Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 8/2016

25.05.2016

Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers

verfasst von: G. Kaptay, J. Janczak-Rusch, L. P. H. Jeurgens

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 8/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Successful brazing using Cu-based nanostructured brazing fillers at temperatures much below the bulk melting temperature of Cu was recently demonstrated (Lehmert et al. in, Mater Trans 56:1015–1018, 2015). The Cu-based nano-fillers are composed of alternating nanolayers of Cu and a permeable, non-wetted AlN barrier. In this study, a thermodynamic model is derived to estimate the melting point depression (MPD) in such Cu/AlN nano-multilayers (NMLs) as function of the Cu nanolayer thickness. Depending on the melting route, the model predicts a MPD range of 238-609 K for Cu10nm/AlN10nm NMLs, which suggests a heterogeneous pre-melting temperature range of 750-1147 K (476-874 °C), which is consistent with experimental observations. As suggested by basic kinetic considerations, the observed Cu outflow to the NML surface at the temperatures of 723-1023 K (450-750 °C) can also be partially rationalized by fast solid-state diffusion of Cu along internal interfaces, especially for the higher temperatures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat B. Lehmert, J. Janczak-Rusch, G. Pigozzi, P. Zuraw, F. La Mattina, L. Wojarski, W. Tillmann, and L.P.H. Jeurgens, Copper-Based Nanostructured Coatings for Low-Temperature Brazing Applications, Mater. Trans., 2015, 56(7), p 1015–1018CrossRef B. Lehmert, J. Janczak-Rusch, G. Pigozzi, P. Zuraw, F. La Mattina, L. Wojarski, W. Tillmann, and L.P.H. Jeurgens, Copper-Based Nanostructured Coatings for Low-Temperature Brazing Applications, Mater. Trans., 2015, 56(7), p 1015–1018CrossRef
2.
Zurück zum Zitat G. Kaptay, J. Janczak-Rusch, G. Pigozzi, and L.P.H. Jeurgens, Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations, J. Mater. Eng. Perform., 2014, 23, p 1600–1607CrossRef G. Kaptay, J. Janczak-Rusch, G. Pigozzi, and L.P.H. Jeurgens, Theoretical Analysis of Melting Point Depression of Pure Metals in Different Initial Configurations, J. Mater. Eng. Perform., 2014, 23, p 1600–1607CrossRef
3.
Zurück zum Zitat Q.S. Mei and K. Lu, Melting and Superheating of Crystalline Solids: From Bulk to Nanocrystals, Progr. Mater. Sci., 2007, 52, p 1175–1262CrossRef Q.S. Mei and K. Lu, Melting and Superheating of Crystalline Solids: From Bulk to Nanocrystals, Progr. Mater. Sci., 2007, 52, p 1175–1262CrossRef
4.
Zurück zum Zitat G. Guenther and O. Guillon, Models of Size-Dependent Nanoparticle Melting Tested on Gold, J. Mater. Sci., 2014, 49, p 7915–7932CrossRef G. Guenther and O. Guillon, Models of Size-Dependent Nanoparticle Melting Tested on Gold, J. Mater. Sci., 2014, 49, p 7915–7932CrossRef
5.
Zurück zum Zitat P. Pawlow, Über die Abhängigkeit des Schmelzpunktes von der Oberflächenergie eines festen Körpers, Z Phys. Chemie, 1908, 55, p 545–548 P. Pawlow, Über die Abhängigkeit des Schmelzpunktes von der Oberflächenergie eines festen Körpers, Z Phys. Chemie, 1908, 55, p 545–548
6.
Zurück zum Zitat M. Takagi, Electron-Diffraction Study of Liquid-Solid Transition of Thin Solid Films, J. Phys. Soc. Japan, 1954, 9(3), p 359–363CrossRef M. Takagi, Electron-Diffraction Study of Liquid-Solid Transition of Thin Solid Films, J. Phys. Soc. Japan, 1954, 9(3), p 359–363CrossRef
7.
Zurück zum Zitat J. Janczak-Rusch, G. Kaptay, and L.P.H. Jeurgens, Interfacial Design for Joining Technologies—An Historical Perspective, J. Mater. Eng. Perform., 2014, 23, p 1608–1613CrossRef J. Janczak-Rusch, G. Kaptay, and L.P.H. Jeurgens, Interfacial Design for Joining Technologies—An Historical Perspective, J. Mater. Eng. Perform., 2014, 23, p 1608–1613CrossRef
8.
