Skip to main content
Erschienen in: Shape Memory and Superelasticity 1/2018

20.03.2018 | SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED REVIEW PAPER

Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

verfasst von: H. Sehitoglu, S. Alkan

Erschienen in: Shape Memory and Superelasticity | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non-Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2017) A revisit to atomistic rationale for slip in shape memory alloys. Prog Mater Sci 85:1–42CrossRef Chowdhury P, Sehitoglu H (2017) A revisit to atomistic rationale for slip in shape memory alloys. Prog Mater Sci 85:1–42CrossRef
2.
Zurück zum Zitat Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—Fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef Chowdhury P, Sehitoglu H (2017) Deformation physics of shape memory alloys—Fundamentals at atomistic frontier. Prog Mater Sci 88:49–88CrossRef
3.
Zurück zum Zitat Williams DB, Carter CB (2009) Transmission Electron Microscopy. In: A textbook for materials science, Springer, Berlin Williams DB, Carter CB (2009) Transmission Electron Microscopy. In: A textbook for materials science, Springer, Berlin
4.
Zurück zum Zitat Sehitoglu H, Wu Y, Alkan S, Ertekin E (2017) Plastic deformation of B2-NiTi–is it slip or twinning? Philos Mag Lett 97:217–228CrossRef Sehitoglu H, Wu Y, Alkan S, Ertekin E (2017) Plastic deformation of B2-NiTi–is it slip or twinning? Philos Mag Lett 97:217–228CrossRef
5.
Zurück zum Zitat Miyazaki S, Otsuka K, Suzuki Y (1981) Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy. Scr Metall 15:287–292CrossRef Miyazaki S, Otsuka K, Suzuki Y (1981) Transformation pseudoelasticity and deformation behavior in a Ti-50.6 at% Ni alloy. Scr Metall 15:287–292CrossRef
6.
Zurück zum Zitat Wang J, Sehitoglu H, Maier H (2014) Dislocation slip stress prediction in shape memory alloys. Int J Plast 54:247–266CrossRef Wang J, Sehitoglu H, Maier H (2014) Dislocation slip stress prediction in shape memory alloys. Int J Plast 54:247–266CrossRef
7.
Zurück zum Zitat Hamilton R, Sehitoglu H, Chumlyakov Y, Maier H (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52:3383–3402CrossRef Hamilton R, Sehitoglu H, Chumlyakov Y, Maier H (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52:3383–3402CrossRef
8.
Zurück zum Zitat Duerig T (2006) Some unsolved aspects of nitinol. Mater Sci Eng, A 438:69–74CrossRef Duerig T (2006) Some unsolved aspects of nitinol. Mater Sci Eng, A 438:69–74CrossRef
9.
Zurück zum Zitat Pelton A, Huang G, Moine P, Sinclair R (2012) Effects of thermal cycling on microstructure and properties in nitinol. Mater Sci Eng, A 532:130–138CrossRef Pelton A, Huang G, Moine P, Sinclair R (2012) Effects of thermal cycling on microstructure and properties in nitinol. Mater Sci Eng, A 532:130–138CrossRef
10.
Zurück zum Zitat Simon T, Kroger A, Somsen C, Dlouhy A, Eggeler G (2010) On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater 58:1850–1860CrossRef Simon T, Kroger A, Somsen C, Dlouhy A, Eggeler G (2010) On the multiplication of dislocations during martensitic transformations in NiTi shape memory alloys. Acta Mater 58:1850–1860CrossRef
11.
Zurück zum Zitat Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int J Plast 27:282–297CrossRef Delville R, Malard B, Pilch J, Sittner P, Schryvers D (2011) Transmission electron microscopy investigation of dislocation slip during superelastic cycling of Ni–Ti wires. Int J Plast 27:282–297CrossRef
12.
Zurück zum Zitat Ezaz T, Wang J, Sehitoglu H, Maier H (2013) Plastic deformation of NiTi shape memory alloys. Acta Mater 61:67–78CrossRef Ezaz T, Wang J, Sehitoglu H, Maier H (2013) Plastic deformation of NiTi shape memory alloys. Acta Mater 61:67–78CrossRef
13.
