Skip to main content
Erschienen in: Cellulose 11/2019

14.06.2019 | Review Paper

Bacterial nanocellulose in papermaking

verfasst von: Matej Skočaj

Erschienen in: Cellulose | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial nanocellulose (BNC) is a unique natural nanomaterial that shares very few similarities with other natural or industrially produced nanomaterials. BNC can be produced by a variety of bacteria, as a survival aid in different ecological niches. BNC is traditionally produced by static or shaking culture methods, and the ‘mother vinegar’, or biofilm, is a typical example of this product after static vinegar fermentation. BNC has great potential in biomedicine, and recent studies have also demonstrated its use in the papermaking industry. It has nanoscale fiber size and large numbers of free hydroxyl groups, which ensure high inter-fiber hydrogen bonding. Thus, BNC has great potential as a reinforcing material, and is especially applicable for recycled paper and for paper made of nonwoody cellulose fiber. As well as enhancing the strength and durability of paper, modified BNC shows great potential for production of fire resistant and specialized papers. However, the biotechnological aspects of BNC need to be improved to minimize the cost of its production, and to thus make this process economically feasible.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aitomäki Y, Oksman K (2014) Reinforcing efficiency of nanocellulose in polymers. React Funct Polym 85:151–156CrossRef Aitomäki Y, Oksman K (2014) Reinforcing efficiency of nanocellulose in polymers. React Funct Polym 85:151–156CrossRef
Zurück zum Zitat Ashjaran A, Yazdanshenas ME, Rashidi A et al (2013) Overview of bio nanofabric from bacterial cellulose. J Text Inst 104:121–131CrossRef Ashjaran A, Yazdanshenas ME, Rashidi A et al (2013) Overview of bio nanofabric from bacterial cellulose. J Text Inst 104:121–131CrossRef
Zurück zum Zitat Balea A, Merayo N, Fuente E et al (2017) Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose 25:1339–1351CrossRef Balea A, Merayo N, Fuente E et al (2017) Cellulose nanofibers from residues to improve linting and mechanical properties of recycled paper. Cellulose 25:1339–1351CrossRef
Zurück zum Zitat Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107CrossRefPubMed Basta AH, El-Saied H (2009) Performance of improved bacterial cellulose application in the production of functional paper. J Appl Microbiol 107:2098–2107CrossRefPubMed
Zurück zum Zitat Blanco A, Miranda R, Monte MC (2013) Extending the limits of paper recycling: improvements along the paper value chain. For Syst 22:471–483 Blanco A, Miranda R, Monte MC (2013) Extending the limits of paper recycling: improvements along the paper value chain. For Syst 22:471–483
Zurück zum Zitat Brown AJ (1886) XIX. The chemical action of pure cultivations of bacterium aceti. J Chem Soc Trans 49:172–187CrossRef Brown AJ (1886) XIX. The chemical action of pure cultivations of bacterium aceti. J Chem Soc Trans 49:172–187CrossRef
Zurück zum Zitat Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Part Polym Chem 42:487–495CrossRef Brown RM (2004) Cellulose structure and biosynthesis: what is in store for the 21st century? J Polym Sci Part Polym Chem 42:487–495CrossRef
Zurück zum Zitat Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569CrossRefPubMedPubMedCentral Brown RM, Willison JH, Richardson CL (1976) Cellulose biosynthesis in Acetobacter xylinum: visualization of the site of synthesis and direct measurement of the in vivo process. Proc Natl Acad Sci USA 73:4565–4569CrossRefPubMedPubMedCentral
Zurück zum Zitat Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91CrossRef Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91CrossRef
Zurück zum Zitat Campano C, Merayo N, Balea A et al (2018a) Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25:269–280CrossRef Campano C, Merayo N, Balea A et al (2018a) Mechanical and chemical dispersion of nanocelluloses to improve their reinforcing effect on recycled paper. Cellulose 25:269–280CrossRef
