Skip to main content
Erschienen in: Journal of Nanoparticle Research 8/2016

01.08.2016 | Research Paper

Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles

verfasst von: Verónica Llaneza, Ismael Rodea-Palomares, Zuo Zhou, Roberto Rosal, Francisca Fernández-Pina, Jean-Claude J. Bonzongo

Erschienen in: Journal of Nanoparticle Research | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The efficiency of zero-valent iron particles used in the remediation of contaminated groundwater has, with the emergence of nanotechnology, stimulated interest on the use of nano-size particles to take advantage of high-specific surface area and reactivity characteristics of nanoparticles (NPs). Accordingly, engineered iron-NPs are among the most widely used nanomaterials for in situ remediation. However, while several ecotoxicity studies have been conducted to investigate the adverse impacts of these NPs on aquatic organisms, research on the implications of spent iron-based NPs is lacking. In this study, a comparative approach is used, in which the biological effects of three iron-based NPs (Fe3O4 and γ-Fe2O3 NPs with particle sizes ranging from 20 to 50 nm, and Fe0-NPs with an average particle size of 40 nm) on Raphidocelis subcapitata (formely known as Pseudokirchneriella subcapitata) and Daphnia magna were investigated using both as-prepared and pollutant-doped Fe-based NPs. For the latter, arsenic (As) was used as example sorbed pollutant. The results show that improved degree of NP dispersion by use of polyvinylpyrrolidone overlapped with both increased arsenic adsorption capacity and toxicity to the tested organisms. For R. subcapitata, Fe-oxide NPs were more toxic than Fe0-NPs, due primarily to differences in the degree of NPs aggregation and ability to produce reactive oxygen species. For the invertebrate D. magna, a similar trend of biological responses was observed, except that sorption of As to Fe0-NPs significantly increased the toxic response when compared to R. subcapitata. Overall, these findings point to the need for research on downstream implications of NP-pollutant complexes generated during water treatment by injection of NPs into aquatic systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adeleye AS, Keller AA, Miller RJ, Lenihan HS (2013) Persistence of commercial nano-scaled zero-valent iron (nZVI) and by-products. J Nanopart Res 15(1):1–18CrossRef Adeleye AS, Keller AA, Miller RJ, Lenihan HS (2013) Persistence of commercial nano-scaled zero-valent iron (nZVI) and by-products. J Nanopart Res 15(1):1–18CrossRef
Zurück zum Zitat Adeleye AS, Stevenson LM, Su Y, Nisbet RM, Zhang Y, Keller AA (2016) Influence of phytoplankton on fate and effects of modified zero-valent iron nanoparticles. Environ Sci Technol. doi:10.1021/acs.est.5b06251 Adeleye AS, Stevenson LM, Su Y, Nisbet RM, Zhang Y, Keller AA (2016) Influence of phytoplankton on fate and effects of modified zero-valent iron nanoparticles. Environ Sci Technol. doi:10.​1021/​acs.​est.​5b06251
Zurück zum Zitat Auffan MI, Achouak W, Rose JRM, Roncato M-A, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J-Y (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735CrossRef Auffan MI, Achouak W, Rose JRM, Roncato M-A, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero J-Y (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42(17):6730–6735CrossRef
Zurück zum Zitat Cao J, Zhang W-X (2006) Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. J Hazard Mater 132(2–3):213–219CrossRef Cao J, Zhang W-X (2006) Stabilization of chromium ore processing residue (COPR) with nanoscale iron particles. J Hazard Mater 132(2–3):213–219CrossRef
Zurück zum Zitat Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45(5):1995–2001CrossRef Chen J, Xiu Z, Lowry GV, Alvarez PJJ (2011) Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res 45(5):1995–2001CrossRef
