Skip to main content
Erschienen in: Biomass Conversion and Biorefinery 2/2019

04.12.2018 | Original Article

Efficient metal-free conversion of glucose to 5-hydroxymethylfurfural using a boronic acid

verfasst von: Brian J. Graham, Ronald T. Raines

Erschienen in: Biomass Conversion and Biorefinery | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

5-Hydroxymethylfurfural (HMF), which can be synthesized from hexose sugars without rearrangement of their carbon framework, is a key platform chemical that is readily convertible into fuels and chemicals that are now derived from petroleum. Methods to convert glucose, which is readily accessible from cellulose, to HMF typically rely on toxic heavy metals or harsh acidic conditions and often give low yields or low selectivity. Here, we report on a mild, efficient, and metal-free process that uses an organocatalyst, 2-carboxyphenylboronic acid, along with small amounts of chloride ion to effect the selective transformation of glucose to HMF.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Hirsch RL, Bezdek R, Wendling R (2006) Peaking of world oil production and its mitigation. AICHE J 52:2–8CrossRef Hirsch RL, Bezdek R, Wendling R (2006) Peaking of world oil production and its mitigation. AICHE J 52:2–8CrossRef
2.
Zurück zum Zitat Champan I (2014) The end of peak oil? Why this topic is still relevant despite recent denials. Energy Policy 64:93–101CrossRef Champan I (2014) The end of peak oil? Why this topic is still relevant despite recent denials. Energy Policy 64:93–101CrossRef
3.
Zurück zum Zitat Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego Klass DL (1998) Biomass for renewable energy, fuels, and chemicals. Academic Press, San Diego
4.
Zurück zum Zitat Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRef Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502CrossRef
5.
Zurück zum Zitat Dusselier M, Mascal M, Sels BF (2014) Top chemical opportunities from carbohydrate biomass: a chemist’s view of the biorefinery. Top Curr Chem 353:1–40CrossRef Dusselier M, Mascal M, Sels BF (2014) Top chemical opportunities from carbohydrate biomass: a chemist’s view of the biorefinery. Top Curr Chem 353:1–40CrossRef
6.
Zurück zum Zitat Mika LT, Cséfalvay E, Németh Á (2017) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118:505–613CrossRef Mika LT, Cséfalvay E, Németh Á (2017) Catalytic conversion of carbohydrates to initial platform chemicals: chemistry and sustainability. Chem Rev 118:505–613CrossRef
7.
Zurück zum Zitat van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597CrossRef van Putten RJ, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597CrossRef
8.
Zurück zum Zitat Mascal M, Dutta S (2014) Chemical–catalytic approaches to the production of furfurals and levulinates from biomass. Top Curr Chem 353:41–83CrossRef Mascal M, Dutta S (2014) Chemical–catalytic approaches to the production of furfurals and levulinates from biomass. Top Curr Chem 353:41–83CrossRef
9.
Zurück zum Zitat Caes BR, Teixeira RE, Knapp KG, Raines RT (2015) Biomass to furanics: renewable routes to chemicals and fuels. ACS Sustain Chem Eng 3:2591–2605CrossRef Caes BR, Teixeira RE, Knapp KG, Raines RT (2015) Biomass to furanics: renewable routes to chemicals and fuels. ACS Sustain Chem Eng 3:2591–2605CrossRef
10.
Zurück zum Zitat Hu L, Lin L, Wu Z, Zhou SY, Liu SJ (2017) Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renew Sust Energ Rev 74:230–257CrossRef Hu L, Lin L, Wu Z, Zhou SY, Liu SJ (2017) Recent advances in catalytic transformation of biomass-derived 5-hydroxymethylfurfural into the innovative fuels and chemicals. Renew Sust Energ Rev 74:230–257CrossRef
11.
Zurück zum Zitat Chernyshev VM, Kravchenko OA, Ananikov VP (2017) Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russ Chem Rev 86:357–387CrossRef Chernyshev VM, Kravchenko OA, Ananikov VP (2017) Conversion of plant biomass to furan derivatives and sustainable access to the new generation of polymers, functional materials and fuels. Russ Chem Rev 86:357–387CrossRef
12.
