Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2009

01.12.2009

Variability of bursting patterns in a neuron model in the presence of noise

verfasst von: Paul Channell, Ibiyinka Fuwape, Alexander B. Neiman, Andrey L. Shilnikov

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2009

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spiking and bursting patterns of neurons are characterized by a high degree of variability. A single neuron can demonstrate endogenously various bursting patterns, changing in response to external disturbances due to synapses, or to intrinsic factors such as channel noise. We argue that in a model of the leech heart interneuron existing variations of bursting patterns are significantly enhanced by a small noise. In the absence of noise this model shows periodic bursting with fixed numbers of interspikes for most parameter values. As the parameter of activation kinetics of a slow potassium current is shifted to more hyperpolarized values of the membrane potential, the model undergoes a sequence of incremental spike adding transitions accumulating towards a periodic tonic spiking activity. Within a narrow parameter window around every spike adding transition, spike alteration of bursting is deterministically chaotic due to homoclinic bifurcations of a saddle periodic orbit. We have found that near these transitions the interneuron model becomes extremely sensitive to small random perturbations that cause a wide expansion and overlapping of the chaotic windows. The chaotic behavior is characterized by positive values of the largest Lyapunov exponent, and of the Shannon entropy of probability distribution of spike numbers per burst. The windows of chaotic dynamics resemble the Arnold tongues being plotted in the parameter plane, where the noise intensity serves as a second control parameter. We determine the critical noise intensities above which the interneuron model generates only irregular bursting within the overlapped windows.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The stable periodic orbit corresponds to tonic spiking.
 
Literatur
Zurück zum Zitat Arnold, V. I., Afraimovich, V. S., Ilyashenko, Yu. S., & Shilnikov, L. P. (1994). Bifurcation theory. Dynamical systems. Encyclopaedia of mathematical sciences (Vol. V). New York: Springer. Arnold, V. I., Afraimovich, V. S., Ilyashenko, Yu. S., & Shilnikov, L. P. (1994). Bifurcation theory. Dynamical systems. Encyclopaedia of mathematical sciences (Vol. V). New York: Springer.
Zurück zum Zitat Bal, T., Nagy, F., & Moulins, M. (1988). The pyloric central pattern generator in crustacea: A set of conditional neural oscillators. Journal of Comparative Physiology A, 163(6), 715–727.CrossRef Bal, T., Nagy, F., & Moulins, M. (1988). The pyloric central pattern generator in crustacea: A set of conditional neural oscillators. Journal of Comparative Physiology A, 163(6), 715–727.CrossRef
Zurück zum Zitat Belykh, V. N., Belykh, I. V., Colding-Jorgensen, M., & Mosekilde, E. (2000). Homoclinic bifurcations leading to bursting oscillations in cell models. The European Physical Journal E—Soft Matter, 3(3), 205–219.CrossRef Belykh, V. N., Belykh, I. V., Colding-Jorgensen, M., & Mosekilde, E. (2000). Homoclinic bifurcations leading to bursting oscillations in cell models. The European Physical Journal E—Soft Matter, 3(3), 205–219.CrossRef
Zurück zum Zitat Bertram, R., Butte, M. J., Kiemel, T., & Sherman, A. (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57(3), 413–439. Bertram, R., Butte, M. J., Kiemel, T., & Sherman, A. (1995). Topological and phenomenological classification of bursting oscillations. Bulletin of Mathematical Biology, 57(3), 413–439.