Zurück zum Zitat Z. Wang, L.P.H. Jeurgens, and W. Sigle, Eric J. Mittemeijer, Observation and Origin of Extraordinary Atomic Mobility at Metal-Semiconductor Interfaces at Low Temperatures, Phys. Rev. Lett., 2015, 115, p 016102CrossRef Z. Wang, L.P.H. Jeurgens, and W. Sigle, Eric J. Mittemeijer, Observation and Origin of Extraordinary Atomic Mobility at Metal-Semiconductor Interfaces at Low Temperatures, Phys. Rev. Lett., 2015, 115, p 016102CrossRef
9.
Zurück zum Zitat R. Longtin, E. Hack, J. Neuenschwander, and J. Janczak-Rusch, Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology, Adv. Mater., 2011, 20, p 1–5 R. Longtin, E. Hack, J. Neuenschwander, and J. Janczak-Rusch, Benign Joining of Ultrafine Grained Aerospace Aluminum Alloys Using Nanotechnology, Adv. Mater., 2011, 20, p 1–5
10.
Zurück zum Zitat T.T. Bao, Y. Kim, J. Lee, and J.G. Lee, Preparation and Thermal Analysis of Sn-Ag Nano Solders, Mater. Trans., 2010, 51, p 2145–2149CrossRef T.T. Bao, Y. Kim, J. Lee, and J.G. Lee, Preparation and Thermal Analysis of Sn-Ag Nano Solders, Mater. Trans., 2010, 51, p 2145–2149CrossRef
11.
Zurück zum Zitat C. Zou, Y. Gao, B. Yang, and Q. Zhai, Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder, J. Mater. Sci.: Mater. Electron., 2010, 21, p 868–874 C. Zou, Y. Gao, B. Yang, and Q. Zhai, Synthesis and DSC Study on Sn3.5Ag Alloy Nanoparticles Used for Lower Melting Temperature Solder, J. Mater. Sci.: Mater. Electron., 2010, 21, p 868–874
12.
Zurück zum Zitat J.F. Pocza, A. Barna, and P.B. Barna, Formation Processes of Vacuum-Deposited Indium Films and Thermodynamical Properties of Submicroscopic Particles Observed by In-Situ Electron Microscopy, J. Vacuum Sci. Techn., 1969, 6(4), p 472–475CrossRef J.F. Pocza, A. Barna, and P.B. Barna, Formation Processes of Vacuum-Deposited Indium Films and Thermodynamical Properties of Submicroscopic Particles Observed by In-Situ Electron Microscopy, J. Vacuum Sci. Techn., 1969, 6(4), p 472–475CrossRef
13.
Zurück zum Zitat C.J. Coombes, The Melting of Small Particles of Lead and Indium, J. Phys. F, 1972, 2, p 441–449CrossRef C.J. Coombes, The Melting of Small Particles of Lead and Indium, J. Phys. F, 1972, 2, p 441–449CrossRef
14.
Zurück zum Zitat J. Janczak-Rusch, G. Pigozzi, B. Lehmert, M. Parlinska, V. Bissig, W. Tillmann, L. Wojarski, F. Hoffmann, Proceedings of the of IBSC 2012—5th International Brazing and Soldering Conference, 2012, p 163 J. Janczak-Rusch, G. Pigozzi, B. Lehmert, M. Parlinska, V. Bissig, W. Tillmann, L. Wojarski, F. Hoffmann, Proceedings of the of IBSC 2012—5th International Brazing and Soldering Conference, 2012, p 163
15.
Zurück zum Zitat J. Janczak-Rusch, M. Chiodi, C. Cancellieri, F. Moszner, R. Hauert, G. Pigozzi, and L.P.H. Jeurgens, Structural Evolution of Ag–Cu Nano-Alloys Confined Between AlN Nano-Layers upon Fast Heating, Phys. Chem. Chem. Phys., 2015, 17, p 28228CrossRef J. Janczak-Rusch, M. Chiodi, C. Cancellieri, F. Moszner, R. Hauert, G. Pigozzi, and L.P.H. Jeurgens, Structural Evolution of Ag–Cu Nano-Alloys Confined Between AlN Nano-Layers upon Fast Heating, Phys. Chem. Chem. Phys., 2015, 17, p 28228CrossRef
16.
