CT, Chen YA, Lu SY. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Appl Catal B. 2019;258:118023.CrossRef Lin HW, Senthil Raja D, Chuah XF, Hsieh CT, Chen YA, Lu SY. Bi-metallic MOFs possessing hierarchical synergistic effects as high performance electrocatalysts for overall water splitting at high current densities. Appl Catal B. 2019;258:118023.CrossRef
[245]
Zurück zum Zitat Micheroni D, Lan G, Lin W. Efficient electrocatalytic proton reduction with carbon nanotube-supported metal–organic frameworks. J Am Chem Soc. 2018;140(46):15591.CrossRef Micheroni D, Lan G, Lin W. Efficient electrocatalytic proton reduction with carbon nanotube-supported metal–organic frameworks. J Am Chem Soc. 2018;140(46):15591.CrossRef
[246]
Zurück zum Zitat Chen W, Pei J, He CT, Wan J, Ren H, Wang Y, Dong J, Wu K, Cheong WC, Mao J, Zheng X, Yan W, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater. 2018;30(30):1800396.CrossRef Chen W, Pei J, He CT, Wan J, Ren H, Wang Y, Dong J, Wu K, Cheong WC, Mao J, Zheng X, Yan W, Zhuang Z, Chen C, Peng Q, Wang D, Li Y. Single tungsten atoms supported on MOF-derived N-doped carbon for robust electrochemical hydrogen evolution. Adv Mater. 2018;30(30):1800396.CrossRef
[247]
Zurück zum Zitat Liu T, Li P, Yao N, Cheng G, Chen S, Luo W, Yin Y. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew Chem Int Ed. 2019;58(14):4679.CrossRef Liu T, Li P, Yao N, Cheng G, Chen S, Luo W, Yin Y. CoP-doped MOF-based electrocatalyst for pH-universal hydrogen evolution reaction. Angew Chem Int Ed. 2019;58(14):4679.CrossRef
[248]
Zurück zum Zitat Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y. NiFe-based metal–organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv Energy Mater. 2018;8(21):1800584.CrossRef Sun F, Wang G, Ding Y, Wang C, Yuan B, Lin Y. NiFe-based metal–organic framework nanosheets directly supported on nickel foam acting as robust electrodes for electrochemical oxygen evolution reaction. Adv Energy Mater. 2018;8(21):1800584.CrossRef
[249]
Zurück zum Zitat Duan J, Chen S, Zhao C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun. 2017;8(1):15341.CrossRef Duan J, Chen S, Zhao C. Ultrathin metal-organic framework array for efficient electrocatalytic water splitting. Nat Commun. 2017;8(1):15341.CrossRef
[250]
Zurück zum Zitat Zhao S, Wang Y, Dong J, He CT, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy. 2016;1(12):16184.CrossRef Zhao S, Wang Y, Dong J, He CT, Yin H, An P, Zhao K, Zhang X, Gao C, Zhang L, Lv J, Wang J, Zhang J, Khattak AM, Khan NA, Wei Z, Zhang J, Liu S, Zhao H, Tang Z. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat Energy. 2016;1(12):16184.CrossRef
[251]
Zurück zum Zitat Zhu D, Liu J, Zhao Y, Zheng Y, Qiao SZ. Engineering 2D metal–organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small. 2019;15(14):1805511.CrossRef Zhu D, Liu J, Zhao Y, Zheng Y, Qiao SZ. Engineering 2D metal–organic framework/MoS2 interface for enhanced alkaline hydrogen evolution. Small. 2019;15(14):1805511.CrossRef
[252]
Zurück zum Zitat Zhu JY, Liang F, Yao YC, Ma WH, Yang B. Preparation and application of metal organic frameworks derivatives in electro-catalysis. Chin J Rare Met. 2019;43(2):186. Zhu JY, Liang F, Yao YC, Ma WH, Yang B. Preparation and application of metal organic frameworks derivatives in electro-catalysis. Chin J Rare Met. 2019;43(2):186.
[253]
Zurück zum Zitat Cao L, Niu L, Mueller T. Computationally generated maps of surface structures and catalytic activities for alloy phase diagrams. Proc Natl Acad Sci USA. 2019;116(44):22044.CrossRef Cao L, Niu L, Mueller T. Computationally generated maps of surface structures and catalytic activities for alloy phase diagrams. Proc Natl Acad Sci USA. 2019;116(44):22044.CrossRef
Metadaten
Titel
Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction
verfasst von
Fei Zhou
Yang Zhou
Gui-Gao Liu
Chen-Tuo Wang
Jun Wang
Publikationsdatum
11.06.2021
Verlag
Nonferrous Metals Society of China
Erschienen in
Rare Metals / Ausgabe 12/2021
Print ISSN: 1001-0521
Elektronische ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-021-01735-y

Weitere Artikel der Ausgabe 12/2021

Rare Metals 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.