Zurück zum Zitat Bulsara, A. R., Schieve, W. C., & Jacobs, E. W. (1990). Homoclinic chaos in systems perturbed by weak langevin noise. Physical Review A, 41(2), 668–681.CrossRefPubMed Bulsara, A. R., Schieve, W. C., & Jacobs, E. W. (1990). Homoclinic chaos in systems perturbed by weak langevin noise. Physical Review A, 41(2), 668–681.CrossRefPubMed
Zurück zum Zitat Carelli, P. V., Reyes, M. B., Sartorelli, J. C., & Pinto, R. D. (2005). Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. Journal of Neurophysiology, 94(2), 1169–1179.CrossRefPubMed Carelli, P. V., Reyes, M. B., Sartorelli, J. C., & Pinto, R. D. (2005). Whole cell stochastic model reproduces the irregularities found in the membrane potential of bursting neurons. Journal of Neurophysiology, 94(2), 1169–1179.CrossRefPubMed
Zurück zum Zitat Channell, P., Cymbalyuk, G., & Shilnikov, A. (2007a). Origin of bursting through homoclinic spike adding in a neuron model. Physical Review Letters, 98(13), 134101.CrossRefPubMed Channell, P., Cymbalyuk, G., & Shilnikov, A. (2007a). Origin of bursting through homoclinic spike adding in a neuron model. Physical Review Letters, 98(13), 134101.CrossRefPubMed
Zurück zum Zitat Channell, P., Cymbalyuk, G., & Shilnikov, A. L. (2007b). Applications of the poincare mapping technique to analysis of neuronal dynamics. Neurocomputing, 70, 10–12. Channell, P., Cymbalyuk, G., & Shilnikov, A. L. (2007b). Applications of the poincare mapping technique to analysis of neuronal dynamics. Neurocomputing, 70, 10–12.
Zurück zum Zitat Chay, T. R. (1985). Chaos in a three-variable model of an excitable cell. Physica D, 16(2), 233–242.CrossRef Chay, T. R. (1985). Chaos in a three-variable model of an excitable cell. Physica D, 16(2), 233–242.CrossRef
Zurück zum Zitat Chow, C. C., & White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71(6), 3013–3021.CrossRefPubMed Chow, C. C., & White, J. A. (1996). Spontaneous action potentials due to channel fluctuations. Biophysical Journal, 71(6), 3013–3021.CrossRefPubMed
Zurück zum Zitat Clewley, R., Soto-Trevino, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.CrossRefPubMed Clewley, R., Soto-Trevino, C., & Nadim, F. (2009). Dominant ionic mechanisms explored in spiking and bursting using local low-dimensional reductions of a biophysically realistic model neuron. Journal of Computational Neuroscience, 26(1), 75–90.CrossRefPubMed
Zurück zum Zitat Cymbalyuk, G. S., & Calabrese, R. L. (2001). A model of slow plateau-like oscillations based upon the fast Na +  current in a window mode. Neurocomputing, 38, 159–166.CrossRef Cymbalyuk, G. S., & Calabrese, R. L. (2001). A model of slow plateau-like oscillations based upon the fast Na +  current in a window mode. Neurocomputing, 38, 159–166.CrossRef
Zurück zum Zitat Cymbalyuk, G. S., & Shilnikov, A. L. (2005). Coexistence of tonic spiking oscillations in a leech neuron model. Journal of Computational Neuroscience, 18(3), 255–263.CrossRefPubMed Cymbalyuk, G. S., & Shilnikov, A. L. (2005). Coexistence of tonic spiking oscillations in a leech neuron model. Journal of Computational Neuroscience, 18(3), 255–263.CrossRefPubMed
Zurück zum Zitat Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.PubMed Cymbalyuk, G. S., Gaudry, Q., Masino, M. A., & Calabrese, R. L. (2002). Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms. Journal of Neuroscience, 22(24), 10580–10592.PubMed
Zurück zum Zitat Deng, B., & Hines, G. (2002). Food chain chaos due to Shilnikov’s orbit. Chaos, 12(3), 533–538.CrossRefPubMed Deng, B., & Hines, G. (2002). Food chain chaos due to Shilnikov’s orbit. Chaos, 12(3), 533–538.CrossRefPubMed
Zurück zum Zitat Elson, R. C., Huerta, R., Abarbanel, H. D., Rabinovich, H. D., & Selverston, A. I. (1999). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Journal of Neurophysiology, 82(1), 115–122.PubMed Elson, R. C., Huerta, R., Abarbanel, H. D., Rabinovich, H. D., & Selverston, A. I. (1999). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Journal of Neurophysiology, 82(1), 115–122.PubMed
