Skip to main content
Erschienen in: Cellulose 2/2020

09.11.2019 | Review Paper

Trends in the production of cellulose nanofibers from non-wood sources

verfasst von: Jordan Pennells, Ian D. Godwin, Nasim Amiralian, Darren J. Martin

Erschienen in: Cellulose | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The rise of biomass-derived nanocellulose addresses the sustainability criteria now demanded of new materials, which have been widely overlooked in the plastics era—renewability, abundance, biodegradability, and recyclability. Cellulose nanofibers have conventionally been extracted from wood products, supported by an established forestry infrastructure, but the drive for biomass sustainability has encouraged researchers to explore non-wood sources over the past 15 years. Non-wood sources, including agricultural residues and industrial wastes, offer an attractive alternative due to their abundance, fast generation, and low starting value. Moreover, agricultural residues can improve the sustainability of cellulose nanofiber processing from multiple angles. The biochemical composition of the typical agricultural residue, which is lower in lignin and higher in hemicellulose than wood stems, improves the fibrillation efficiency of cellulose bundles into nano-scale fibers. In addition, agricultural residues yield high biomass volume from short growth cycles with improved land utilisation, whilst offsetting environmental issues associated with their current uses. In this work, we performed a comprehensive literature evaluation of the biomass sources used to produce cellulose nanofibers. Of the 3358 cellulose nanofiber publications from 2004 to 2018 with an identifiable source material, 57% were derived from wood-based biomass and 30% from non-wood biomass, with 100 unique biomass sources identified. Furthermore, the top research fields associated with non-wood publications included general characterisation (36%), plastic nanocomposites (19%), bionanocomposites (9%), biomedical products (8%), and electronic devices (6%). As social, political and economic drivers reinforce sustainability as a key focus in nanocellulose production, this bibliometric resource provides a timely snapshot of the sustainability trends in cellulose nanofiber research.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abdul Khalil HPS, Bhat AH, Abu Bakar A et al (2015) Cellulosic nanocomposites from natural fibers for medical applications: a review. In: Pandey JK, Takagi H, Nakagaito AN, Kim H-J (eds) Handbook of polymer nanocomposites. processing, performance and application: volume c: polymer nanocomposites of cellulose nanoparticles, processing, performance and application. Springer, Berlin, pp 475–511 Abdul Khalil HPS, Bhat AH, Abu Bakar A et al (2015) Cellulosic nanocomposites from natural fibers for medical applications: a review. In: Pandey JK, Takagi H, Nakagaito AN, Kim H-J (eds) Handbook of polymer nanocomposites. processing, performance and application: volume c: polymer nanocomposites of cellulose nanoparticles, processing, performance and application. Springer, Berlin, pp 475–511
Zurück zum Zitat Anagnost SE, Mark RE, Hanna RB (2002) Variation of microfibril angle within individual tracheids. Wood Fiber Sci 34:337–349 Anagnost SE, Mark RE, Hanna RB (2002) Variation of microfibril angle within individual tracheids. Wood Fiber Sci 34:337–349
Zurück zum Zitat Courchene CE, Peter GF, Litvay J (2005) Cellulose microfibril angle as a determinant of paper strength and hygroexpansivity in Pinus taeda L. Wood Fiber Sci 38:112–120 Courchene CE, Peter GF, Litvay J (2005) Cellulose microfibril angle as a determinant of paper strength and hygroexpansivity in Pinus taeda L. Wood Fiber Sci 38:112–120
Zurück zum Zitat Das IK, Rakshit S (2016) Millets, their importance, and production constraints. In: Padmaja PG, Das IK (eds) Biotic stress resistance in millets. Academic Press, New York, pp 3–19CrossRef Das IK, Rakshit S (2016) Millets, their importance, and production constraints. In: Padmaja PG, Das IK (eds) Biotic stress resistance in millets. Academic Press, New York, pp 3–19CrossRef
Zurück zum Zitat FAOSTAT (2019) FAOSTAT statistical database FAOSTAT (2019) FAOSTAT statistical database