Zurück zum Zitat Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Bioresour Technol 238:716–732CrossRef Yu IKM, Tsang DCW (2017) Conversion of biomass to hydroxymethylfurfural: a review of catalytic systems and underlying mechanisms. Bioresour Technol 238:716–732CrossRef
13.
Zurück zum Zitat Bohre A, Dutta S, Saha B, Abu-Omar MM (2015) Upgrading furfurals to drop-in biofuels: an overview. ACS Sustain Chem Eng 3:1263–1277CrossRef Bohre A, Dutta S, Saha B, Abu-Omar MM (2015) Upgrading furfurals to drop-in biofuels: an overview. ACS Sustain Chem Eng 3:1263–1277CrossRef
14.
Zurück zum Zitat Eldeeb MA, Akih-Kumgeh B (2018) Recent trends in the production, combustion and modeling of furan-based fuels. Energies 11:512CrossRef Eldeeb MA, Akih-Kumgeh B (2018) Recent trends in the production, combustion and modeling of furan-based fuels. Energies 11:512CrossRef
15.
Zurück zum Zitat Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci U S A 107:4516–4521CrossRef Binder JB, Raines RT (2010) Fermentable sugars by chemical hydrolysis of biomass. Proc Natl Acad Sci U S A 107:4516–4521CrossRef
16.
Zurück zum Zitat Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chem 5:280–284CrossRef Bicker M, Hirth J, Vogel H (2003) Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chem 5:280–284CrossRef
17.
Zurück zum Zitat Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350CrossRef Chheda JN, Román-Leshkov Y, Dumesic JA (2007) Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- and poly-saccharides. Green Chem 9:342–350CrossRef
18.
Zurück zum Zitat Román-Leshkov Y, Dumesic JA (2009) Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Top Catal 52:297–303CrossRef Román-Leshkov Y, Dumesic JA (2009) Solvent effects on fructose dehydration to 5-hydroxymethylfurfural in biphasic systems saturated with inorganic salts. Top Catal 52:297–303CrossRef
19.
Zurück zum Zitat Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600CrossRef Zhao H, Holladay JE, Brown H, Zhang ZC (2007) Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science 316:1597–1600CrossRef
20.
Zurück zum Zitat Yang Y, C-w H, Abu-Omar MM (2012) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chem 14:509–513CrossRef Yang Y, C-w H, Abu-Omar MM (2012) Conversion of carbohydrates and lignocellulosic biomass into 5-hydroxymethylfurfural using AlCl3·6H2O catalyst in a biphasic solvent system. Green Chem 14:509–513CrossRef
21.
Zurück zum Zitat Zhou C, Zhao J, Yagoub AA, Ma H, Yu X, Hu J, Bao X, Liu S (2017) Conversion of glucose into 5-hydroxymethylfurfural in different solvents and catalysts: reaction kinetics and mechanism. Egypt J Pet 26:477–487CrossRef Zhou C, Zhao J, Yagoub AA, Ma H, Yu X, Hu J, Bao X, Liu S (2017) Conversion of glucose into 5-hydroxymethylfurfural in different solvents and catalysts: reaction kinetics and mechanism. Egypt J Pet 26:477–487CrossRef
22.
Zurück zum Zitat Yan H, Yang Y, Tong D, Xiang X, Hu C (2009) Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO4 2−/ZrO2 and SO4 2−/ZrO2–Al2O3 solid acid catalysts. Catal Commun 10:1558–1563CrossRef Yan H, Yang Y, Tong D, Xiang X, Hu C (2009) Catalytic conversion of glucose to 5-hydroxymethylfurfural over SO4 2−/ZrO2 and SO4 2−/ZrO2–Al2O3 solid acid catalysts. Catal Commun 10:1558–1563CrossRef
23.
Zurück zum Zitat Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenergy 35:2659–2665CrossRef Fan C, Guan H, Zhang H, Wang J, Wang S, Wang X (2011) Conversion of fructose and glucose into 5-hydroxymethylfurfural catalyzed by a solid heteropolyacid salt. Biomass Bioenergy 35:2659–2665CrossRef
24.