Zurück zum Zitat Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012CrossRef Chen Z, Yin J-J, Zhou Y-T, Zhang Y, Song L, Song M, Hu S, Gu N (2012) Dual enzyme-like activities of iron oxide nanoparticles and their implication for diminishing cytotoxicity. ACS Nano 6(5):4001–4012CrossRef
Zurück zum Zitat Chertok B, David AE, Yang VC (2010) Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 31(24):6317–6324CrossRef Chertok B, David AE, Yang VC (2010) Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials 31(24):6317–6324CrossRef
Zurück zum Zitat Cornell S (1996) The iron oxides; structure, properties, reactions, occurrence and uses, 1st edn. VCH, New York Cornell S (1996) The iron oxides; structure, properties, reactions, occurrence and uses, 1st edn. VCH, New York
Zurück zum Zitat Crane RA, Dickinson M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45:2931–2942CrossRef Crane RA, Dickinson M, Popescu IC, Scott TB (2011) Magnetite and zero-valent iron nanoparticles for the remediation of uranium contaminated environmental water. Water Res 45:2931–2942CrossRef
Zurück zum Zitat Dabrunz A, Duester L, Prasse C, Seitz F, Rosenfeldt R, Schilde C, Schaumann GE, Schulz R (2011) Biological surface coating and molting inhibition as mechanisms of tio2 nanoparticle toxicity in Daphnia magna. PLOS One 6(5):e20112CrossRef Dabrunz A, Duester L, Prasse C, Seitz F, Rosenfeldt R, Schilde C, Schaumann GE, Schulz R (2011) Biological surface coating and molting inhibition as mechanisms of tio2 nanoparticle toxicity in Daphnia magna. PLOS One 6(5):e20112CrossRef
Zurück zum Zitat Dixit S, Hering JG (2003) Comparison of As(V) and As(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37(18):4182–4189CrossRef Dixit S, Hering JG (2003) Comparison of As(V) and As(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37(18):4182–4189CrossRef
Zurück zum Zitat Fang Z, Chen J, Qiu X, Qiu X, Cheng W, Zhu L (2011) Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268(1–3):60–67CrossRef Fang Z, Chen J, Qiu X, Qiu X, Cheng W, Zhu L (2011) Effective removal of antibiotic metronidazole from water by nanoscale zero-valent iron particles. Desalination 268(1–3):60–67CrossRef
Zurück zum Zitat Gao J, Wang Y, Hovsepyan A, Bonzongo J-C (2011) Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments. J Hazard Mater 186(1):940–945CrossRef Gao J, Wang Y, Hovsepyan A, Bonzongo J-C (2011) Effects of engineered nanomaterials on microbial catalyzed biogeochemical processes in sediments. J Hazard Mater 186(1):940–945CrossRef
Zurück zum Zitat Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83(4):510–516CrossRef Gong N, Shao K, Feng W, Lin Z, Liang C, Sun Y (2011) Biotoxicity of nickel oxide nanoparticles and bio-remediation by microalgae Chlorella vulgaris. Chemosphere 83(4):510–516CrossRef
Zurück zum Zitat Gonzalo S, Llaneza V, Pulido-Reyes G, Fernández-Piñas F, Bonzongo J-C, Leganes F, Rosal R, Garcia-Calvo E, Rodea-Palomares I (2014) A colloidal singularity reveals the crucial role of colloidal stability for nanomaterials in vitro toxicity testing: nZVI-microalgae colloidal system as a case study. PLOS One 9(10):e109645CrossRef Gonzalo S, Llaneza V, Pulido-Reyes G, Fernández-Piñas F, Bonzongo J-C, Leganes F, Rosal R, Garcia-Calvo E, Rodea-Palomares I (2014) A colloidal singularity reveals the crucial role of colloidal stability for nanomaterials in vitro toxicity testing: nZVI-microalgae colloidal system as a case study. PLOS One 9(10):e109645CrossRef
Zurück zum Zitat Gorski CA, Nurmi JT, Tratnyek PG, Hofstetter TB, Scherer MM (2009) Redox behavior of magnetite: implications for contaminant reduction. Environ Sci Technol 44(1):55–60CrossRef Gorski CA, Nurmi JT, Tratnyek PG, Hofstetter TB, Scherer MM (2009) Redox behavior of magnetite: implications for contaminant reduction. Environ Sci Technol 44(1):55–60CrossRef
Zurück zum Zitat Gregory J (2006) Particles in water properties and processes. Taylor & Francis, Boca Raton, p 180 Gregory J (2006) Particles in water properties and processes. Taylor & Francis, Boca Raton, p 180