Zurück zum Zitat Campano C, Merayo N, Negro C, Blanco Á (2018b) Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. Int J Biol Macromol 114:1077–1083CrossRefPubMed Campano C, Merayo N, Negro C, Blanco Á (2018b) Low-fibrillated bacterial cellulose nanofibers as a sustainable additive to enhance recycled paper quality. Int J Biol Macromol 114:1077–1083CrossRefPubMed
Zurück zum Zitat Campano C, Merayo N, Negro C, Blanco A (2018c) In-situ production of bacterial cellulose to economically improve recycled paper properties. Int J Biol Macromol 118:1532–1541CrossRefPubMed Campano C, Merayo N, Negro C, Blanco A (2018c) In-situ production of bacterial cellulose to economically improve recycled paper properties. Int J Biol Macromol 118:1532–1541CrossRefPubMed
Zurück zum Zitat Carreira P, Mendes JAS, Trovatti E et al (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360CrossRefPubMed Carreira P, Mendes JAS, Trovatti E et al (2011) Utilization of residues from agro-forest industries in the production of high value bacterial cellulose. Bioresour Technol 102:7354–7360CrossRefPubMed
Zurück zum Zitat Chang W-S, Chen H-H (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocoll 53:75–83CrossRef Chang W-S, Chen H-H (2016) Physical properties of bacterial cellulose composites for wound dressings. Food Hydrocoll 53:75–83CrossRef
Zurück zum Zitat Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68:345–352CrossRefPubMed Chao Y, Ishida T, Sugano Y, Shoda M (2000) Bacterial cellulose production by Acetobacter xylinum in a 50-L internal-loop airlift reactor. Biotechnol Bioeng 68:345–352CrossRefPubMed
Zurück zum Zitat Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124 Chawla PR, Bajaj IB, Survase SA, Singhal RS (2009) Microbial cellulose: fermentative production and applications. Food Technol Biotechnol 47:107–124
Zurück zum Zitat Cheng H-P, Wang P-M, Chen J-W, Wu W-T (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35:125–132CrossRefPubMed Cheng H-P, Wang P-M, Chen J-W, Wu W-T (2002) Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor. Biotechnol Appl Biochem 35:125–132CrossRefPubMed
Zurück zum Zitat Dahman Y (2009) Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechnol 9:5105–5122CrossRefPubMed Dahman Y (2009) Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. J Nanosci Nanotechnol 9:5105–5122CrossRefPubMed
Zurück zum Zitat Donini ÍAN, Salvi DTBD, Fukumoto FK et al (2010) Biossíntese e recentes avanços na produção de celulose bacteriana. Eclética Quím 35:165–178CrossRef Donini ÍAN, Salvi DTBD, Fukumoto FK et al (2010) Biossíntese e recentes avanços na produção de celulose bacteriana. Eclética Quím 35:165–178CrossRef
Zurück zum Zitat Eichhorn SJ, Baillie CA, Zafeiropoulos N et al (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131CrossRef Eichhorn SJ, Baillie CA, Zafeiropoulos N et al (2001) Review: current international research into cellulosic fibres and composites. J Mater Sci 36:2107–2131CrossRef
Zurück zum Zitat Eichhorn SJ, Dufresne A, Aranguren M et al (2009) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef Eichhorn SJ, Dufresne A, Aranguren M et al (2009) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef
Zurück zum Zitat El-Saied H, El-Diwany AI, Basta AH et al (2008) Production and characterization of economical bacterial cellulose. BioResources 3:1196–1217 El-Saied H, El-Diwany AI, Basta AH et al (2008) Production and characterization of economical bacterial cellulose. BioResources 3:1196–1217
Zurück zum Zitat Fang L, Catchmark JM (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21:3965–3978CrossRef Fang L, Catchmark JM (2014) Characterization of water-soluble exopolysaccharides from Gluconacetobacter xylinus and their impacts on bacterial cellulose crystallization and ribbon assembly. Cellulose 21:3965–3978CrossRef
Zurück zum Zitat Fillat A, Martínez J, Valls C et al (2018) Bacterial cellulose for increasing barrier properties of paper products. Cellulose 25:6093–6105CrossRef Fillat A, Martínez J, Valls C et al (2018) Bacterial cellulose for increasing barrier properties of paper products. Cellulose 25:6093–6105CrossRef
Zurück zum Zitat Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442CrossRefPubMed Fu L, Zhang J, Yang G (2013) Present status and applications of bacterial cellulose-based materials for skin tissue repair. Carbohydr Polym 92:1432–1442CrossRefPubMed