Zurück zum Zitat Chen SS, Maneerung T, Tsang D, Ok Y, Wang C-H (2017) Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem Eng J 328:246–273CrossRef Chen SS, Maneerung T, Tsang D, Ok Y, Wang C-H (2017) Valorization of biomass to hydroxymethylfurfural, levulinic acid, and fatty acid methyl ester by heterogeneous catalysts. Chem Eng J 328:246–273CrossRef
25.
Zurück zum Zitat Zhang T, Fan W, Li W, Xu Z, Xin H, Su M, Lu Y, Ma L (2017) One-pot conversion of carbohydrates into 5-(hydroxymethyl)furfural using heterogeneous Lewis-acid and Brønsted-acid catalysts. Energ Technol 5:747–755CrossRef Zhang T, Fan W, Li W, Xu Z, Xin H, Su M, Lu Y, Ma L (2017) One-pot conversion of carbohydrates into 5-(hydroxymethyl)furfural using heterogeneous Lewis-acid and Brønsted-acid catalysts. Energ Technol 5:747–755CrossRef
26.
Zurück zum Zitat Li W, Zhang T, Xin H, Su M, Ma L, Jameel H, H-m C, Pei G (2017) p-Hydroxybenzenesulfonic acid–formaldehyde solid acid resin for the conversion of fructose and glucose to 5-hydroxymethylfurfural. RSC Adv 7:27682–27688CrossRef Li W, Zhang T, Xin H, Su M, Ma L, Jameel H, H-m C, Pei G (2017) p-Hydroxybenzenesulfonic acid–formaldehyde solid acid resin for the conversion of fructose and glucose to 5-hydroxymethylfurfural. RSC Adv 7:27682–27688CrossRef
27.
Zurück zum Zitat Xin H, Zhang T, Li W, Su M, Li S, Shao Q, Ma L (2017) Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid. RSC Adv 7:41546–41551CrossRef Xin H, Zhang T, Li W, Su M, Li S, Shao Q, Ma L (2017) Dehydration of glucose to 5-hydroxymethylfurfural and 5-ethoxymethylfurfural by combining Lewis and Brønsted acid. RSC Adv 7:41546–41551CrossRef
28.
Zurück zum Zitat Rao K, Souzanchi S, Yuan Z, Ray MB, Xu C (2017) Simple and green route for preparation of tin phosphate catalysts by solid-state grinding for dehydration of glucose to 5-hydroxymethylfurfural (HMF). RSC Adv 7:48501–48511CrossRef Rao K, Souzanchi S, Yuan Z, Ray MB, Xu C (2017) Simple and green route for preparation of tin phosphate catalysts by solid-state grinding for dehydration of glucose to 5-hydroxymethylfurfural (HMF). RSC Adv 7:48501–48511CrossRef
29.
Zurück zum Zitat Tang H, Li N, Li G, Wang W, Wang A, Cong Y, Wang X (2018) Dehydration of carbohydrates to 5-hydroxymethyl-furfural over lignosulfonate-based acidic resin. ACS Sustain Chem Eng 6:5645–5652CrossRef Tang H, Li N, Li G, Wang W, Wang A, Cong Y, Wang X (2018) Dehydration of carbohydrates to 5-hydroxymethyl-furfural over lignosulfonate-based acidic resin. ACS Sustain Chem Eng 6:5645–5652CrossRef
30.
Zurück zum Zitat Qiu G, Wang X, Huang C, Li Y, Chen B (2018) Niobium phosphotungstates: excellent solid acid catalysts for the dehydration of fructose to 5-hydroxymethylfurfural under mild conditions. RSC Adv 8:32423–32433CrossRef Qiu G, Wang X, Huang C, Li Y, Chen B (2018) Niobium phosphotungstates: excellent solid acid catalysts for the dehydration of fructose to 5-hydroxymethylfurfural under mild conditions. RSC Adv 8:32423–32433CrossRef
31.
Zurück zum Zitat Patil SKR, Lund CRF (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25:4745–4755CrossRef Patil SKR, Lund CRF (2011) Formation and growth of humins via aldol addition and condensation during acid-catalyzed conversion of 5-hydroxymethylfurfural. Energy Fuel 25:4745–4755CrossRef
32.