Zurück zum Zitat Elson, R. C., Selverston, A. I., Abarbanel, H. D. I., & Rabinovich, M. I. (2002). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Journal of Neurophysiology, 88, 1166–1182.PubMed Elson, R. C., Selverston, A. I., Abarbanel, H. D. I., & Rabinovich, M. I. (2002). Dynamic control of irregular bursting in an identified neuron of an oscillatory circuit. Journal of Neurophysiology, 88, 1166–1182.PubMed
Zurück zum Zitat Fan, Y. S., & Holden, A. V. (1995). Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons and Fractals, 3, 439–449.CrossRef Fan, Y. S., & Holden, A. V. (1995). Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons and Fractals, 3, 439–449.CrossRef
Zurück zum Zitat Fenichel, F. (1979). Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31, 53–98.CrossRef Fenichel, F. (1979). Geometric singular perturbation theory for ordinary differential equations. Journal of Differential Equations, 31, 53–98.CrossRef
Zurück zum Zitat Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., et al. (2000). Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 10(1), 231–239.CrossRefPubMed Feudel, U., Neiman, A., Pei, X., Wojtenek, W., Braun, H., Huber, M., et al. (2000). Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. Chaos, 10(1), 231–239.CrossRefPubMed
Zurück zum Zitat Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2008). Optimal time scale for spike-time reliability: Theory, simulations, and experiments. Journal of Neurophysiology, 99(1), 277–283.CrossRefPubMed Galan, R. F., Ermentrout, G. B., & Urban, N. N. (2008). Optimal time scale for spike-time reliability: Theory, simulations, and experiments. Journal of Neurophysiology, 99(1), 277–283.CrossRefPubMed
Zurück zum Zitat Gavrilov, N. K., & Shilnikov, L. P. (1972). On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Mathematics of the USSR, Sbornik, 17(3), 467–485.CrossRef Gavrilov, N. K., & Shilnikov, L. P. (1972). On three-dimensional dynamical systems close to systems with a structurally unstable homoclinic curve. Mathematics of the USSR, Sbornik, 17(3), 467–485.CrossRef
Zurück zum Zitat Goldobin, D. S., & Pikovsky, A. (2005). Synchronization and desynchronization of self-sustained oscillators by common noise. Physical Review E, 71, 045201.CrossRef Goldobin, D. S., & Pikovsky, A. (2005). Synchronization and desynchronization of self-sustained oscillators by common noise. Physical Review E, 71, 045201.CrossRef
Zurück zum Zitat Goldobin, D. S., & Pikovsky, A. (2006). Antireliability of noise-driven neurons. Physical Review E, 73, 061906.CrossRef Goldobin, D. S., & Pikovsky, A. (2006). Antireliability of noise-driven neurons. Physical Review E, 73, 061906.CrossRef
Zurück zum Zitat Griffiths, R. E., & Pernarowski, M. C. (2006). Return map characterizations for a model of bursting with two slow variables. SIAM Journal on Applied Mathematics, 66(6), 1917–1948.CrossRef Griffiths, R. E., & Pernarowski, M. C. (2006). Return map characterizations for a model of bursting with two slow variables. SIAM Journal on Applied Mathematics, 66(6), 1917–1948.CrossRef
Zurück zum Zitat Gu, H., Yang, M., Li, L., Liu, Z., & Ren, W. (2002). Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. NeuroReport, 13(13), 1657–1660.CrossRefPubMed Gu, H., Yang, M., Li, L., Liu, Z., & Ren, W. (2002). Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker. NeuroReport, 13(13), 1657–1660.CrossRefPubMed
Zurück zum Zitat Guckenheimer, J. (1996). Towards a global theory of singularly perturbed systems. Progress in Nonlinear Differential Equations and Their Applications, 19, 214–225. Guckenheimer, J. (1996). Towards a global theory of singularly perturbed systems. Progress in Nonlinear Differential Equations and Their Applications, 19, 214–225.