Zurück zum Zitat G. Pigozzi, A. Antusek, J. Janczak-Rusch, M. Parlinska-Wojtan, D. Passerone, C.A. Pignedoli, V. Bissig, J. Patscheider, and L.P.H. Jeurgens, Phase Constitution and Interface Structure of Nano-Sized Ag-Cu/AlN Multilayers: Experimental and ab Initio Modeling, Appl. Phys. Lett., 2012, 101, p 181602CrossRef G. Pigozzi, A. Antusek, J. Janczak-Rusch, M. Parlinska-Wojtan, D. Passerone, C.A. Pignedoli, V. Bissig, J. Patscheider, and L.P.H. Jeurgens, Phase Constitution and Interface Structure of Nano-Sized Ag-Cu/AlN Multilayers: Experimental and ab Initio Modeling, Appl. Phys. Lett., 2012, 101, p 181602CrossRef
17.
Zurück zum Zitat G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, Calphad, 2012, 36, p 52–56CrossRef G. Garzel, J. Janczak-Rusch, and L. Zabdyr, Reassessment of the Ag-Cu Phase Diagram for Nanosystems Including Particle Size and Shape Effect, Calphad, 2012, 36, p 52–56CrossRef
18.
Zurück zum Zitat J. Janczak-Rusch, M. Chiodi, F. Moszner, C. Cancellieri, R. Hauert, L.P.H. Jeurgens, Development of nanostructured silver-based brazing fillers in a multilayer configuration for low-temperature joining, 68th Annual Assembly and International Conference, IIW 2015, SC-MICRO, Microjoining and Nanojoining Workshop, 28 June–3 July 2015, Helsinki, Finland, 2015 J. Janczak-Rusch, M. Chiodi, F. Moszner, C. Cancellieri, R. Hauert, L.P.H. Jeurgens, Development of nanostructured silver-based brazing fillers in a multilayer configuration for low-temperature joining, 68th Annual Assembly and International Conference, IIW 2015, SC-MICRO, Microjoining and Nanojoining Workshop, 28 June–3 July 2015, Helsinki, Finland, 2015
19.
Zurück zum Zitat M. Chiodi, C. Cancellieri, F. Moszner, M. Andrzejczuk, J. Janczak-Rusch, L.P.H. Jeurgens, Massive Ag Migration Through Metal/Ceramic Nano-Multilayers: Interplay Between Temperature, Stress-Relaxation and Oxygen-Enhanced Mass Transport, J. Mater. Chem. C, 2016. doi:10.1039/C6TC01098A M. Chiodi, C. Cancellieri, F. Moszner, M. Andrzejczuk, J. Janczak-Rusch, L.P.H. Jeurgens, Massive Ag Migration Through Metal/Ceramic Nano-Multilayers: Interplay Between Temperature, Stress-Relaxation and Oxygen-Enhanced Mass Transport, J. Mater. Chem. C, 2016. doi:10.​1039/​C6TC01098A
20.
Zurück zum Zitat J. Lipecka, J. Janczak-Rusch, M. Lewandowska, M. Andrzejczuk, G. Richter, L.P.H. Jeurgens, Phase Stability and Melting Point Depression of Nano-Confined Al-Si10at.% Alloys in AlSi/AlN Nano-Multilayered Brazing Fillers, 2016 (in preparation) J. Lipecka, J. Janczak-Rusch, M. Lewandowska, M. Andrzejczuk, G. Richter, L.P.H. Jeurgens, Phase Stability and Melting Point Depression of Nano-Confined Al-Si10at.% Alloys in AlSi/AlN Nano-Multilayered Brazing Fillers, 2016 (in preparation)
21.
Zurück zum Zitat A.N. Belov, S.V. Bulyarsky, D.G. Gromov, L.M. Pavlova, and O.V. Pyatilova, Study of Silver Cluster Formation From Thin Films on Inert Surface, Calphad, 2014, 44, p 138–141CrossRef A.N. Belov, S.V. Bulyarsky, D.G. Gromov, L.M. Pavlova, and O.V. Pyatilova, Study of Silver Cluster Formation From Thin Films on Inert Surface, Calphad, 2014, 44, p 138–141CrossRef
22.
Zurück zum Zitat I. Barin, Thermomechanical Properties of Pure Substances, VCh, 1993, in 2 parts I. Barin, Thermomechanical Properties of Pure Substances, VCh, 1993, in 2 parts
23.
Zurück zum Zitat A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317–425CrossRef A.T. Dinsdale, SGTE Data for Pure Elements, CALPHAD, 1991, 15, p 317–425CrossRef
24.
