Skip to main content
Erschienen in: Microsystem Technologies 7/2018

06.02.2018 | Technical Paper

Modelling and analysis of diaphragm integrated SU8/CB nanocomposite piezoresistive polymer microcantilever biosensor

verfasst von: Mohd. Zahid Ansari, Mahak Bisen, Chongdu Cho

Erschienen in: Microsystem Technologies | Ausgabe 7/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This study investigates the effect of cantilever size and diaphragm size on deflection, frequency, stress and sensitivity characteristics of a diaphragm integrated SU8/CB piezoresistive polymer microcantilever biosensor. It consists SU8 square diaphragm anchored by four SU8 cantilevers with SU8/CB piezoresistor inside. Analytical model for biosensor deflection is presented and validated against numerical obtained using ANSYS Multiphysics. Diaphragm size was changed as 305, 505 and 705 µm. Cantilever length and width were first changed independently and then jointly to characterise performance of biosensor. Results show good conformity between analytical and numerical results and the sensitivity results are increasing linearly with diaphragm size, and short and narrow cantilevers show higher sensitivity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alexeev A, Loos J, Koetse MM (2006) Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy (C-AFM). Ultramicroscopy 106:191–199CrossRef Alexeev A, Loos J, Koetse MM (2006) Nanoscale electrical characterization of semiconducting polymer blends by conductive atomic force microscopy (C-AFM). Ultramicroscopy 106:191–199CrossRef
Zurück zum Zitat Annamdas VGM, Soh CK (2017) Load monitoring using a calibrated piezo diaphragm based impedance strain sensor and wireless sensor network in real time. Smart Mater Struct 26:045036CrossRef Annamdas VGM, Soh CK (2017) Load monitoring using a calibrated piezo diaphragm based impedance strain sensor and wireless sensor network in real time. Smart Mater Struct 26:045036CrossRef
Zurück zum Zitat Ansari MZ, Cho C (2016) Effect of p-type and n-type piezoresistors on characteristics of high sensitive silicon piezoresistive microcantilever designs. Microsyst Technol 22:93–101CrossRef Ansari MZ, Cho C (2016) Effect of p-type and n-type piezoresistors on characteristics of high sensitive silicon piezoresistive microcantilever designs. Microsyst Technol 22:93–101CrossRef
Zurück zum Zitat Ansari MZ, Gangadhara BS (2014) Piezoresistivity and its applications in nanomechanical sensors. Procedia Mater Sci 5:1308–1313CrossRef Ansari MZ, Gangadhara BS (2014) Piezoresistivity and its applications in nanomechanical sensors. Procedia Mater Sci 5:1308–1313CrossRef
Zurück zum Zitat Ansari MZ, Cho C, Urban G (2012) Stepped piezoresistive microcantilever designs for biosensors. J Phys D Appl Phys 45:215401CrossRef Ansari MZ, Cho C, Urban G (2012) Stepped piezoresistive microcantilever designs for biosensors. J Phys D Appl Phys 45:215401CrossRef
Zurück zum Zitat Bisen M, Ansari MZ (2017) Phenomenological modelling sensitivity of SU8/CB nanocomposite conducting polymer microcantilever biosensor. Mat Today 4:10395–10399 Bisen M, Ansari MZ (2017) Phenomenological modelling sensitivity of SU8/CB nanocomposite conducting polymer microcantilever biosensor. Mat Today 4:10395–10399
Zurück zum Zitat Gammelgaard L, Rasmussen PA, Calleja M, Vettiger P, Boisen A (2006) Microfabricated photoplastic cantilever with integrated photoplastic carbon based piezoresistive strain sensor. Appl Phys Lett 88:113508CrossRef Gammelgaard L, Rasmussen PA, Calleja M, Vettiger P, Boisen A (2006) Microfabricated photoplastic cantilever with integrated photoplastic carbon based piezoresistive strain sensor. Appl Phys Lett 88:113508CrossRef
Zurück zum Zitat Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936CrossRef Hu N, Karube Y, Yan C, Masuda Z, Fukunaga H (2008) Tunneling effect in a polymer/carbon nanotube nanocomposite strain sensor. Acta Mater 56:2929–2936CrossRef