Zurück zum Zitat van Zandvoort I, Wang YH, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6:1745–1758CrossRef van Zandvoort I, Wang YH, Rasrendra CB, van Eck ERH, Bruijnincx PCA, Heeres HJ, Weckhuysen BM (2013) Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem 6:1745–1758CrossRef
33.
Zurück zum Zitat van Zandvoort I, Koers EJ, Weingarth M, Bruijnincx PCA, Baldus M, Weckhuysen BM (2015) Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. Green Chem 17:4383–4392CrossRef van Zandvoort I, Koers EJ, Weingarth M, Bruijnincx PCA, Baldus M, Weckhuysen BM (2015) Structural characterization of 13C-enriched humins and alkali-treated 13C humins by 2D solid-state NMR. Green Chem 17:4383–4392CrossRef
34.
Zurück zum Zitat Tsilomelekis G, Orella MJ, Lin Z, Cheng Z, Zheng W, Nikolakis V, Vlachos DG (2016) Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chem 18:1983–1993CrossRef Tsilomelekis G, Orella MJ, Lin Z, Cheng Z, Zheng W, Nikolakis V, Vlachos DG (2016) Molecular structure, morphology and growth mechanisms and rates of 5-hydroxymethyl furfural (HMF) derived humins. Green Chem 18:1983–1993CrossRef
35.
Zurück zum Zitat Cheng Z, Everhart JL, Tsilomelekis G, Nikolakis V, Saha B, Vlachos DG (2018) Structural analysis of humins formed in the Brønsted acid catalyzed dehydration of fructose. Green Chem 20:997–1006CrossRef Cheng Z, Everhart JL, Tsilomelekis G, Nikolakis V, Saha B, Vlachos DG (2018) Structural analysis of humins formed in the Brønsted acid catalyzed dehydration of fructose. Green Chem 20:997–1006CrossRef
36.
Zurück zum Zitat Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114CrossRef Horvat J, Klaic B, Metelko B, Sunjic V (1985) Mechanism of levulinic acid formation. Tetrahedron Lett 26:2111–2114CrossRef
37.
Zurück zum Zitat Girisuta B, Janssen L, Heeres HJ (2006) A kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84:339–349CrossRef Girisuta B, Janssen L, Heeres HJ (2006) A kinetic study on the conversion of glucose to levulinic acid. Chem Eng Res Des 84:339–349CrossRef
38.
Zurück zum Zitat Girisuta B, Janssen L, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8:701–709CrossRef Girisuta B, Janssen L, Heeres HJ (2006) A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid. Green Chem 8:701–709CrossRef
39.
Zurück zum Zitat Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A (2011) Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chem Eur J 17:1456–1464CrossRef Ståhlberg T, Rodriguez-Rodriguez S, Fristrup P, Riisager A (2011) Metal-free dehydration of glucose to 5-(hydroxymethyl)furfural in ionic liquids with boric acid as a promoter. Chem Eur J 17:1456–1464CrossRef
40.
Zurück zum Zitat Caes BR, Palte MJ, Raines RT (2013) Organocatalytic conversion of cellulose into a platform chemical. Chem Sci 4:196–199CrossRef Caes BR, Palte MJ, Raines RT (2013) Organocatalytic conversion of cellulose into a platform chemical. Chem Sci 4:196–199CrossRef
41.
Zurück zum Zitat Hu L, Sun Y, Lin L, Liu SJ (2012) Catalytic conversion of glucose into 5-hydroxymethylfurfural using double catalysts in ionic liquid. J Taiwan Inst Chem Eng 43:718–723CrossRef Hu L, Sun Y, Lin L, Liu SJ (2012) Catalytic conversion of glucose into 5-hydroxymethylfurfural using double catalysts in ionic liquid. J Taiwan Inst Chem Eng 43:718–723CrossRef
42.