Zurück zum Zitat Gallegos AMA, Carrera SH, Parra R et al (2016) Bacterial cellulose: a sustainable source to develop value-added products—a review. BioResources 11:5641–5655CrossRef Gallegos AMA, Carrera SH, Parra R et al (2016) Bacterial cellulose: a sustainable source to develop value-added products—a review. BioResources 11:5641–5655CrossRef
Zurück zum Zitat Gao W-H, Chen K-F, Yang R-D et al (2010) Properties of bacterial cellulose ad its influence on the physical properties of paper. BioResources 6:144–153 Gao W-H, Chen K-F, Yang R-D et al (2010) Properties of bacterial cellulose ad its influence on the physical properties of paper. BioResources 6:144–153
Zurück zum Zitat Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213CrossRef Gatenholm P, Klemm D (2010) Bacterial nanocellulose as a renewable material for biomedical applications. MRS Bull 35:208–213CrossRef
Zurück zum Zitat Goncalves M, Łaszkiewicz B (1999) Celuloza bakteryjna—biosynteza, właściwości i zastosowanie. Prz Pap R 55:657–661 Goncalves M, Łaszkiewicz B (1999) Celuloza bakteryjna—biosynteza, właściwości i zastosowanie. Prz Pap R 55:657–661
Zurück zum Zitat Hamada H, Beckvermit J, Bousfield D (2010) Nanofibrillated cellulose with fine clay as a coating agent to improve print quality. In: Paper conference and trade show, PaperCon, pp 854–880 Hamada H, Beckvermit J, Bousfield D (2010) Nanofibrillated cellulose with fine clay as a coating agent to improve print quality. In: Paper conference and trade show, PaperCon, pp 854–880
Zurück zum Zitat Hon DN-S (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25CrossRef Hon DN-S (1994) Cellulose: a random walk along its historical path. Cellulose 1:1–25CrossRef
Zurück zum Zitat Hong F, Zhu YX, Yang G, Yang XX (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biotechnol 86:675–680CrossRef Hong F, Zhu YX, Yang G, Yang XX (2011) Wheat straw acid hydrolysate as a potential cost-effective feedstock for production of bacterial cellulose. J Chem Technol Biotechnol 86:675–680CrossRef
Zurück zum Zitat Hornung M, Ludwig M, Schmauder HP (2007) Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (part 3). Eng Life Sci 7:35–41CrossRef Hornung M, Ludwig M, Schmauder HP (2007) Optimizing the production of bacterial cellulose in surface culture: a novel aerosol bioreactor working on a fed batch principle (part 3). Eng Life Sci 7:35–41CrossRef
Zurück zum Zitat Huang Y, Zhu C, Yang J et al (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30CrossRef Huang Y, Zhu C, Yang J et al (2014) Recent advances in bacterial cellulose. Cellulose 21:1–30CrossRef
Zurück zum Zitat Hubbe MA (2013) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763CrossRef Hubbe MA (2013) Prospects for maintaining strength of paper and paperboard products while using less forest resources: a review. BioResources 9:1634–1763CrossRef
Zurück zum Zitat Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRef Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270CrossRef
Zurück zum Zitat Ishihara M, Matsunaga M, Hayashi N, Tišler V (2002) Utilization of d-xylose as carbon source for production of bacterial cellulose. Enzym Microb Technol 31:986–991CrossRef Ishihara M, Matsunaga M, Hayashi N, Tišler V (2002) Utilization of d-xylose as carbon source for production of bacterial cellulose. Enzym Microb Technol 31:986–991CrossRef
Zurück zum Zitat Jeon S, Yoo Y-M, Park J-W et al (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14:1621–1624CrossRef Jeon S, Yoo Y-M, Park J-W et al (2014) Electrical conductivity and optical transparency of bacterial cellulose based composite by static and agitated methods. Curr Appl Phys 14:1621–1624CrossRef
Zurück zum Zitat Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRef Jonas R, Farah LF (1998) Production and application of microbial cellulose. Polym Degrad Stab 59:101–106CrossRef
Zurück zum Zitat Jozala AF, de Lencastre-Novaes LC, Lopes AM et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072CrossRefPubMed Jozala AF, de Lencastre-Novaes LC, Lopes AM et al (2016) Bacterial nanocellulose production and application: a 10-year overview. Appl Microbiol Biotechnol 100:2063–2072CrossRefPubMed