Zurück zum Zitat Sehitoglu H, Hamilton R, Canadinc D, Zhang XY, Gall K, Karaman I, Chumlyakov Y, Maier HJ (2003) Detwinning in NiTi alloys. Metall Mater Trans A 34:5–13CrossRef Sehitoglu H, Hamilton R, Canadinc D, Zhang XY, Gall K, Karaman I, Chumlyakov Y, Maier HJ (2003) Detwinning in NiTi alloys. Metall Mater Trans A 34:5–13CrossRef
14.
Zurück zum Zitat Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52:3383–3402CrossRef Hamilton RF, Sehitoglu H, Chumlyakov Y, Maier HJ (2004) Stress dependence of the hysteresis in single crystal NiTi alloys. Acta Mater 52:3383–3402CrossRef
15.
Zurück zum Zitat Gall K, Sehitoglu H, Anderson R, Karaman I, Chumlyakov YI, Kireeva IV (2001) On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon. Mater Sci Eng, A 317:85–92CrossRef Gall K, Sehitoglu H, Anderson R, Karaman I, Chumlyakov YI, Kireeva IV (2001) On the mechanical behavior of single crystal NiTi shape memory alloys and related polycrystalline phenomenon. Mater Sci Eng, A 317:85–92CrossRef
16.
Zurück zum Zitat Sehitoglu H, Zhang XY, Kotil T, Canadinc D, Chumlyakov Y, Maier HJ (2002) Shape memory behavior of FeNiCoTi single and polycrystals. Metall Mater Trans A 33:3661–3672CrossRef Sehitoglu H, Zhang XY, Kotil T, Canadinc D, Chumlyakov Y, Maier HJ (2002) Shape memory behavior of FeNiCoTi single and polycrystals. Metall Mater Trans A 33:3661–3672CrossRef
17.
Zurück zum Zitat Efstathiou C, Sehitoglu H, Carroll J, Lambros J, Maier H (2008) Full-field strain evolution during intermartensitic transformations in single-crystal NiFeGa. Acta Mater 56:3791–3799CrossRef Efstathiou C, Sehitoglu H, Carroll J, Lambros J, Maier H (2008) Full-field strain evolution during intermartensitic transformations in single-crystal NiFeGa. Acta Mater 56:3791–3799CrossRef
18.
Zurück zum Zitat Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2010) An experimental methodology to relate local strain to microstructural texture. Rev Scientific Instrum 81(8):083703CrossRef Carroll J, Abuzaid W, Lambros J, Sehitoglu H (2010) An experimental methodology to relate local strain to microstructural texture. Rev Scientific Instrum 81(8):083703CrossRef
19.
Zurück zum Zitat Alkan S, Sehitoglu H (2017) Dislocation core effects on slip response of NiTi- a key to understanding shape memory. Int J Plast 97:126–144CrossRef Alkan S, Sehitoglu H (2017) Dislocation core effects on slip response of NiTi- a key to understanding shape memory. Int J Plast 97:126–144CrossRef
20.
Zurück zum Zitat Alkan S, Wu Y, Sehitoglu H (2017) Giant non-schmid effect in NiTi. Extreme Mech Lett 15:38–43CrossRef Alkan S, Wu Y, Sehitoglu H (2017) Giant non-schmid effect in NiTi. Extreme Mech Lett 15:38–43CrossRef
21.
Zurück zum Zitat Schmid EBW (1950) Plasticity of crystals. Hughes and Co., London Schmid EBW (1950) Plasticity of crystals. Hughes and Co., London
22.
Zurück zum Zitat Taylor GI (1928) The Deformation of Crystals of β-Brass. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 118, pp 1–24 Taylor GI (1928) The Deformation of Crystals of β-Brass. In: Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, vol. 118, pp 1–24
23.
Zurück zum Zitat Taylor GI, Elam CF (1926) The distortion of iron crystals. In: Proceedings of the Royal Society of London. Series A vol. 112, pp 337 Taylor GI, Elam CF (1926) The distortion of iron crystals. In: Proceedings of the Royal Society of London. Series A vol. 112, pp 337
24.
Zurück zum Zitat Barrett CS (2008) Structure of metals. Horney Press, New Haven Barrett CS (2008) Structure of metals. Horney Press, New Haven
25.
Zurück zum Zitat Christian JW (1983) Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metall Trans A 14:1237–1256CrossRef Christian JW (1983) Some surprising features of the plastic deformation of body-centered cubic metals and alloys. Metall Trans A 14:1237–1256CrossRef
26.