Zurück zum Zitat Favier V, Canova GR, Cavaille JY et al (1995a) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef Favier V, Canova GR, Cavaille JY et al (1995a) Nanocomposite materials from latex and cellulose whiskers. Polym Adv Technol 6:351–355CrossRef
Zurück zum Zitat Hayes MHB, Mylotte R, Swift RS (2017) Humin: its composition and importance in soil organic matter, 1st edn. Elsevier Inc, New York Hayes MHB, Mylotte R, Swift RS (2017) Humin: its composition and importance in soil organic matter, 1st edn. Elsevier Inc, New York
Zurück zum Zitat Hessler LE, Merola GV, Berkley EE (1948) Degree of polymerization of cellulose in cotton fibers. Text Res J 18:628–634CrossRef Hessler LE, Merola GV, Berkley EE (1948) Degree of polymerization of cellulose in cotton fibers. Text Res J 18:628–634CrossRef
Zurück zum Zitat Kampeerapappun P (2012) Preparation characterization and antimicrobial activity of electrospun nanofibers from cotton waste fibers. Chiang Mai J Sci 39:712–722 Kampeerapappun P (2012) Preparation characterization and antimicrobial activity of electrospun nanofibers from cotton waste fibers. Chiang Mai J Sci 39:712–722
Zurück zum Zitat Kargarzadeh H, Mariano M, Gopakumar D et al (2018) Advances in cellulose nanomaterials. Springer, NetherlandsCrossRef Kargarzadeh H, Mariano M, Gopakumar D et al (2018) Advances in cellulose nanomaterials. Springer, NetherlandsCrossRef
Zurück zum Zitat Konandreas P, Schmidhuber J (2007) Global biofuel production trends and possible implications for Swaziland Konandreas P, Schmidhuber J (2007) Global biofuel production trends and possible implications for Swaziland
Zurück zum Zitat Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis. Ind Eng Chem Res 48:3713–3729CrossRef Kumar P, Barrett DM, Delwiche MJ, Stroeve P (2009) Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis. Ind Eng Chem Res 48:3713–3729CrossRef
Zurück zum Zitat Lessard G, Chouinard A (1980) In: Bamboo research in Asia: proceedings of a workshop held in Singapore, 28–30 May 1980. IDRC, Ottawa, ON, CA Lessard G, Chouinard A (1980) In: Bamboo research in Asia: proceedings of a workshop held in Singapore, 28–30 May 1980. IDRC, Ottawa, ON, CA
Zurück zum Zitat Niimura H, Yokoyama T, Kimura S et al (2010) AFM observation of ultrathin microfibrils in fruit tissues. Cellulose 17:13–18CrossRef Niimura H, Yokoyama T, Kimura S et al (2010) AFM observation of ultrathin microfibrils in fruit tissues. Cellulose 17:13–18CrossRef
Zurück zum Zitat TAPPI (2013) Proposed new TAPPI standard: standard terms and their definition for cellulose nanomaterial TAPPI (2013) Proposed new TAPPI standard: standard terms and their definition for cellulose nanomaterial
Zurück zum Zitat Thakur VK (2014) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley, New YorkCrossRef Thakur VK (2014) Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley, New YorkCrossRef
Zurück zum Zitat Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose
Zurück zum Zitat Xu C, Kong X, Zhou S et al (2018) Interweaving metal-organic framework-templated Co-Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. J Mater Chem A 6:24050–24057. https://doi.org/10.1039/c8ta10133g CrossRef Xu C, Kong X, Zhou S et al (2018) Interweaving metal-organic framework-templated Co-Ni layered double hydroxide nanocages with nanocellulose and carbon nanotubes to make flexible and foldable electrodes for energy storage devices. J Mater Chem A 6:24050–24057. https://​doi.​org/​10.​1039/​c8ta10133g CrossRef
Zurück zum Zitat Yue D, Qian X (2018) Isolation and rheological characterization of cellulose nanofibrils (CNFs) from coir fibers in comparison to wood and cotton. Polymers 10(3):320CrossRef Yue D, Qian X (2018) Isolation and rheological characterization of cellulose nanofibrils (CNFs) from coir fibers in comparison to wood and cotton. Polymers 10(3):320CrossRef
Metadaten
Titel
Trends in the production of cellulose nanofibers from non-wood sources
verfasst von
Jordan Pennells
Ian D. Godwin
Nasim Amiralian
Darren J. Martin
Publikationsdatum
09.11.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 2/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-019-02828-9

Weitere Artikel der Ausgabe 2/2020

Cellulose 2/2020 Zur Ausgabe