Zurück zum Zitat Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271CrossRef Jung JY, Khan T, Park JK, Chang HN (2007) Production of bacterial cellulose by Gluconacetobacter hansenii using a novel bioreactor equipped with a spin filter. Korean J Chem Eng 24:265–271CrossRef
Zurück zum Zitat Karlovits I, Lavrič G (2018) The influence of nanocellulose addition on printing properties of recycled paper. In: Gane P (ed) Advances in printing and media technology: proceedings of the 45th international research conference of Iarigai, pp 49–54 Karlovits I, Lavrič G (2018) The influence of nanocellulose addition on printing properties of recycled paper. In: Gane P (ed) Advances in printing and media technology: proceedings of the 45th international research conference of Iarigai, pp 49–54
Zurück zum Zitat Kawano Y, Saotome T, Ochiai Y et al (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52:957–966CrossRefPubMed Kawano Y, Saotome T, Ochiai Y et al (2011) Cellulose accumulation and a cellulose synthase gene are responsible for cell aggregation in the cyanobacterium Thermosynechococcus vulcanus RKN. Plant Cell Physiol 52:957–966CrossRefPubMed
Zurück zum Zitat Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10CrossRef Keshk SM (2014) Bacterial cellulose production and its industrial applications. J Bioprocess Biotech 4:1–10CrossRef
Zurück zum Zitat Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4:478–482 Keshk SMAS, Sameshima K (2005) Evaluation of different carbon sources for bacterial cellulose production. Afr J Biotechnol 4:478–482
Zurück zum Zitat Kim C-W, Kim D-S, Kang S-Y et al (2006) Structural studies of electrospun cellulose nanofibers. Polymer 14:5097–5107CrossRef Kim C-W, Kim D-S, Kang S-Y et al (2006) Structural studies of electrospun cellulose nanofibers. Polymer 14:5097–5107CrossRef
Zurück zum Zitat Kim Y-J, Kim J-N, Wee Y-J et al (2007) Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537PubMed Kim Y-J, Kim J-N, Wee Y-J et al (2007) Bacterial cellulose production by Gluconacetobacter sp. PKY5 in a rotary biofilm contactor. Appl Biochem Biotechnol 137:529–537PubMed
Zurück zum Zitat Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603CrossRef
Zurück zum Zitat Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466CrossRefPubMed Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl 50:5438–5466CrossRefPubMed
Zurück zum Zitat Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256CrossRefPubMed Kongruang S (2008) Bacterial cellulose production by Acetobacter xylinum strains from agricultural waste products. Appl Biochem Biotechnol 148:245–256CrossRefPubMed
Zurück zum Zitat Kose R, Yamaguchi K, Okayama T (2016) Preparation of fine fiber sheets from recycled pulp fibers using aqueous counter collision. Cellulose 23:1393–1399CrossRef Kose R, Yamaguchi K, Okayama T (2016) Preparation of fine fiber sheets from recycled pulp fibers using aqueous counter collision. Cellulose 23:1393–1399CrossRef
Zurück zum Zitat Kralisch D, Hessler N, Klemm D et al (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105:740–747PubMed Kralisch D, Hessler N, Klemm D et al (2010) White biotechnology for cellulose manufacturing—the HoLiR concept. Biotechnol Bioeng 105:740–747PubMed
Zurück zum Zitat Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335CrossRef Kurosumi A, Sasaki C, Yamashita Y, Nakamura Y (2009) Utilization of various fruit juices as carbon source for production of bacterial cellulose by Acetobacter xylinum NBRC 13693. Carbohydr Polym 76:333–335CrossRef
Zurück zum Zitat Laftah WA, Rahman WAWA (2016) Pulping process and the potential of using nonwood pineapple leaves fiber for pulp and paper production: a review. J Nat Fibers 13:85–102CrossRef Laftah WA, Rahman WAWA (2016) Pulping process and the potential of using nonwood pineapple leaves fiber for pulp and paper production: a review. J Nat Fibers 13:85–102CrossRef
Zurück zum Zitat Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRefPubMed Lavoine N, Desloges I, Dufresne A, Bras J (2012) Microfibrillated cellulose—its barrier properties and applications in cellulosic materials: a review. Carbohydr Polym 90:735–764CrossRefPubMed