Zurück zum Zitat Sherwood PJ, Guiu F, Kim HC, Pratt PL (1967) Plastic anisotropy of tantalum, niobium, and molybdenum. Can J Phys 45:1075–1089CrossRef Sherwood PJ, Guiu F, Kim HC, Pratt PL (1967) Plastic anisotropy of tantalum, niobium, and molybdenum. Can J Phys 45:1075–1089CrossRef
27.
Zurück zum Zitat Duesbery MS (1989) The dislocation core and plasticity. In: Nabarro FRN (ed) Dislocations in solids, vol 8. Elsevier, Netherlands, pp 67–173 Duesbery MS (1989) The dislocation core and plasticity. In: Nabarro FRN (ed) Dislocations in solids, vol 8. Elsevier, Netherlands, pp 67–173
28.
Zurück zum Zitat Gröger R, Bailey AG, Vitek V (2008) Multiscale modeling of plastic deformation of molybdenum and tungsten: i. Atomistic studies of the core structure and glide of 1/2 〈111〉 screw dislocations at 0 K. Acta Mater 56:5401–5411CrossRef Gröger R, Bailey AG, Vitek V (2008) Multiscale modeling of plastic deformation of molybdenum and tungsten: i. Atomistic studies of the core structure and glide of 1/2 〈111〉 screw dislocations at 0 K. Acta Mater 56:5401–5411CrossRef
29.
Zurück zum Zitat Schulson EM, Teghtsoonian E (1969) Slip geometry in the body-centred cubic compound β′AuZn. Phil Mag 19:155–168CrossRef Schulson EM, Teghtsoonian E (1969) Slip geometry in the body-centred cubic compound β′AuZn. Phil Mag 19:155–168CrossRef
30.
Zurück zum Zitat Vitek V (1974) Theory of the core structures of dislocations in body-centred-cubic metals. Cryst Lattice Defects 5:1–34 Vitek V (1974) Theory of the core structures of dislocations in body-centred-cubic metals. Cryst Lattice Defects 5:1–34
31.
Zurück zum Zitat Alkan S, Sehitoglu H (2017) Non-Schmid response of Fe3Al: The twin-antitwin slip asymmetry and non-glide shear stress effects. Acta Mater 125:550–566CrossRef Alkan S, Sehitoglu H (2017) Non-Schmid response of Fe3Al: The twin-antitwin slip asymmetry and non-glide shear stress effects. Acta Mater 125:550–566CrossRef
32.
Zurück zum Zitat Eshelby JD, Read WT, Shockley W (1953) Anisotropic elasticity with applications to dislocation theory. Acta Metall 1:251–259CrossRef Eshelby JD, Read WT, Shockley W (1953) Anisotropic elasticity with applications to dislocation theory. Acta Metall 1:251–259CrossRef
33.
Zurück zum Zitat Stroh A (1958) Dislocations and cracks in anisotropic elasticity. Phil Mag 3:625–646CrossRef Stroh A (1958) Dislocations and cracks in anisotropic elasticity. Phil Mag 3:625–646CrossRef
34.
Zurück zum Zitat Ojha A, Alkan S, Patriarca L, Sehitoglu H, Chumlyakov Y (2015) Shape memory behavior in Fe3Al-modeling and experiments. Phil Mag 95:2553–2570CrossRef Ojha A, Alkan S, Patriarca L, Sehitoglu H, Chumlyakov Y (2015) Shape memory behavior in Fe3Al-modeling and experiments. Phil Mag 95:2553–2570CrossRef
35.
Zurück zum Zitat Gall K, Jacobus K, Sehitoglu H, Maier HJ (1998) Stress-induced martensitic phase transformations in polycrystalline CuZnAl shape memory alloys under different stress states. Metall Mater Trans A 29:765–773CrossRef Gall K, Jacobus K, Sehitoglu H, Maier HJ (1998) Stress-induced martensitic phase transformations in polycrystalline CuZnAl shape memory alloys under different stress states. Metall Mater Trans A 29:765–773CrossRef
36.
Zurück zum Zitat Takezawa K, Shindo T, Sato SI (1976) Shape memory effect in β1-CuZnAl alloys. Scr Metall 10:13–18CrossRef Takezawa K, Shindo T, Sato SI (1976) Shape memory effect in β1-CuZnAl alloys. Scr Metall 10:13–18CrossRef
37.
Zurück zum Zitat Guenin G, Gobin PF (1978) Study of the effect of hydrostatic or uniaxial stress on elastic constants of a CuZnAl alloy in the vicinity of the martensitic transformation point. Scripta Metall 12:351–356CrossRef Guenin G, Gobin PF (1978) Study of the effect of hydrostatic or uniaxial stress on elastic constants of a CuZnAl alloy in the vicinity of the martensitic transformation point. Scripta Metall 12:351–356CrossRef
38.