Zurück zum Zitat Hu Z, Hedley J, Keegan N, Spoors J, Waugh W, Gallacher B, Boillot F, Collet J, McNeil C (2013) Design, fabrication and characterization of a piezoelectric MEMS diaphragm resonator mass sensor. J Micromech Microeng 23:125019CrossRef Hu Z, Hedley J, Keegan N, Spoors J, Waugh W, Gallacher B, Boillot F, Collet J, McNeil C (2013) Design, fabrication and characterization of a piezoelectric MEMS diaphragm resonator mass sensor. J Micromech Microeng 23:125019CrossRef
Zurück zum Zitat Hwang ES, Seo J, Kim YJ (2007) A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics. J MEMS 16:556–563CrossRef Hwang ES, Seo J, Kim YJ (2007) A polymer-based flexible tactile sensor for both normal and shear load detections and its application for robotics. J MEMS 16:556–563CrossRef
Zurück zum Zitat Knite M, Teteris V, Kiploka A, Kaupuzs J (2004) Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens Actuator A Phys 110:142–149CrossRef Knite M, Teteris V, Kiploka A, Kaupuzs J (2004) Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor materials. Sens Actuator A Phys 110:142–149CrossRef
Zurück zum Zitat Kuehne I, Marinkovic D, Eckstein G, Seidel H (2008) A new approach for MEMS power generation based on a piezoelectric diaphragm. Sens Actuator A Phys 142:292–297CrossRef Kuehne I, Marinkovic D, Eckstein G, Seidel H (2008) A new approach for MEMS power generation based on a piezoelectric diaphragm. Sens Actuator A Phys 142:292–297CrossRef
Zurück zum Zitat Lu X, Guo Q, Xu Z, Ren W, Cheng ZY (2012) Biosensor platform based on stress-improved piezoelectric membrane. Sens Actuator A Phys 179:32–38CrossRef Lu X, Guo Q, Xu Z, Ren W, Cheng ZY (2012) Biosensor platform based on stress-improved piezoelectric membrane. Sens Actuator A Phys 179:32–38CrossRef
Zurück zum Zitat Mamunya YP, Davydenko VV, Pissis P, Lebedev EV (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J 38:1887–1897CrossRef Mamunya YP, Davydenko VV, Pissis P, Lebedev EV (2002) Electrical and thermal conductivity of polymers filled with metal powders. Eur Polym J 38:1887–1897CrossRef
Zurück zum Zitat Masuya Y, Ozawa R, Ishida M, Sawada K, Takahashi K (2015) Fast mechanical biosensing in liquid using mems Fabry–Perot interferometric surface-stress sensor. In: 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), Anchorage, USA Masuya Y, Ozawa R, Ishida M, Sawada K, Takahashi K (2015) Fast mechanical biosensing in liquid using mems Fabry–Perot interferometric surface-stress sensor. In: 18th international conference on solid-state sensors, actuators and microsystems (TRANSDUCERS), Anchorage, USA
Zurück zum Zitat Oskouyi A, Uttandaraman U, Mertiny P (2014) Tunnelling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Materials 7:2501–2521CrossRef Oskouyi A, Uttandaraman U, Mertiny P (2014) Tunnelling conductivity and piezoresistivity of composites containing randomly dispersed conductive nano-platelets. Materials 7:2501–2521CrossRef
Zurück zum Zitat Patil SJ, Adhikari A, Baghini MS, Rao VR (2014) An ultra-sensitive piezoresistive polymer nano-composite microcantilever platform for humidity and soil moisture detection. Sens Actuator B 203:165–173CrossRef Patil SJ, Adhikari A, Baghini MS, Rao VR (2014) An ultra-sensitive piezoresistive polymer nano-composite microcantilever platform for humidity and soil moisture detection. Sens Actuator B 203:165–173CrossRef
Zurück zum Zitat Ramanaviciene A, Schuhmann W, Ramanavicius A (2006) AFM study of conducting polymer polypyrrole nanoparticles formed by redox enzyme—glucose oxidase—initiated polymerisation. Colloids Surf B 48:159–166CrossRef Ramanaviciene A, Schuhmann W, Ramanavicius A (2006) AFM study of conducting polymer polypyrrole nanoparticles formed by redox enzyme—glucose oxidase—initiated polymerisation. Colloids Surf B 48:159–166CrossRef
Zurück zum Zitat Ramanavicius A, Oztekin Y, Balevicius Z, Kausaite-Mikstimiene A, Krikstolaityte V, Baleviciute I, Ratautaite V, Ramanaviciene A (2012) Conducting and electrochemically generated polymers in sensor design (mini review). Procedia Eng 47:825–828CrossRef Ramanavicius A, Oztekin Y, Balevicius Z, Kausaite-Mikstimiene A, Krikstolaityte V, Baleviciute I, Ratautaite V, Ramanaviciene A (2012) Conducting and electrochemically generated polymers in sensor design (mini review). Procedia Eng 47:825–828CrossRef