Zurück zum Zitat Hayashi, H., & Ishizuka, S. (1995). Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain Research, 686(2), 194–206.CrossRefPubMed Hayashi, H., & Ishizuka, S. (1995). Chaotic responses of the hippocampal CA3 region to a mossy fiber stimulation in vitro. Brain Research, 686(2), 194–206.CrossRefPubMed
Zurück zum Zitat Hill, A. A., Lu, J., Masino, M. A., Olsen, O. H., & Calabrese, R. L. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of Computational Neuroscience, 10(3), 281–302.CrossRefPubMed Hill, A. A., Lu, J., Masino, M. A., Olsen, O. H., & Calabrese, R. L. (2001). A model of a segmental oscillator in the leech heartbeat neuronal network. Journal of Computational Neuroscience, 10(3), 281–302.CrossRefPubMed
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMed
Zurück zum Zitat Holden, A. V., & Fan, Y. S. (1992). From simple to simple bursting oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons and Fractals, 2, 349–269.CrossRef Holden, A. V., & Fan, Y. S. (1992). From simple to simple bursting oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity. Chaos, Solitons and Fractals, 2, 349–269.CrossRef
Zurück zum Zitat Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.CrossRef Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10, 1171–1266.CrossRef
Zurück zum Zitat Izhikevich, E. M. (2007). Dynamical systems in neuroscience. The geometry of excitability and bursting. Cambridge: MIT. Izhikevich, E. M. (2007). Dynamical systems in neuroscience. The geometry of excitability and bursting. Cambridge: MIT.
Zurück zum Zitat Jaeger, L., & Kantz, H. (1997). Homoclinic tangencies and non-normal jacobians—effects of noise in nonhyperbolic chaotic systems. Physica D, 105(1–3), 79–96.CrossRef Jaeger, L., & Kantz, H. (1997). Homoclinic tangencies and non-normal jacobians—effects of noise in nonhyperbolic chaotic systems. Physica D, 105(1–3), 79–96.CrossRef
Zurück zum Zitat Jones, C. K. R. T., & Kopell, N. (1994). Tracking invariant-manifolds with differential forms in singularly perturbed systems. Journal of Differential Equations, 108(1), 64–88.CrossRef Jones, C. K. R. T., & Kopell, N. (1994). Tracking invariant-manifolds with differential forms in singularly perturbed systems. Journal of Differential Equations, 108(1), 64–88.CrossRef
Zurück zum Zitat Kramer M., Traub, R. D., & Kopell, N. J. (2008) New dynamics in cerebellar purkinje cells: Torus canards. Physics Review Letters, 101, 068103.CrossRef Kramer M., Traub, R. D., & Kopell, N. J. (2008) New dynamics in cerebellar purkinje cells: Torus canards. Physics Review Letters, 101, 068103.CrossRef
Zurück zum Zitat Kopell, N. (1988). Toward a theory of modelling central pattern generators. In A. H., Cohen, S., Rossingol, & S., Grillner (Eds.), Neural control of rhythmic movements in vertebrates (pp. 1–20). New York: Wiley. Kopell, N. (1988). Toward a theory of modelling central pattern generators. In A. H., Cohen, S., Rossingol, & S., Grillner (Eds.), Neural control of rhythmic movements in vertebrates (pp. 1–20). New York: Wiley.
Zurück zum Zitat Kuske, R., & Baer, S. M. (2002). Asymptotic analysis of noise sensitivity in a neuronal burster. Bulletin of Mathematical Biology, 64(3), 447–481.CrossRefPubMed Kuske, R., & Baer, S. M. (2002). Asymptotic analysis of noise sensitivity in a neuronal burster. Bulletin of Mathematical Biology, 64(3), 447–481.CrossRefPubMed
Zurück zum Zitat Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506.CrossRefPubMed Mainen, Z. F., & Sejnowski, T. J. (1995). Reliability of spike timing in neocortical neurons. Science, 268(5216), 1503–1506.CrossRefPubMed
Zurück zum Zitat Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structure, I: Neuronal noise sources. Neural Computation, 11(8), 1797–1829.CrossRefPubMed Manwani, A., & Koch, C. (1999). Detecting and estimating signals in noisy cable structure, I: Neuronal noise sources. Neural Computation, 11(8), 1797–1829.CrossRefPubMed
Zurück zum Zitat Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76(3), 687–717.PubMed Marder, E., & Calabrese, R. L. (1996). Principles of rhythmic motor pattern generation. Physiological Reviews, 76(3), 687–717.PubMed
Zurück zum Zitat Medvedev, G. M. (2005). Reduction of a model of an excitable cell to a one-dimensional map. Physica D, 202(1–2), 87–106. Medvedev, G. M. (2005). Reduction of a model of an excitable cell to a one-dimensional map. Physica D, 202(1–2), 87–106.