Zurück zum Zitat Vivet A, Lexcellent C (2001) CuZnAl single crystals pseudoelastic behaviour under biaxial tensile loading: observations and analysis. Le J de Phys IV 11:205 Vivet A, Lexcellent C (2001) CuZnAl single crystals pseudoelastic behaviour under biaxial tensile loading: observations and analysis. Le J de Phys IV 11:205
39.
Zurück zum Zitat Malarría J, Lovey F, Sade M (2009) Two way shape memory effect in CuZnAl single crystals after pseudoelastic cycling at low temperatures. Mater Sci Eng, A 517:118–124CrossRef Malarría J, Lovey F, Sade M (2009) Two way shape memory effect in CuZnAl single crystals after pseudoelastic cycling at low temperatures. Mater Sci Eng, A 517:118–124CrossRef
40.
Zurück zum Zitat Funakubo H (1987) Shape memory alloys, Gordon and Breach Science Publishers Funakubo H (1987) Shape memory alloys, Gordon and Breach Science Publishers
41.
Zurück zum Zitat Delaey L, Ortin J, Van Humbeeck J (1988) Hysteresis effects in martensitic non-ferrous alloys. Cambridge, Inst. Met, p 60 Delaey L, Ortin J, Van Humbeeck J (1988) Hysteresis effects in martensitic non-ferrous alloys. Cambridge, Inst. Met, p 60
42.
Zurück zum Zitat Wu Y, Ertekin E, Sehitoglu H (2017) Elastocaloric cooling capacity of shape memory alloys—Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater 135:158–176CrossRef Wu Y, Ertekin E, Sehitoglu H (2017) Elastocaloric cooling capacity of shape memory alloys—Role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater 135:158–176CrossRef
43.
Zurück zum Zitat Hamilton RF, Sehitoglu H, Efstathiou C, Maier HJ, Chumlyakov Y (2006) Pseudoelasticity in Co–Ni–Al single and polycrystals. Acta Mater 54:587–599CrossRef Hamilton RF, Sehitoglu H, Efstathiou C, Maier HJ, Chumlyakov Y (2006) Pseudoelasticity in Co–Ni–Al single and polycrystals. Acta Mater 54:587–599CrossRef
44.
Zurück zum Zitat Pataky GJ, Ertekin E, Sehitoglu H (2015) Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater 96:420–427CrossRef Pataky GJ, Ertekin E, Sehitoglu H (2015) Elastocaloric cooling potential of NiTi, Ni2FeGa, and CoNiAl. Acta Mater 96:420–427CrossRef
45.
Zurück zum Zitat Hamilton RF, Efstathiou C, Sehitoglu H, Chumlyakov Y (2006) Thermal and stress-induced martensitic transformations in NiFeGa single crystals under tension and compression. Scripta Mater 54:465–469CrossRef Hamilton RF, Efstathiou C, Sehitoglu H, Chumlyakov Y (2006) Thermal and stress-induced martensitic transformations in NiFeGa single crystals under tension and compression. Scripta Mater 54:465–469CrossRef
46.
Zurück zum Zitat Hamilton R, Sehitoglu H, Efstathiou C, Maier H (2007) Mechanical response of NiFeGa alloys containing second-phase particles. Scripta Mater 57:497–499CrossRef Hamilton R, Sehitoglu H, Efstathiou C, Maier H (2007) Mechanical response of NiFeGa alloys containing second-phase particles. Scripta Mater 57:497–499CrossRef
47.
Zurück zum Zitat Moberly WJ (1991) Mechanical twinning and twinless martensite in ternary Ti50Ni(50-x)Mx intermetallics. Stanford University, California Moberly WJ (1991) Mechanical twinning and twinless martensite in ternary Ti50Ni(50-x)Mx intermetallics. Stanford University, California
48.
Zurück zum Zitat Moberly W, Proft J, Duerig T, Sinclair R (1989) Twinless martensite in TiNiCu shape memory alloys. Mater Sci Forum 56:605–610 Moberly W, Proft J, Duerig T, Sinclair R (1989) Twinless martensite in TiNiCu shape memory alloys. Mater Sci Forum 56:605–610
49.
Zurück zum Zitat Strnadel B, Ohashi S, Ohtsuka H, Miyazaki S, Ishihara T (1995) Effect of mechanical cycling on the pseudoelasticity characteristics of Ti-Ni and Ti-Ni-Cu alloys. Mater Sci Eng, A 203:187–196CrossRef Strnadel B, Ohashi S, Ohtsuka H, Miyazaki S, Ishihara T (1995) Effect of mechanical cycling on the pseudoelasticity characteristics of Ti-Ni and Ti-Ni-Cu alloys. Mater Sci Eng, A 203:187–196CrossRef
50.