Zurück zum Zitat Seena V, Fernandes A, Pant P, Mukherji S, Rao VR (2011) Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection. Nanotechnology 22:295501CrossRef Seena V, Fernandes A, Pant P, Mukherji S, Rao VR (2011) Polymer nanocomposite nanomechanical cantilever sensors: material characterization, device development and application in explosive vapour detection. Nanotechnology 22:295501CrossRef
Zurück zum Zitat Shang Y, Ni Q, Ding D, Chen N, Wang T (2015) Fabrication of optical fiber sensor based on double-layer SU-8 diaphragm and the partial discharge detection. Opt Lett 11:61–64CrossRef Shang Y, Ni Q, Ding D, Chen N, Wang T (2015) Fabrication of optical fiber sensor based on double-layer SU-8 diaphragm and the partial discharge detection. Opt Lett 11:61–64CrossRef
Zurück zum Zitat Sharma P, Reece TJ, Ducharme S, Gruverman SA (2011) High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. Nano Lett 5:1970–1975CrossRef Sharma P, Reece TJ, Ducharme S, Gruverman SA (2011) High-resolution studies of domain switching behavior in nanostructured ferroelectric polymers. Nano Lett 5:1970–1975CrossRef
Zurück zum Zitat Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34:313–318CrossRef Tufte ON, Stelzer EL (1963) Piezoresistive properties of silicon diffused layers. J Appl Phys 34:313–318CrossRef
Zurück zum Zitat Xiao Y, Liu Y, Borg G, Li CM (2011) Design of a novel disposable piezoelectric co-polymer diaphragm based biosensor unit. Mat Sci Eng C 31:95–98CrossRef Xiao Y, Liu Y, Borg G, Li CM (2011) Design of a novel disposable piezoelectric co-polymer diaphragm based biosensor unit. Mat Sci Eng C 31:95–98CrossRef
Zurück zum Zitat Xin Y, Li Z, Odum LV, Cheng ZY, Xu Z (2006) Piezoelectric diaphragm as a high performance biosensor platform. Appl Phys Lett 89:223508CrossRef Xin Y, Li Z, Odum LV, Cheng ZY, Xu Z (2006) Piezoelectric diaphragm as a high performance biosensor platform. Appl Phys Lett 89:223508CrossRef
Zurück zum Zitat Yamashita K, Murata A, Okuyama M (1998) Miniaturized infrared sensor using silicon diaphragm based on Golay cell. Sens Actuator A Phys 66:29–32CrossRef Yamashita K, Murata A, Okuyama M (1998) Miniaturized infrared sensor using silicon diaphragm based on Golay cell. Sens Actuator A Phys 66:29–32CrossRef
Zurück zum Zitat Yoshikawa G, Akiyama T, Gautsch S, Vettiger P, Rohrer H (2011) Nanomechanical membrane-type surface stress sensor. Nano Lett 11:1044–1048CrossRef Yoshikawa G, Akiyama T, Gautsch S, Vettiger P, Rohrer H (2011) Nanomechanical membrane-type surface stress sensor. Nano Lett 11:1044–1048CrossRef
Zurück zum Zitat Yoshikawa G, Akiyama T, Loizeau F, Shiba K, Gautsch S, Nakayama T, Vettiger P, de Rooij NF, Aono M (2012) Two dimensional array of piezoresistive nanomechanical membrane-type surface stress sensor (MSS) with improved sensitivity. Sensors 12:15873–15887CrossRef Yoshikawa G, Akiyama T, Loizeau F, Shiba K, Gautsch S, Nakayama T, Vettiger P, de Rooij NF, Aono M (2012) Two dimensional array of piezoresistive nanomechanical membrane-type surface stress sensor (MSS) with improved sensitivity. Sensors 12:15873–15887CrossRef
Zurück zum Zitat Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, 8th edn. McGraw-Hill Education, New York Young WC, Budynas RG (2002) Roark’s formulas for stress and strain, 8th edn. McGraw-Hill Education, New York
Metadaten
Titel
Modelling and analysis of diaphragm integrated SU8/CB nanocomposite piezoresistive polymer microcantilever biosensor
verfasst von
Mohd. Zahid Ansari
Mahak Bisen
Chongdu Cho
Publikationsdatum
06.02.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2018
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3777-6

Weitere Artikel der Ausgabe 7/2018

Microsystem Technologies 7/2018 Zur Ausgabe

Neuer Inhalt