Zurück zum Zitat Medvedev, G. M. (2006). Transition to bursting via deterministic chaos. Physical Review Letters, 97, 048102.CrossRefPubMed Medvedev, G. M. (2006). Transition to bursting via deterministic chaos. Physical Review Letters, 97, 048102.CrossRefPubMed
Zurück zum Zitat Mira, C. (1987). Chaotic dynamics from the one-dimensional endomorphism to the two-dimensional diffeomorphism. Singapore: World Scientific. Mira, C. (1987). Chaotic dynamics from the one-dimensional endomorphism to the two-dimensional diffeomorphism. Singapore: World Scientific.
Zurück zum Zitat Pedersen, M. G., & Sorensen, M. P. (2007). The effect of noise of β-cell burst period. SIAM Journal on Applied Mathematics, 67, 530–542.CrossRef Pedersen, M. G., & Sorensen, M. P. (2007). The effect of noise of β-cell burst period. SIAM Journal on Applied Mathematics, 67, 530–542.CrossRef
Zurück zum Zitat Pei, X., & Moss, F. (1996). Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. Nature, 379(6566), 618–621.CrossRefPubMed Pei, X., & Moss, F. (1996). Characterization of low-dimensional dynamics in the crayfish caudal photoreceptor. Nature, 379(6566), 618–621.CrossRefPubMed
Zurück zum Zitat Pontryagin, L. S., & Rodygin, L. V. (1960). Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing derivatives. Soviet Mathematics. Doklady, 1, 611–661. Pontryagin, L. S., & Rodygin, L. V. (1960). Periodic solution of a system of ordinary differential equations with a small parameter in the terms containing derivatives. Soviet Mathematics. Doklady, 1, 611–661.
Zurück zum Zitat Rabinovich, M. I., Varona, P., Silverston, A. L., & Abarbanel, H. D. (2006). Dynamics principles in neuroscience. Reviews of Modern Physics, 78(4), 1213–1265.CrossRef Rabinovich, M. I., Varona, P., Silverston, A. L., & Abarbanel, H. D. (2006). Dynamics principles in neuroscience. Reviews of Modern Physics, 78(4), 1213–1265.CrossRef
Zurück zum Zitat Rinzel, J. (1985). Bursting oscillations in an excitable membrane model. Lecture Notes in Mathematics, 1151, 304–316.CrossRef Rinzel, J. (1985). Bursting oscillations in an excitable membrane model. Lecture Notes in Mathematics, 1151, 304–316.CrossRef
Zurück zum Zitat Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C., Koch & I., Segev (Eds.), Computational neuroscience (pp. 135–169). Cambridge: MIT. Rinzel, J., & Ermentrout, B. (1998). Analysis of neural excitability and oscillations. In C., Koch & I., Segev (Eds.), Computational neuroscience (pp. 135–169). Cambridge: MIT.
Zurück zum Zitat Rinzel, J., & Wang, X. J. (1995). Oscillatory and bursting properties of neurons. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 686–691). Cambridge: MIT. Rinzel, J., & Wang, X. J. (1995). Oscillatory and bursting properties of neurons. In M. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 686–691). Cambridge: MIT.