Zurück zum Zitat Lavrič G (2016) Efficiency of fibrillation of cellulose fibres process by enzymes. MSc thesis, University of Ljubljana, Ljubljana, Slovenia Lavrič G (2016) Efficiency of fibrillation of cellulose fibres process by enzymes. MSc thesis, University of Ljubljana, Ljubljana, Slovenia
Zurück zum Zitat Lee K-Y, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32CrossRefPubMed Lee K-Y, Buldum G, Mantalaris A, Bismarck A (2014) More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci 14:10–32CrossRefPubMed
Zurück zum Zitat Legnani C, Vilani C, Calil VL et al (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517:1016–1020CrossRef Legnani C, Vilani C, Calil VL et al (2008) Bacterial cellulose membrane as flexible substrate for organic light emitting devices. Thin Solid Films 517:1016–1020CrossRef
Zurück zum Zitat Lim G-H, Lee J, Kwon N et al (2016) Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electron Mater Lett 12:574–579CrossRef Lim G-H, Lee J, Kwon N et al (2016) Fabrication of flexible magnetic papers based on bacterial cellulose and barium hexaferrite with improved mechanical properties. Electron Mater Lett 12:574–579CrossRef
Zurück zum Zitat Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef Lin N, Dufresne A (2014) Nanocellulose in biomedicine: current status and future prospect. Eur Polym J 59:302–325CrossRef
Zurück zum Zitat Lin S-P, Loira Calvar I, Catchmark JM et al (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219CrossRef Lin S-P, Loira Calvar I, Catchmark JM et al (2013) Biosynthesis, production and applications of bacterial cellulose. Cellulose 20:2191–2219CrossRef
Zurück zum Zitat Luu WT, Bousfield D, Kettle J (2011) Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing. In: Paper conference and trade show, PaperCon, pp 1152–1163 Luu WT, Bousfield D, Kettle J (2011) Application of nano-fibrillated cellulose as a paper surface treatment for inkjet printing. In: Paper conference and trade show, PaperCon, pp 1152–1163
Zurück zum Zitat Masaoka S, Ohe T, Sakota N (1993) Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 75:18–22CrossRef Masaoka S, Ohe T, Sakota N (1993) Production of cellulose from glucose by Acetobacter xylinum. J Ferment Bioeng 75:18–22CrossRef
Zurück zum Zitat Matsuoka M, Tsuchida T, Matsushita K et al (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 60:575–579CrossRef Matsuoka M, Tsuchida T, Matsushita K et al (1996) A synthetic medium for bacterial cellulose production by Acetobacter xylinum subsp. sucrofermentans. Biosci Biotechnol Biochem 60:575–579CrossRef
Zurück zum Zitat Medvešček S (2017) Influence of nanocrystallized cellulose on paper printability. MSc thesis, University of Ljubljana, Ljubljana, Slovenia Medvešček S (2017) Influence of nanocrystallized cellulose on paper printability. MSc thesis, University of Ljubljana, Ljubljana, Slovenia
Zurück zum Zitat Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583CrossRefPubMed Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ (2009) Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol 107:576–583CrossRefPubMed
Zurück zum Zitat Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110CrossRefPubMed Mohite BV, Patil SV (2014) A novel biomaterial: bacterial cellulose and its new era applications. Biotechnol Appl Biochem 61:101–110CrossRefPubMed
Zurück zum Zitat Morgan JLW, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186CrossRefPubMed Morgan JLW, Strumillo J, Zimmer J (2013) Crystallographic snapshot of cellulose synthesis and membrane translocation. Nature 493:181–186CrossRefPubMed
Zurück zum Zitat Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506CrossRefPubMed Mormino R, Bungay H (2003) Composites of bacterial cellulose and paper made with a rotating disk bioreactor. Appl Microbiol Biotechnol 62:503–506CrossRefPubMed
Zurück zum Zitat Nunes T, Lourenço AF, Gamelas JAF, Ferreira PJT (2015) Cellulose nanofibrils in papermaking—filler retention, wet web resistance and printability. In: Proceedings of the second international conference on natural fibers, pp 27–29 Nunes T, Lourenço AF, Gamelas JAF, Ferreira PJT (2015) Cellulose nanofibrils in papermaking—filler retention, wet web resistance and printability. In: Proceedings of the second international conference on natural fibers, pp 27–29