Zurück zum Zitat Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183CrossRef Grieger KD, Fjordbøge A, Hartmann NB, Eriksson E, Bjerg PL, Baun A (2010) Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off? J Contam Hydrol 118(3–4):165–183CrossRef
Zurück zum Zitat Gupta A, Curtis AG (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15(4):493–496CrossRef Gupta A, Curtis AG (2004) Surface modified superparamagnetic nanoparticles for drug delivery: interaction studies with human fibroblasts in culture. J Mater Sci Mater Med 15(4):493–496CrossRef
Zurück zum Zitat He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221CrossRef He F, Zhao D (2007) Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol 41(17):6216–6221CrossRef
Zurück zum Zitat Huang Q, Shi X, Pinto RA, Petersen EJ, Weber WJ (2008) Tunable synthesis and immobilization of zero-valent iron nanoparticles for environmental applications. Environ Sci Technol 42(23):8884–8889CrossRef Huang Q, Shi X, Pinto RA, Petersen EJ, Weber WJ (2008) Tunable synthesis and immobilization of zero-valent iron nanoparticles for environmental applications. Environ Sci Technol 42(23):8884–8889CrossRef
Zurück zum Zitat Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133(1):1–16CrossRef Hughes MF (2002) Arsenic toxicity and potential mechanisms of action. Toxicol Lett 133(1):1–16CrossRef
Zurück zum Zitat Hwang Y, Kim D, Ahn Y-T, Moon C-M, Shin H-S (2012) Recovery of ammonium salt from nitrate-containing water by Iron nanoparticles and membrane contactor. Environ Eng Res 17:111–116CrossRef Hwang Y, Kim D, Ahn Y-T, Moon C-M, Shin H-S (2012) Recovery of ammonium salt from nitrate-containing water by Iron nanoparticles and membrane contactor. Environ Eng Res 17:111–116CrossRef
Zurück zum Zitat Johnson RL, Johnson GOB, Nurmi JT, Tratnyek PG (2009) Natural organic matter enhanced mobility of nano zerovalent iron. Environ Sci Technol 43(14):5455–5460CrossRef Johnson RL, Johnson GOB, Nurmi JT, Tratnyek PG (2009) Natural organic matter enhanced mobility of nano zerovalent iron. Environ Sci Technol 43(14):5455–5460CrossRef
Zurück zum Zitat Kim H, Hong H-J, Jung J, Kim S-H, Yang J-W (2010a) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 176(1–3):1038–1043CrossRef Kim H, Hong H-J, Jung J, Kim S-H, Yang J-W (2010a) Degradation of trichloroethylene (TCE) by nanoscale zero-valent iron (nZVI) immobilized in alginate bead. J Hazard Mater 176(1–3):1038–1043CrossRef
Zurück zum Zitat Kim JY, Park HJ, Lee C, Nelson KL, Sedlak DL, Yoon J (2010b) Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Appl Environ Microbiol 76:7668–7670CrossRef Kim JY, Park HJ, Lee C, Nelson KL, Sedlak DL, Yoon J (2010b) Inactivation of Escherichia coli by nanoparticulate zerovalent iron and ferrous ion. Appl Environ Microbiol 76:7668–7670CrossRef
Zurück zum Zitat Lavicoli I, Fontana L, Leso V, Calabrese EJ (2014) Hormetic dose-responses in nanotechnology studies. Sci Total Environ 487:361–374CrossRef Lavicoli I, Fontana L, Leso V, Calabrese EJ (2014) Hormetic dose-responses in nanotechnology studies. Sci Total Environ 487:361–374CrossRef
Zurück zum Zitat Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933CrossRef Lee C, Kim JY, Lee WI, Nelson KL, Yoon J, Sedlak DL (2008) Bactericidal effect of zero-valent iron nanoparticles on Escherichia coli. Environ Sci Technol 42(13):4927–4933CrossRef
Zurück zum Zitat Li X-Q, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22(10):4638–4642CrossRef Li X-Q, Zhang WX (2006) Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Langmuir 22(10):4638–4642CrossRef
Zurück zum Zitat Ma S, Lin D (2013) The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Process Impact 15(1):145–160CrossRef Ma S, Lin D (2013) The biophysicochemical interactions at the interfaces between nanoparticles and aquatic organisms: adsorption and internalization. Environ Sci Process Impact 15(1):145–160CrossRef