Zurück zum Zitat Rowat, P. (2007). Interspike interval statistics in the stochastic Hodgkin-Huxley model: Coexistence of gamma frequency bursts and highly irregular firing. Neural Computation, 19(5), 1215–1250.CrossRefPubMed Rowat, P. (2007). Interspike interval statistics in the stochastic Hodgkin-Huxley model: Coexistence of gamma frequency bursts and highly irregular firing. Neural Computation, 19(5), 1215–1250.CrossRefPubMed
Zurück zum Zitat Rowat, P. F., & Elson, R. C. (2004). State-dependent effects of Na channel noise on neuronal burst generation. Journal of Computational Neuroscience, 16(2), 87–112.CrossRefPubMed Rowat, P. F., & Elson, R. C. (2004). State-dependent effects of Na channel noise on neuronal burst generation. Journal of Computational Neuroscience, 16(2), 87–112.CrossRefPubMed
Zurück zum Zitat Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., & Ditto, W. L. (1994). Controlling chaos in the brain. Nature, 370(6491), 615–620.CrossRefPubMed Schiff, S. J., Jerger, K., Duong, D. H., Chang, T., Spano, M. L., & Ditto, W. L. (1994). Controlling chaos in the brain. Nature, 370(6491), 615–620.CrossRefPubMed
Zurück zum Zitat Sharkovsky, A. N., Kolyada, S. F., Sivak, A. G., & Fedorenko, V. V. (1997). Dynamics of one-dimensional maps. Mathematics and its applications (Vol. 407). Dordrecht: Kluwer. Sharkovsky, A. N., Kolyada, S. F., Sivak, A. G., & Fedorenko, V. V. (1997). Dynamics of one-dimensional maps. Mathematics and its applications (Vol. 407). Dordrecht: Kluwer.
Zurück zum Zitat Shilnikov, A. L. (1993). On bifurcations of the Lorenz attractor in the Shimizu-Morioka model. Physica D, 62(1–4), 338–346.CrossRef Shilnikov, A. L. (1993). On bifurcations of the Lorenz attractor in the Shimizu-Morioka model. Physica D, 62(1–4), 338–346.CrossRef
Zurück zum Zitat Shilnikov, A., & Cymbalyuk, G. (2004). Homoclinic saddle-node orbit bifurcations en a route between tonic spiking and bursting in neuron models, invited paper. Regular & Chaotic Dynamics, 9, 281–297.CrossRef Shilnikov, A., & Cymbalyuk, G. (2004). Homoclinic saddle-node orbit bifurcations en a route between tonic spiking and bursting in neuron models, invited paper. Regular & Chaotic Dynamics, 9, 281–297.CrossRef
Zurück zum Zitat Shilnikov, A. L., Calabrese, R. L., & Cymbalyuk, G. (2005). Mechanism of bistability: Tonic spiking and bursting in a neuron model. Physical Review E, 71, 056214.CrossRef Shilnikov, A. L., Calabrese, R. L., & Cymbalyuk, G. (2005). Mechanism of bistability: Tonic spiking and bursting in a neuron model. Physical Review E, 71, 056214.CrossRef
Zurück zum Zitat Shilnikov, A. L., & Cymbalyuk, G. (2005). Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Physical Review Letters, 94(4), 048101.CrossRefPubMed Shilnikov, A. L., & Cymbalyuk, G. (2005). Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe. Physical Review Letters, 94(4), 048101.CrossRefPubMed
Zurück zum Zitat Shilnikov, A. L., & Kolomiets, M. L. (2008). Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial. International Journal of Bifurcation and Chaos, 18(7), 1–32. Shilnikov, A. L., & Kolomiets, M. L. (2008). Methods of the qualitative theory for the Hindmarsh-Rose model: A case study. A tutorial. International Journal of Bifurcation and Chaos, 18(7), 1–32.