Zurück zum Zitat Nygårds S (2011) Nanocellulose in pigment coatings—aspects of barrier properties and printability in offset. MSc thesis, Linköping University, Linköping, Sweden Nygårds S (2011) Nanocellulose in pigment coatings—aspects of barrier properties and printability in offset. MSc thesis, Linköping University, Linköping, Sweden
Zurück zum Zitat Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123CrossRef Osong SH, Norgren S, Engstrand P (2016) Processing of wood-based microfibrillated cellulose and nanofibrillated cellulose, and applications relating to papermaking: a review. Cellulose 23:93–123CrossRef
Zurück zum Zitat Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428CrossRefPubMed Poland CA, Duffin R, Kinloch I et al (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3:423–428CrossRefPubMed
Zurück zum Zitat Presler S, Surma-Ślusarska B (2006) Modyfikacja roślinnych półproduktów papierniczych celulozą bakteryjną. Przem Chem T85(8–9):1297–1299 Presler S, Surma-Ślusarska B (2006) Modyfikacja roślinnych półproduktów papierniczych celulozą bakteryjną. Przem Chem T85(8–9):1297–1299
Zurück zum Zitat Puceković N, Hooimeijer A, Lozo B (2015) Cellulose nanocrystals coating—a novel paper coating for use in the graphic industry. Acta Graph 26:21–26 Puceković N, Hooimeijer A, Lozo B (2015) Cellulose nanocrystals coating—a novel paper coating for use in the graphic industry. Acta Graph 26:21–26
Zurück zum Zitat Putra A, Kakugo A, Furukawa H et al (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885–1891CrossRef Putra A, Kakugo A, Furukawa H et al (2008) Tubular bacterial cellulose gel with oriented fibrils on the curved surface. Polymer 49:1885–1891CrossRef
Zurück zum Zitat Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511CrossRefPubMed Rajwade JM, Paknikar KM, Kumbhar JV (2015) Applications of bacterial cellulose and its composites in biomedicine. Appl Microbiol Biotechnol 99:2491–2511CrossRefPubMed
Zurück zum Zitat Retegi A, Gabilondo N, Peña C et al (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669CrossRef Retegi A, Gabilondo N, Peña C et al (2010) Bacterial cellulose films with controlled microstructure–mechanical property relationships. Cellulose 17:661–669CrossRef
Zurück zum Zitat Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212CrossRefPubMed Römling U (2002) Molecular biology of cellulose production in bacteria. Res Microbiol 153:205–212CrossRefPubMed
Zurück zum Zitat Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557CrossRefPubMedPubMedCentral Römling U, Galperin MY (2015) Bacterial cellulose biosynthesis: diversity of operons, subunits, products, and functions. Trends Microbiol 23:545–557CrossRefPubMedPubMedCentral
Zurück zum Zitat Rosa JR, da Silva ISV, de Lima CSM et al (2014) New biphasic mono-component composite material obtained by partial oxypropylation of bacterial cellulose. Cellulose 21:1361–1368 Rosa JR, da Silva ISV, de Lima CSM et al (2014) New biphasic mono-component composite material obtained by partial oxypropylation of bacterial cellulose. Cellulose 21:1361–1368
Zurück zum Zitat Santos SM, Carbajo JM, Quintana E et al (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181CrossRefPubMed Santos SM, Carbajo JM, Quintana E et al (2015) Characterization of purified bacterial cellulose focused on its use on paper restoration. Carbohydr Polym 116:173–181CrossRefPubMed
Zurück zum Zitat Santos SM, Carbajo JM, Gómez N et al (2016) Use of bacterial cellulose in degraded paper restoration. Part II: application on real samples. J Mater Sci 51:1553–1561CrossRef Santos SM, Carbajo JM, Gómez N et al (2016) Use of bacterial cellulose in degraded paper restoration. Part II: application on real samples. J Mater Sci 51:1553–1561CrossRef
Zurück zum Zitat Santos SM, Carbajo JM, Gómez N et al (2017) Paper reinforcing by in situ growth of bacterial cellulose. J Mater Sci 52:5882–5893CrossRef Santos SM, Carbajo JM, Gómez N et al (2017) Paper reinforcing by in situ growth of bacterial cellulose. J Mater Sci 52:5882–5893CrossRef