Zurück zum Zitat Macé C, Desrocher S, Gheorghiu F, Kane A, Pupeza M, Cernik M, Kvapil P, Venkatakrishnan R, Zhang W-X (2006) Nanotechnology and groundwater remediation: a step forward in technology understanding. Remediat J 16(2):23–33CrossRef Macé C, Desrocher S, Gheorghiu F, Kane A, Pupeza M, Cernik M, Kvapil P, Venkatakrishnan R, Zhang W-X (2006) Nanotechnology and groundwater remediation: a step forward in technology understanding. Remediat J 16(2):23–33CrossRef
Zurück zum Zitat Malynych S, Luzinov I, Chumanov G (2002) Poly(Vinyl Pyridine) as a universal surface modifier for immobilization of nanoparticles. J Phys Chem B 106(6):1280–1285CrossRef Malynych S, Luzinov I, Chumanov G (2002) Poly(Vinyl Pyridine) as a universal surface modifier for immobilization of nanoparticles. J Phys Chem B 106(6):1280–1285CrossRef
Zurück zum Zitat Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF (2007) Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316(5831):1600–1603CrossRef Moreau JW, Weber PK, Martin MC, Gilbert B, Hutcheon ID, Banfield JF (2007) Extracellular proteins limit the dispersal of biogenic nanoparticles. Science 316(5831):1600–1603CrossRef
Zurück zum Zitat Mostafa MG, Chen Y-H, Jean J-S, Liu C-C, Lee Y-C (2011) Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. J Hazard Mater 187:89–95CrossRef Mostafa MG, Chen Y-H, Jean J-S, Liu C-C, Lee Y-C (2011) Kinetics and mechanism of arsenate removal by nanosized iron oxide-coated perlite. J Hazard Mater 187:89–95CrossRef
Zurück zum Zitat Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (nZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558CrossRef Mueller NC, Braun J, Bruns J, Černík M, Rissing P, Rickerby D, Nowack B (2012) Application of nanoscale zero valent iron (nZVI) for groundwater remediation in Europe. Environ Sci Pollut Res 19(2):550–558CrossRef
Zurück zum Zitat Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nano-level. Science 311(5761):622–627CrossRef Nel A, Xia T, Mädler L, Li N (2006) Toxic potential of materials at the nano-level. Science 311(5761):622–627CrossRef
Zurück zum Zitat Oberdorster G, Oberdorster E, Oberdorster J (2007) Concepts of nanoparticle dose metric and response metric. Environ Health Perspect 115(6):A290CrossRef Oberdorster G, Oberdorster E, Oberdorster J (2007) Concepts of nanoparticle dose metric and response metric. Environ Health Perspect 115(6):A290CrossRef
Zurück zum Zitat OECD (2004) Test no. 202: Daphnia sp. acute immobilisation test. OECD Publishing, ParisCrossRef OECD (2004) Test no. 202: Daphnia sp. acute immobilisation test. OECD Publishing, ParisCrossRef
Zurück zum Zitat Olegario JT, Yee N, Miller M, Sczepaniak J, Manning B (2009) Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions. J Nanopart Res 12(6):2057–2068CrossRef Olegario JT, Yee N, Miller M, Sczepaniak J, Manning B (2009) Reduction of Se(VI) to Se(-II) by zerovalent iron nanoparticle suspensions. J Nanopart Res 12(6):2057–2068CrossRef
Zurück zum Zitat Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13(2):45–49CrossRef Oremland RS, Stolz JF (2005) Arsenic, microbes and contaminated aquifers. Trends Microbiol 13(2):45–49CrossRef
Zurück zum Zitat Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2006) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290CrossRef Phenrat T, Saleh N, Sirk K, Tilton RD, Lowry GV (2006) Aggregation and sedimentation of aqueous nanoscale zerovalent iron dispersions. Environ Sci Technol 41(1):284–290CrossRef
Zurück zum Zitat Pisanic tr, Blackwell JD, Shubayev VI, Finones RR, Jin S (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28(16):2572–2581CrossRef Pisanic tr, Blackwell JD, Shubayev VI, Finones RR, Jin S (2007) Nanotoxicity of iron oxide nanoparticle internalization in growing neurons. Biomaterials 28(16):2572–2581CrossRef