Zurück zum Zitat Shilnikov, A. L., & Rulkov, N. F. (2003). Origin of chaos in a two-dimensional map modelling spiking-bursting neural activity. International Journal of Bifurcation and Chaos, 13(11), 3325–3340.CrossRef Shilnikov, A. L., & Rulkov, N. F. (2003). Origin of chaos in a two-dimensional map modelling spiking-bursting neural activity. International Journal of Bifurcation and Chaos, 13(11), 3325–3340.CrossRef
Zurück zum Zitat Shilnikov, A. L., & Rulkov, N. F. (2004). Subthreshold oscillations in a map-based neuron model. Physics Letters A, 328(2–3), 177–184.CrossRef Shilnikov, A. L., & Rulkov, N. F. (2004). Subthreshold oscillations in a map-based neuron model. Physics Letters A, 328(2–3), 177–184.CrossRef
Zurück zum Zitat Shilnikov, L. P., Shilnikov, A. L., Turaev, D., & Chua, L. O. (1998, 2001). Methods of qualitative theory in nonlinear dynamics (Vols. 1 and 2). Singapore: World Scientific. Shilnikov, L. P., Shilnikov, A. L., Turaev, D., & Chua, L. O. (1998, 2001). Methods of qualitative theory in nonlinear dynamics (Vols. 1 and 2). Singapore: World Scientific.
Zurück zum Zitat So, P., Ott, E., Schiff, S. J., Kaplan, D. T., Sauer, T., & Grebogi, C. (1996). Detecting unstable periodic orbits in chaotic experimental data. Physical Review Letters, 76(25), 4705–4708.CrossRefPubMed So, P., Ott, E., Schiff, S. J., Kaplan, D. T., Sauer, T., & Grebogi, C. (1996). Detecting unstable periodic orbits in chaotic experimental data. Physical Review Letters, 76(25), 4705–4708.CrossRefPubMed
Zurück zum Zitat Steriade, M., Jones, E. G., & Llinas, R. R. (1990). Thalamic oscillations and signaling. New York: Wiley. Steriade, M., Jones, E. G., & Llinas, R. R. (1990). Thalamic oscillations and signaling. New York: Wiley.
Zurück zum Zitat Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679–685.CrossRefPubMed Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679–685.CrossRefPubMed
Zurück zum Zitat Su, J., Rubin, J., & Terman, D. (2004). Effects of noise on elliptic bursters. Nonlinearity, 17, 13300157.CrossRef Su, J., Rubin, J., & Terman, D. (2004). Effects of noise on elliptic bursters. Nonlinearity, 17, 13300157.CrossRef
Zurück zum Zitat Terman, D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM Journal on Applied Mathematics, 51(5), 1418–1450.CrossRef Terman, D. (1991). Chaotic spikes arising from a model of bursting in excitable membranes. SIAM Journal on Applied Mathematics, 51(5), 1418–1450.CrossRef
Zurück zum Zitat Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. Journal of Nonliear Science, 2(2), 135–182.CrossRef Terman, D. (1992). The transition from bursting to continuous spiking in excitable membrane models. Journal of Nonliear Science, 2(2), 135–182.CrossRef
Zurück zum Zitat Tikhonov, A. N. (1948). On the dependence of solutions of differential equations from a small parameter. Matemati(̌c)eskij Sbornik, 22(64), 193–204. Tikhonov, A. N. (1948). On the dependence of solutions of differential equations from a small parameter. Matemati(̌c)eskij Sbornik, 22(64), 193–204.
Zurück zum Zitat Wang, X. J. (1993). Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D, 62(1–4), 263–274.CrossRef Wang, X. J. (1993). Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle. Physica D, 62(1–4), 263–274.CrossRef
Zurück zum Zitat Yang, Z., Qishao, L., & Li, L. (2006). The genesis of period-adding bursting without bursting-chaos in the Chay model. Chaos, Solitons and Fractals, 27(3), 689–697.CrossRef Yang, Z., Qishao, L., & Li, L. (2006). The genesis of period-adding bursting without bursting-chaos in the Chay model. Chaos, Solitons and Fractals, 27(3), 689–697.CrossRef
Metadaten
Titel
Variability of bursting patterns in a neuron model in the presence of noise
verfasst von
Paul Channell
Ibiyinka Fuwape
Alexander B. Neiman
Andrey L. Shilnikov
Publikationsdatum
01.12.2009
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2009
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-009-0167-1

Weitere Artikel der Ausgabe 3/2009

Journal of Computational Neuroscience 3/2009 Zur Ausgabe