Zurück zum Zitat Lukamto DH, Wang P, Loh T-P (2013) Catalytic conversion of inert carbohydrates into platform chemical 5-hydroxymethylfurfural using arylboronic acids. Asian J Org Chem 2:947–951CrossRef Lukamto DH, Wang P, Loh T-P (2013) Catalytic conversion of inert carbohydrates into platform chemical 5-hydroxymethylfurfural using arylboronic acids. Asian J Org Chem 2:947–951CrossRef
43.
Zurück zum Zitat Yan Y, Wu Q, Guo X, Lu J, Li ZH, Zhang Y, Tang Y (2014) Condition screening and process investigation of aldose transformation in borate-containing acidic phosphate buffer system under microwave irradiation. RSC Adv 4:39453–39462CrossRef Yan Y, Wu Q, Guo X, Lu J, Li ZH, Zhang Y, Tang Y (2014) Condition screening and process investigation of aldose transformation in borate-containing acidic phosphate buffer system under microwave irradiation. RSC Adv 4:39453–39462CrossRef
44.
Zurück zum Zitat Matsumiya H, Hara T (2015) Conversion of glucose into 5-hydroxymethylfurfural with boric acid in molten mixtures of choline salts and carboxylic acids. Biomass Bioenergy 72:227–232CrossRef Matsumiya H, Hara T (2015) Conversion of glucose into 5-hydroxymethylfurfural with boric acid in molten mixtures of choline salts and carboxylic acids. Biomass Bioenergy 72:227–232CrossRef
45.
Zurück zum Zitat Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312:1933–1937CrossRef Román-Leshkov Y, Chheda JN, Dumesic JA (2006) Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312:1933–1937CrossRef
46.
Zurück zum Zitat Tsilomelekis G, Josephson TR, Nikolakis V, Caratzoulas S (2014) Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures. ChemSusChem 7:117–126CrossRef Tsilomelekis G, Josephson TR, Nikolakis V, Caratzoulas S (2014) Origin of 5-hydroxymethylfurfural stability in water/dimethyl sulfoxide mixtures. ChemSusChem 7:117–126CrossRef
47.
Zurück zum Zitat Vasudevan V, Mushrif SH (2015) Insights into the solvation of glucose in water, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) and its possible implications on the conversion of glucose to platform chemicals. RSC Adv 5:20756–20763CrossRef Vasudevan V, Mushrif SH (2015) Insights into the solvation of glucose in water, dimethyl sulfoxide (DMSO), tetrahydrofuran (THF) and N,N-dimethylformamide (DMF) and its possible implications on the conversion of glucose to platform chemicals. RSC Adv 5:20756–20763CrossRef
48.
Zurück zum Zitat Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985CrossRef Binder JB, Raines RT (2009) Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J Am Chem Soc 131:1979–1985CrossRef
49.
Zurück zum Zitat Amarasekara AS, Williams LD, Ebede CC (2008) Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C: an NMR study. Carbohydr Res 343:3021–3024CrossRef Amarasekara AS, Williams LD, Ebede CC (2008) Mechanism of the dehydration of D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C: an NMR study. Carbohydr Res 343:3021–3024CrossRef
50.
Zurück zum Zitat Rajabbeigi N, Ranjan R, Tsapatsis M (2012) Selective adsorption of HMF on porous carbons from fructose/DMSO mixtures. Microporous Mesoporous Mater 158:253–256CrossRef Rajabbeigi N, Ranjan R, Tsapatsis M (2012) Selective adsorption of HMF on porous carbons from fructose/DMSO mixtures. Microporous Mesoporous Mater 158:253–256CrossRef
51.
Zurück zum Zitat Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38CrossRef Saha B, Abu-Omar MM (2014) Advances in 5-hydroxymethylfurfural production from biomass in biphasic solvents. Green Chem 16:24–38CrossRef
Metadaten
Titel
Efficient metal-free conversion of glucose to 5-hydroxymethylfurfural using a boronic acid
verfasst von
Brian J. Graham
Ronald T. Raines
Publikationsdatum
04.12.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Biomass Conversion and Biorefinery / Ausgabe 2/2019
Print ISSN: 2190-6815
Elektronische ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-018-0346-2

Weitere Artikel der Ausgabe 2/2019

Biomass Conversion and Biorefinery 2/2019 Zur Ausgabe