Zurück zum Zitat Nam TH, Saburi T, Nakata Y, Shimizu K (1990) Shape Memory Characteristics and Lattice Deformation in Ti-Ni-Cu Alloys. Mater Trans, JIM 31:1050–1056CrossRef Nam TH, Saburi T, Nakata Y, Shimizu K (1990) Shape Memory Characteristics and Lattice Deformation in Ti-Ni-Cu Alloys. Mater Trans, JIM 31:1050–1056CrossRef
51.
Zurück zum Zitat Kotil T, Sehitoglu H, Maier H, Chumlyakov Y (2003) Transformation and detwinning induced electrical resistance variations in NiTiCu. Mater Sci Eng, A 359:280–289CrossRef Kotil T, Sehitoglu H, Maier H, Chumlyakov Y (2003) Transformation and detwinning induced electrical resistance variations in NiTiCu. Mater Sci Eng, A 359:280–289CrossRef
52.
Zurück zum Zitat Sehitoglu H, Karaman I, Zhang X, Kim H, Chumlyakov Y, Kireeva I, Maier H (2001) Deformation of NiTiCu shape memory single crystals in compression. Metall Mater Trans A 32:477–489CrossRef Sehitoglu H, Karaman I, Zhang X, Kim H, Chumlyakov Y, Kireeva I, Maier H (2001) Deformation of NiTiCu shape memory single crystals in compression. Metall Mater Trans A 32:477–489CrossRef
53.
Zurück zum Zitat Sehitoglu H, Karaman I, Zhang X, Viswanath A, Chumlyakov Y, Maier HJ (2001) Strain–temperature behavior of NiTiCu shape memory single crystals. Acta Mater 49:3621–3634CrossRef Sehitoglu H, Karaman I, Zhang X, Viswanath A, Chumlyakov Y, Maier HJ (2001) Strain–temperature behavior of NiTiCu shape memory single crystals. Acta Mater 49:3621–3634CrossRef
54.
Zurück zum Zitat Patriarca L, Wu Y, Sehitoglu H, Chumlyakov YI (2016) High temperature shape memory behavior of Ni50.3Ti25Hf24.7 single crystals. Scripta Mater 115:133–136CrossRef Patriarca L, Wu Y, Sehitoglu H, Chumlyakov YI (2016) High temperature shape memory behavior of Ni50.3Ti25Hf24.7 single crystals. Scripta Mater 115:133–136CrossRef
55.
Zurück zum Zitat Sehitoglu H, Wu Y, Patriarca L, Li G, Ojha A, Zhang S, Chumlyakov Y, Nishida M (2017) Superelasticity and shape memory behavior of NiTiHf alloys. Shape Memory Superelast 3:168–187CrossRef Sehitoglu H, Wu Y, Patriarca L, Li G, Ojha A, Zhang S, Chumlyakov Y, Nishida M (2017) Superelasticity and shape memory behavior of NiTiHf alloys. Shape Memory Superelast 3:168–187CrossRef
56.
Zurück zum Zitat Wu Y, Patriarca L, Li G, Sehitoglu H, Soejima Y, Ito T, Nishida M (2015) Shape memory response of polycrystalline NiTi12.5Hf alloy: transformation at small scales. Shape Memory Superelast 1:387–397CrossRef Wu Y, Patriarca L, Li G, Sehitoglu H, Soejima Y, Ito T, Nishida M (2015) Shape memory response of polycrystalline NiTi12.5Hf alloy: transformation at small scales. Shape Memory Superelast 1:387–397CrossRef
57.
Zurück zum Zitat Wang J, Sehitoglu H (2014) Modelling of martensite slip and twinning in NiTiHf shape memory alloys. Phil Mag 94:2297–2317CrossRef Wang J, Sehitoglu H (2014) Modelling of martensite slip and twinning in NiTiHf shape memory alloys. Phil Mag 94:2297–2317CrossRef
58.
Zurück zum Zitat Sato A, Chishima E, Soma K, Mori T (1982) Shape memory effect in γ⇄ ϵ transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall 30:1177–1183CrossRef Sato A, Chishima E, Soma K, Mori T (1982) Shape memory effect in γ⇄ ϵ transformation in Fe-30Mn-1Si alloy single crystals. Acta Metall 30:1177–1183CrossRef
59.
Zurück zum Zitat Yang J, Wayman C (1992) Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed martensitic transformations: part III. microstructures. Metall Trans A 23:1445–1454CrossRef Yang J, Wayman C (1992) Development of Fe-based shape memory alloys associated with face-centered cubic-hexagonal close-packed martensitic transformations: part III. microstructures. Metall Trans A 23:1445–1454CrossRef
60.
Zurück zum Zitat Gu Q, Van Humbeeck J, Delaey L (1994) A review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys. Le J de Phys IV 4:C3-135 Gu Q, Van Humbeeck J, Delaey L (1994) A review on the martensitic transformation and shape memory effect in Fe-Mn-Si alloys. Le J de Phys IV 4:C3-135