Zurück zum Zitat Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569CrossRef Ponder SM, Darab JG, Mallouk TE (2000) Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol 34(12):2564–2569CrossRef
Zurück zum Zitat Rodea-Palomares I, Gonzalo S, Santiago-Morales J, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F (2012) An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquat Toxicol 122–123:133–143CrossRef Rodea-Palomares I, Gonzalo S, Santiago-Morales J, Leganés F, García-Calvo E, Rosal R, Fernández-Piñas F (2012) An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquat Toxicol 122–123:133–143CrossRef
Zurück zum Zitat Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011a) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74(5):1180–1187CrossRef Sadiq IM, Dalai S, Chandrasekaran N, Mukherjee A (2011a) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicol Environ Saf 74(5):1180–1187CrossRef
Zurück zum Zitat Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011b) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13(8):3287–3299CrossRef Sadiq IM, Pakrashi S, Chandrasekaran N, Mukherjee A (2011b) Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. J Nanopart Res 13(8):3287–3299CrossRef
Zurück zum Zitat Sakulchaicharoen N, O’Carroll DM, Herrera JE (2010) Enhanced stability and de-chlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol 118(3–4):117–127CrossRef Sakulchaicharoen N, O’Carroll DM, Herrera JE (2010) Enhanced stability and de-chlorination activity of pre-synthesis stabilized nanoscale FePd particles. J Contam Hydrol 118(3–4):117–127CrossRef
Zurück zum Zitat Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355CrossRef Saleh N, Kim H-J, Phenrat T, Matyjaszewski K, Tilton RD, Lowry GV (2008) Ionic strength and composition affect the mobility of surface-modified fe0 nanoparticles in water-saturated sand columns. Environ Sci Technol 42(9):3349–3355CrossRef
Zurück zum Zitat Scott TB, Dickinson M, Crane RA, Riba O, Hughes GM, Allen GC (2010) The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles. J Nanopart Res 12:1765–1775CrossRef Scott TB, Dickinson M, Crane RA, Riba O, Hughes GM, Allen GC (2010) The effects of vacuum annealing on the structure and surface chemistry of iron nanoparticles. J Nanopart Res 12:1765–1775CrossRef
Zurück zum Zitat Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759CrossRef Sharma VK, Sohn M (2009) Aquatic arsenic: toxicity, speciation, transformations, and remediation. Environ Int 35(4):743–759CrossRef
Zurück zum Zitat Shin K-H, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72(2):257–262CrossRef Shin K-H, Cha DK (2008) Microbial reduction of nitrate in the presence of nanoscale zero-valent iron. Chemosphere 72(2):257–262CrossRef
Zurück zum Zitat Sidhu PS (1981) Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clay Clay Miner 29(4):269–276CrossRef Sidhu PS (1981) Dissolution of iron oxides and oxyhydroxides in hydrochloric and perchloric acids. Clay Clay Miner 29(4):269–276CrossRef
Zurück zum Zitat Sun Y-P, Li X-Q, Cao J, Zhang W-X, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120(1–3):47–56CrossRef Sun Y-P, Li X-Q, Cao J, Zhang W-X, Wang HP (2006) Characterization of zero-valent iron nanoparticles. Adv Colloid Interface Sci 120(1–3):47–56CrossRef
Zurück zum Zitat US-EPA (2002) Test method 1003.0—Green algae, Selenastrum capriconutum, Growth US-EPA (2002) Test method 1003.0—Green algae, Selenastrum capriconutum, Growth
Zurück zum Zitat Vernon JD, Bonzongo J-CJ (2014) Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: implications for treatment of mercury contaminated water effluents. J Hazard Mater 276:408–414CrossRef Vernon JD, Bonzongo J-CJ (2014) Volatilization and sorption of dissolved mercury by metallic iron of different particle sizes: implications for treatment of mercury contaminated water effluents. J Hazard Mater 276:408–414CrossRef