Zurück zum Zitat Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129CrossRefPubMed Schramm M, Hestrin S (1954) Factors affecting production of cellulose at the air/liquid interface of a culture of Acetobacter xylinum. J Gen Microbiol 11:123–129CrossRefPubMed
Zurück zum Zitat Schrecker ST, Gostomski PA (2005) Determining the water holding capacity of microbial cellulose. Biotechnol Lett 27:1435–1438CrossRefPubMed Schrecker ST, Gostomski PA (2005) Determining the water holding capacity of microbial cellulose. Biotechnol Lett 27:1435–1438CrossRefPubMed
Zurück zum Zitat Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760CrossRefPubMed Serafica G, Mormino R, Bungay H (2002) Inclusion of solid particles in bacterial cellulose. Appl Microbiol Biotechnol 58:756–760CrossRefPubMed
Zurück zum Zitat Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355CrossRefPubMed Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355CrossRefPubMed
Zurück zum Zitat Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598CrossRefPubMed Shah N, Ul-Islam M, Khattak WA, Park JK (2013) Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym 98:1585–1598CrossRefPubMed
Zurück zum Zitat Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8CrossRef Shoda M, Sugano Y (2005) Recent advances in bacterial cellulose production. Biotechnol Bioprocess Eng 10:1–8CrossRef
Zurück zum Zitat Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494CrossRef
Zurück zum Zitat Son H-J, Kim H-G, Kim K-K et al (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol 86:215–219CrossRefPubMed Son H-J, Kim H-G, Kim K-K et al (2003) Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol 86:215–219CrossRefPubMed
Zurück zum Zitat Song H-J, Li H, Seo J-H et al (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26:141–146CrossRef Song H-J, Li H, Seo J-H et al (2009) Pilot-scale production of bacterial cellulose by a spherical type bubble column bioreactor using saccharified food wastes. Korean J Chem Eng 26:141–146CrossRef
Zurück zum Zitat Suwannapinunt N, Burakorn J, Thaenthanee S (2007) Effect of culture conditions on bacterial BC (BC) production from Acetobacter xylinum TISTR976 and physical properties of BC parchment paper. J Sci Technol 14:357–365 Suwannapinunt N, Burakorn J, Thaenthanee S (2007) Effect of culture conditions on bacterial BC (BC) production from Acetobacter xylinum TISTR976 and physical properties of BC parchment paper. J Sci Technol 14:357–365
Zurück zum Zitat Tabarsa T, Sheykhnazari S, Ashori A et al (2017) Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol 101:334–340CrossRefPubMed Tabarsa T, Sheykhnazari S, Ashori A et al (2017) Preparation and characterization of reinforced papers using nano bacterial cellulose. Int J Biol Macromol 101:334–340CrossRefPubMed
Zurück zum Zitat Tang W, Jia S, Jia Y, Yang H (2009) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131CrossRef Tang W, Jia S, Jia Y, Yang H (2009) The influence of fermentation conditions and post-treatment methods on porosity of bacterial cellulose membrane. World J Microbiol Biotechnol 26:125–131CrossRef
Zurück zum Zitat Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97CrossRef Ummartyotin S, Juntaro J, Sain M, Manuspiya H (2012) Development of transparent bacterial cellulose nanocomposite film as substrate for flexible organic light emitting diode (OLED) display. Ind Crops Prod 35:92–97CrossRef
Zurück zum Zitat Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102:1398–1405 Vitta S, Thiruvengadam V (2012) Multifunctional bacterial cellulose and nanoparticle-embedded composites. Curr Sci 102:1398–1405
Zurück zum Zitat Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200CrossRef Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200CrossRef
Zurück zum Zitat Whitney JC, Howell PL (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21:63–72CrossRefPubMed Whitney JC, Howell PL (2013) Synthase-dependent exopolysaccharide secretion in Gram-negative bacteria. Trends Microbiol 21:63–72CrossRefPubMed