61.
Zurück zum Zitat Kajiwara S (1999) Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng, A 273:67–88CrossRef Kajiwara S (1999) Characteristic features of shape memory effect and related transformation behavior in Fe-based alloys. Mater Sci Eng, A 273:67–88CrossRef
62.
Zurück zum Zitat Sehitoglu H, Karaman I, Zhang XY, Chumlyakov Y, Maier HJ (2001) Deformation of FeNiCoTi shape memory single crystals. Scripta Mater 44:779–784CrossRef Sehitoglu H, Karaman I, Zhang XY, Chumlyakov Y, Maier HJ (2001) Deformation of FeNiCoTi shape memory single crystals. Scripta Mater 44:779–784CrossRef
63.
Zurück zum Zitat Niendorf T, Brenne F, Krooc P, Vollmer M, Gunther J, Schwarze D, Biermann H (2016) Microstructural evolution and functional properties of Fe-Mn-Al-Ni shape memory alloy processed by selective laser melting. Metall Mater Trans A 47:2569–2573CrossRef Niendorf T, Brenne F, Krooc P, Vollmer M, Gunther J, Schwarze D, Biermann H (2016) Microstructural evolution and functional properties of Fe-Mn-Al-Ni shape memory alloy processed by selective laser melting. Metall Mater Trans A 47:2569–2573CrossRef
64.
Zurück zum Zitat Vollmer M, Krooß P, Kriegel MJ, Klemm V, Somsen C, Ozcan H, Karaman I, Weidner A, Rafaja D, Biermann H, Niendorf T (2016) Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys—The role of grain orientation. Scripta Mater 114:156–160CrossRef Vollmer M, Krooß P, Kriegel MJ, Klemm V, Somsen C, Ozcan H, Karaman I, Weidner A, Rafaja D, Biermann H, Niendorf T (2016) Cyclic degradation in bamboo-like Fe–Mn–Al–Ni shape memory alloys—The role of grain orientation. Scripta Mater 114:156–160CrossRef
65.
Zurück zum Zitat Sehitoglu H, Efstathiou C, Maier HJ, Chumlyakov Y (2005) Magnetization, shape memory and hysteresis behavior of single and polycrystalline FeNiCoTi. J Magn Magn Mater 292:89CrossRef Sehitoglu H, Efstathiou C, Maier HJ, Chumlyakov Y (2005) Magnetization, shape memory and hysteresis behavior of single and polycrystalline FeNiCoTi. J Magn Magn Mater 292:89CrossRef
66.
Zurück zum Zitat Sehitoglu H, Efstathiou C, Maier H, Chumlyakov Y (2006) Hysteresis and deformation mechanisms of transforming FeNiCoTi. Mech Mater 38:538–550CrossRef Sehitoglu H, Efstathiou C, Maier H, Chumlyakov Y (2006) Hysteresis and deformation mechanisms of transforming FeNiCoTi. Mech Mater 38:538–550CrossRef
67.
Zurück zum Zitat Ojha A, Sehitoglu H (2016) Transformation stress modeling in new FeMnAlNi shape memory alloy. Int J Plast 86:93–111CrossRef Ojha A, Sehitoglu H (2016) Transformation stress modeling in new FeMnAlNi shape memory alloy. Int J Plast 86:93–111CrossRef
68.
Zurück zum Zitat Wang J, Sehitoglu H (2014) Dislocation slip and twinning in Ni-based L12 type alloys. Intermetallics 52:20–31CrossRef Wang J, Sehitoglu H (2014) Dislocation slip and twinning in Ni-based L12 type alloys. Intermetallics 52:20–31CrossRef
69.
Zurück zum Zitat Kim JI, Kim HY, Hosoda H, Miyazaki S (2005) Shape memory behavior of Ti-22Nb-(0.5-2.0) O (at.%) biomedical alloys. Mater Trans 46:852–857CrossRef Kim JI, Kim HY, Hosoda H, Miyazaki S (2005) Shape memory behavior of Ti-22Nb-(0.5-2.0) O (at.%) biomedical alloys. Mater Trans 46:852–857CrossRef
70.
Zurück zum Zitat Kim H, Hashimoto S, Kim J, Inamura T, Hosoda H, Miyazaki S (2006) Effect of Ta addition on shape memory behavior of Ti–22Nb alloy. Mater Sci Eng, A 417:120–128CrossRef Kim H, Hashimoto S, Kim J, Inamura T, Hosoda H, Miyazaki S (2006) Effect of Ta addition on shape memory behavior of Ti–22Nb alloy. Mater Sci Eng, A 417:120–128CrossRef
71.
Zurück zum Zitat Kim H, Ikehara Y, Kim J, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54:2419–2429CrossRef Kim H, Ikehara Y, Kim J, Hosoda H, Miyazaki S (2006) Martensitic transformation, shape memory effect and superelasticity of Ti–Nb binary alloys. Acta Mater 54:2419–2429CrossRef
72.