Zurück zum Zitat Voinov MA, Pagan JOS, Morrison E, Smirnova TI, Smirnov AI (2010) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133(1):35–41CrossRef Voinov MA, Pagan JOS, Morrison E, Smirnova TI, Smirnov AI (2010) Surface-mediated production of hydroxyl radicals as a mechanism of iron oxide nanoparticle biotoxicity. J Am Chem Soc 133(1):35–41CrossRef
Zurück zum Zitat Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171(3):99–110CrossRef Warheit DB, Hoke RA, Finlay C, Donner EM, Reed KL, Sayes CM (2007) Development of a base set of toxicity tests using ultrafine TiO2 particles as a component of nanoparticle risk management. Toxicol Lett 171(3):99–110CrossRef
Zurück zum Zitat Wu H, Yin J-J, Wamer WG, Zeng M, Lo YM (2014) Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22(1):86–94CrossRef Wu H, Yin J-J, Wamer WG, Zeng M, Lo YM (2014) Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J Food Drug Anal 22(1):86–94CrossRef
Zurück zum Zitat Xiu Z-M, Gregory KB, Lowry GV, Alvarez PJJ (2010) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44(19):7647–7651CrossRef Xiu Z-M, Gregory KB, Lowry GV, Alvarez PJJ (2010) Effect of bare and coated nanoscale zerovalent iron on tceA and vcrA gene expression in Dehalococcoides spp. Environ Sci Technol 44(19):7647–7651CrossRef
Zurück zum Zitat Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang Y, Nickles RJ, Cai W, Steeber DA, Gong S (2011) cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17):4151–4160CrossRef Yang X, Hong H, Grailer JJ, Rowland IJ, Javadi A, Hurley SA, Xiao Y, Yang Y, Zhang Y, Nickles RJ, Cai W, Steeber DA, Gong S (2011) cRGD-functionalized, DOX-conjugated, and 64Cu-labeled superparamagnetic iron oxide nanoparticles for targeted anticancer drug delivery and PET/MR imaging. Biomaterials 32(17):4151–4160CrossRef
Zurück zum Zitat Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332CrossRef Zhang W-X (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5(3):323–332CrossRef
Zurück zum Zitat Zhang Y, Sun C, Kohler N, Zhang M (2004) Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake. Biomed Microdevice 6(1):33–40CrossRef Zhang Y, Sun C, Kohler N, Zhang M (2004) Self-assembled coatings on individual monodisperse magnetite nanoparticles for efficient intracellular uptake. Biomed Microdevice 6(1):33–40CrossRef
Zurück zum Zitat Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water res 100:245–266CrossRef Zhao X, Liu W, Cai Z, Han B, Qian T, Zhao D (2016) An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation. Water res 100:245–266CrossRef
Zurück zum Zitat Zhaunerchyk V, Geppert WD, Rosen S, Vigren E, Hamberg M, Kamińska M, Kashperka I, af Ugglas M, Semaniak J, Larsson M, Thomas RD (2009) Investigation into the vibrational yield of OH products in the OH+ H+ H channel arising from the dissociative recombination of H3O+. J Chem Phys 130:214302CrossRef Zhaunerchyk V, Geppert WD, Rosen S, Vigren E, Hamberg M, Kamińska M, Kashperka I, af Ugglas M, Semaniak J, Larsson M, Thomas RD (2009) Investigation into the vibrational yield of OH products in the OH+ H+ H channel arising from the dissociative recombination of H3O+. J Chem Phys 130:214302CrossRef
Zurück zum Zitat Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215CrossRef Zhu X, Chang Y, Chen Y (2010) Toxicity and bioaccumulation of TiO2 nanoparticle aggregates in Daphnia magna. Chemosphere 78(3):209–215CrossRef
Metadaten
Titel
Polyvinylpyrrolidone and arsenic-induced changes in biological responses of model aquatic organisms exposed to iron-based nanoparticles
verfasst von
Verónica Llaneza
Ismael Rodea-Palomares
Zuo Zhou
Roberto Rosal
Francisca Fernández-Pina
Jean-Claude J. Bonzongo
Publikationsdatum
01.08.2016
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 8/2016
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-016-3541-8

Weitere Artikel der Ausgabe 8/2016

Journal of Nanoparticle Research 8/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.