Zurück zum Zitat Williams WS, Cannon RE (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55:2448–2452PubMedPubMedCentral Williams WS, Cannon RE (1989) Alternative environmental roles for cellulose produced by Acetobacter xylinum. Appl Environ Microbiol 55:2448–2452PubMedPubMedCentral
Zurück zum Zitat Wu J-M, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116–121CrossRefPubMed Wu J-M, Liu R-H (2012) Thin stillage supplementation greatly enhances bacterial cellulose production by Gluconacetobacter xylinus. Carbohydr Polym 90:116–121CrossRefPubMed
Zurück zum Zitat Wu R-Q, Li Z-X, Yang J-P et al (2010) Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose 17:399–405CrossRef Wu R-Q, Li Z-X, Yang J-P et al (2010) Mutagenesis induced by high hydrostatic pressure treatment: a useful method to improve the bacterial cellulose yield of a Gluconoacetobacter xylinus strain. Cellulose 17:399–405CrossRef
Zurück zum Zitat Xiang Z, Jin X, Liu Q et al (2017a) The reinforcement mechanism of bacterial cellulose on paper made from woody and nonwoody fiber sources. Cellulose 24:5147–5156CrossRef Xiang Z, Jin X, Liu Q et al (2017a) The reinforcement mechanism of bacterial cellulose on paper made from woody and nonwoody fiber sources. Cellulose 24:5147–5156CrossRef
Zurück zum Zitat Xiang Z, Liu Q, Chen Y, Lu F (2017b) Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties. Cellulose 24:3513–3523CrossRef Xiang Z, Liu Q, Chen Y, Lu F (2017b) Effects of physical and chemical structures of bacterial cellulose on its enhancement to paper physical properties. Cellulose 24:3513–3523CrossRef
Zurück zum Zitat Yamada Y, Yukphan P, Lan Vu HT et al (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404CrossRefPubMed Yamada Y, Yukphan P, Lan Vu HT et al (2012) Description of Komagataeibacter gen. nov., with proposals of new combinations (Acetobacteraceae). J Gen Appl Microbiol 58:397–404CrossRefPubMed
Zurück zum Zitat Yang YK, Park SH, Hwang JW et al (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J Ferment Bioeng 85:312–317CrossRef Yang YK, Park SH, Hwang JW et al (1998) Cellulose production by Acetobacter xylinum BRC5 under agitated condition. J Ferment Bioeng 85:312–317CrossRef
Zurück zum Zitat Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotechnol Biochem 61:219–224CrossRef Yoshinaga F, Tonouchi N, Watanabe K (1997) Research progress in production of bacterial cellulose by aeration and agitation culture and its application as a new industrial material. Biosci Biotechnol Biochem 61:219–224CrossRef
Zurück zum Zitat Yousefi H, Faezipour M, Hedjazi S et al (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crops Prod 43:732–737CrossRef Yousefi H, Faezipour M, Hedjazi S et al (2013) Comparative study of paper and nanopaper properties prepared from bacterial cellulose nanofibers and fibers/ground cellulose nanofibers of canola straw. Ind Crops Prod 43:732–737CrossRef
Zurück zum Zitat Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146CrossRefPubMed Yu X, Atalla RH (1996) Production of cellulose II by Acetobacter xylinum in the presence of 2,6-dichlorobenzonitrile. Int J Biol Macromol 19:145–146CrossRefPubMed
Zurück zum Zitat Yuan J, Wang T, Huang X, Wei W (2016) Dispersion and beating of bacterial cellulose and their influence on paper properties. BioResources 11:9290–9301 Yuan J, Wang T, Huang X, Wei W (2016) Dispersion and beating of bacterial cellulose and their influence on paper properties. BioResources 11:9290–9301
Zurück zum Zitat Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80:773–777CrossRefPubMed Zaar K (1979) Visualization of pores (export sites) correlated with cellulose production in the envelope of the gram-negative bacterium Acetobacter xylinum. J Cell Biol 80:773–777CrossRefPubMed
Zurück zum Zitat Zhou LL, Sun DP, Hu LY et al (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489CrossRefPubMed Zhou LL, Sun DP, Hu LY et al (2007) Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol 34:483–489CrossRefPubMed
Metadaten
Titel
Bacterial nanocellulose in papermaking
verfasst von
Matej Skočaj
Publikationsdatum
14.06.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 11/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02566-y

Weitere Artikel der Ausgabe 11/2019

Cellulose 11/2019 Zur Ausgabe