Zurück zum Zitat Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng, A 438:18–24CrossRef Miyazaki S, Kim HY, Hosoda H (2006) Development and characterization of Ni-free Ti-base shape memory and superelastic alloys. Mater Sci Eng, A 438:18–24CrossRef
73.
Zurück zum Zitat Chai YW, Kim HY, Hosoda H, Miyazaki S (2009) Self-accommodation in Ti–Nb shape memory alloys. Acta Mater 57:4054–4064CrossRef Chai YW, Kim HY, Hosoda H, Miyazaki S (2009) Self-accommodation in Ti–Nb shape memory alloys. Acta Mater 57:4054–4064CrossRef
74.
Zurück zum Zitat Kim HY, Fu J, Tobe H, Kim JI, Miyazaki S (2015) Crystal Structure, Transformation Strain, and Superelastic Property of Ti–Nb–Zr and Ti–Nb–Ta Alloys. Shape Memory Superelast 1:107–116CrossRef Kim HY, Fu J, Tobe H, Kim JI, Miyazaki S (2015) Crystal Structure, Transformation Strain, and Superelastic Property of Ti–Nb–Zr and Ti–Nb–Ta Alloys. Shape Memory Superelast 1:107–116CrossRef
75.
Zurück zum Zitat Ojha A, Sehitoglu H (2016) Slip resistance of Ti-based high-temperature shape memory alloys. Shape Memory Superelast 2:50–61CrossRef Ojha A, Sehitoglu H (2016) Slip resistance of Ti-based high-temperature shape memory alloys. Shape Memory Superelast 2:50–61CrossRef
76.
Zurück zum Zitat Sehitoglu H, Karaman I, Anderson R, Zhang X, Gall K, Maier H, Chumlyakov Y (2000) Compressive response of NiTi single crystals. Acta Mater 48:3311–3326CrossRef Sehitoglu H, Karaman I, Anderson R, Zhang X, Gall K, Maier H, Chumlyakov Y (2000) Compressive response of NiTi single crystals. Acta Mater 48:3311–3326CrossRef
77.
Zurück zum Zitat Sehitoglu H, Foglesong T, Maier HJ (2005) Precipitate effects on the mechanical behavior of aluminum copper alloys: part II modeling. Metall Mater Trans A 36:763–770CrossRef Sehitoglu H, Foglesong T, Maier HJ (2005) Precipitate effects on the mechanical behavior of aluminum copper alloys: part II modeling. Metall Mater Trans A 36:763–770CrossRef
78.
Zurück zum Zitat Sehitoglu H, Foglesong T, Maier HJ (2005) Precipitate effects on the mechanical behavior of aluminum copper alloys: part I Exp. Metall Mate Trans A 36:749–761CrossRef Sehitoglu H, Foglesong T, Maier HJ (2005) Precipitate effects on the mechanical behavior of aluminum copper alloys: part I Exp. Metall Mate Trans A 36:749–761CrossRef
79.
Zurück zum Zitat Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV, Maier HJ (1999) The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi. I. aged microstructure and micro-mechanical modeling, transactions of the ASME. J Eng Mater Technol 121:19–27CrossRef Gall K, Sehitoglu H, Chumlyakov YI, Kireeva IV, Maier HJ (1999) The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi. I. aged microstructure and micro-mechanical modeling, transactions of the ASME. J Eng Mater Technol 121:19–27CrossRef
80.
Zurück zum Zitat Gall K, Sehitoglu H, Chumlykov YI, Kireeva IV, Maier HJ (1999) The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi: part II-discussion of experimental results, transactions of the ASME. J Eng Mater Technol 121:28–37CrossRef Gall K, Sehitoglu H, Chumlykov YI, Kireeva IV, Maier HJ (1999) The influence of aging on critical transformation stress levels and martensite start temperatures in NiTi: part II-discussion of experimental results, transactions of the ASME. J Eng Mater Technol 121:28–37CrossRef
81.
Zurück zum Zitat Krooß P, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, schmahl WW, Maier HJ, Niendorf T (2016) Cyclic degradation of Co49Ni21Ga30 high-temperature shape memory alloy: on the roles of dislocation activity and chemical order. Shape Memory Superelast 2:37–49CrossRef Krooß P, Kadletz PM, Somsen C, Gutmann MJ, Chumlyakov YI, schmahl WW, Maier HJ, Niendorf T (2016) Cyclic degradation of Co49Ni21Ga30 high-temperature shape memory alloy: on the roles of dislocation activity and chemical order. Shape Memory Superelast 2:37–49CrossRef
82.
Zurück zum Zitat Chumlyakov YI, Kireeva I, Panchenko EY, Timofeeva E, Pobedennaya Z, Chusov S, Karaman I, Maier H, Cesari E, Kirillov V (2008) High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals. Russ Phys J 51:1016–1036CrossRef Chumlyakov YI, Kireeva I, Panchenko EY, Timofeeva E, Pobedennaya Z, Chusov S, Karaman I, Maier H, Cesari E, Kirillov V (2008) High-temperature superelasticity in CoNiGa, CoNiAl, NiFeGa, and TiNi monocrystals. Russ Phys J 51:1016–1036CrossRef
83.
Zurück zum Zitat Chumlyakov Y, Panchenko E, Kireeva I, Karaman I, Sehitoglu H, Maier HJ, Tverdokhlebova A, Ovsyannikov A (2008) Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals. Mater Sci Eng, A 481–482:95–100CrossRef Chumlyakov Y, Panchenko E, Kireeva I, Karaman I, Sehitoglu H, Maier HJ, Tverdokhlebova A, Ovsyannikov A (2008) Orientation dependence and tension/compression asymmetry of shape memory effect and superelasticity in ferromagnetic Co40Ni33Al27, Co49Ni21Ga30 and Ni54Fe19Ga27 single crystals. Mater Sci Eng, A 481–482:95–100CrossRef
84.
Zurück zum Zitat Umakoshi L, Yamaguchi M, Namba L, Murakami K (1976) The effect of crystal orientation on the strength anomaly in β CuZn at around 200 °C. Acta Metall 24:89–93CrossRef Umakoshi L, Yamaguchi M, Namba L, Murakami K (1976) The effect of crystal orientation on the strength anomaly in β CuZn at around 200 °C. Acta Metall 24:89–93CrossRef
85.
Zurück zum Zitat Romero R, Lovey F, Ahlers M (1988) Plasticity in β phase Cu-Zn-Al alloys. Philos Mag A 58:881–903CrossRef Romero R, Lovey F, Ahlers M (1988) Plasticity in β phase Cu-Zn-Al alloys. Philos Mag A 58:881–903CrossRef
86.
Zurück zum Zitat Alkan S, Ojha A, Sehitoglu H (2018) The complexity of non-Schmid behavior in the CuZnAl shape memory alloy. J Mech Phys Solids 114:238–257CrossRef Alkan S, Ojha A, Sehitoglu H (2018) The complexity of non-Schmid behavior in the CuZnAl shape memory alloy. J Mech Phys Solids 114:238–257CrossRef
87.
Zurück zum Zitat Hamilton R, Sehitoglu H, Efstathiou C, Maier H (2007) Inter-martensitic transitions in Ni–Fe–Ga single crystals. Acta Mater 55:4867–4876CrossRef Hamilton R, Sehitoglu H, Efstathiou C, Maier H (2007) Inter-martensitic transitions in Ni–Fe–Ga single crystals. Acta Mater 55:4867–4876CrossRef
88.
Zurück zum Zitat Alkan S, Wu Y, Ojha A, Sehitoglu H (2018) Transformation stress of shape memory alloy CuZnAl: non-Schmid behavior. Acta Mater 149:220–234CrossRef Alkan S, Wu Y, Ojha A, Sehitoglu H (2018) Transformation stress of shape memory alloy CuZnAl: non-Schmid behavior. Acta Mater 149:220–234CrossRef
Metadaten
Titel
Recent Progress on Modeling Slip Deformation in Shape Memory Alloys
verfasst von
H. Sehitoglu
S. Alkan
Publikationsdatum
20.03.2018
Verlag
Springer International Publishing
Erschienen in
Shape Memory and Superelasticity / Ausgabe 1/2018
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-018-0166-z

Weitere Artikel der Ausgabe 1/2018

Shape Memory and Superelasticity 1/2018 Zur Ausgabe

SPECIAL ISSUE: A TRIBUTE TO PROF. SHUICHI MIYAZAKI – FROM FUNDAMENTALS TO APPLICATIONS, INVITED PAPER

Electrochemical Properties of Si Film Electrodes Containing TiNi Thin-Film Current Collectors

SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER

Mechanical Stabilization of Martensite in Cu–Ni–Al Single Crystal and Unconventional Way to Detect It

SPECIAL ISSUE: A TRIBUTE TO PROF. JAN VAN HUMBEECK – A LIFETIME of CONTRIBUTIONS to UNDERSTANDING MARTENSITE, INVITED PAPER

In Situ Neutron Diffraction Analyzing Stress-Induced Phase Transformation and Martensite Elasticity in [001]-Oriented Co49Ni21Ga30 Shape Memory Alloy Single Crystals

SPECIAL ISSUE: SHAPE MEMORY AND SUPERELASTIC TECHNOLOGIES CONFERENCE 2017, INVITED PAPER

Effects of Tube Processing on the Fatigue Life of Nitinol

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.