Zurück zum Zitat Ph Buffat and J.-P. Borel, Size Effect on the Melting Temperature of Gold Particles, Phys. Rev. A, 1976, 13, p 2287–2296CrossRef Ph Buffat and J.-P. Borel, Size Effect on the Melting Temperature of Gold Particles, Phys. Rev. A, 1976, 13, p 2287–2296CrossRef
25.
Zurück zum Zitat J.-G. Lee, J. Lee, T. Tanaka, and H. Mori, In Situ Atomic-Scale Observation of Melting Point Suppression in Nanometer-Sized Gold Particles, Nanotechnology, 2009, 20, p 475706CrossRef J.-G. Lee, J. Lee, T. Tanaka, and H. Mori, In Situ Atomic-Scale Observation of Melting Point Suppression in Nanometer-Sized Gold Particles, Nanotechnology, 2009, 20, p 475706CrossRef
26.
Zurück zum Zitat P.R. Couchman and W.A. Jesser, Thermodynamic Theory of Size Dependence of Melting Temperature in Metals, Nature, 1977, 269, p 481–483CrossRef P.R. Couchman and W.A. Jesser, Thermodynamic Theory of Size Dependence of Melting Temperature in Metals, Nature, 1977, 269, p 481–483CrossRef
27.
Zurück zum Zitat F. Spaepen and D. Turnbull, Negative Pressures and Melting Point Depression in Oxide-Coated Liquid Metal Droplets, Scr. Metall., 1979, 13, p 149–151CrossRef F. Spaepen and D. Turnbull, Negative Pressures and Melting Point Depression in Oxide-Coated Liquid Metal Droplets, Scr. Metall., 1979, 13, p 149–151CrossRef
28.
Zurück zum Zitat G.L. Allen, W.W. Gile, and W.A. Jesser, The Melting Temperature of Microcrystals Embedded in a Matrix, Acta Metall., 1980, 28, p 1695–1701CrossRef G.L. Allen, W.W. Gile, and W.A. Jesser, The Melting Temperature of Microcrystals Embedded in a Matrix, Acta Metall., 1980, 28, p 1695–1701CrossRef
29.
Zurück zum Zitat R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deuscher, T. Ben-David, J.M. Penisson, and A. Bourret, Surface Melting Enhanced by Curvature Effects, Surf. Sci., 1994, 303, p 231–246CrossRef R. Kofman, P. Cheyssac, A. Aouaj, Y. Lereah, G. Deuscher, T. Ben-David, J.M. Penisson, and A. Bourret, Surface Melting Enhanced by Curvature Effects, Surf. Sci., 1994, 303, p 231–246CrossRef
30.
Zurück zum Zitat K. Chattopadhyay and R. Goswami, Melting and Superheating of Metals and Alloys, Progr. Mater. Sci., 1997, 42, p 287–300CrossRef K. Chattopadhyay and R. Goswami, Melting and Superheating of Metals and Alloys, Progr. Mater. Sci., 1997, 42, p 287–300CrossRef
31.
Zurück zum Zitat M. Wautelet, On the Shape Dependence of the Melting Temperature of Small Particles, Phys. Lett. A, 1998, 246, p 341–342CrossRef M. Wautelet, On the Shape Dependence of the Melting Temperature of Small Particles, Phys. Lett. A, 1998, 246, p 341–342CrossRef
32.
Zurück zum Zitat Z. Zhang, J.C. Li, and Q. Jiang, Modelling for Size-Dependent and Dimension-Dependent Melting of Nanocrystals, J. Phys. D, 2000, 33, p 2653–2656CrossRef Z. Zhang, J.C. Li, and Q. Jiang, Modelling for Size-Dependent and Dimension-Dependent Melting of Nanocrystals, J. Phys. D, 2000, 33, p 2653–2656CrossRef
33.
Zurück zum Zitat Q. Jiang, Z. Zhang, and J.C. Li, Melting Thermodynamics of Nanocrystals Embedded in a Matrix, Acta Mater., 2000, 48, p 4791–4795CrossRef Q. Jiang, Z. Zhang, and J.C. Li, Melting Thermodynamics of Nanocrystals Embedded in a Matrix, Acta Mater., 2000, 48, p 4791–4795CrossRef
34.
Zurück zum Zitat T. Tanaka and S. Hara, Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems, Z. Metallkd., 2001, 92, p 467–472 T. Tanaka and S. Hara, Thermodynamic Evaluation of Binary Phase Diagrams of Small Particle Systems, Z. Metallkd., 2001, 92, p 467–472
35.
Zurück zum Zitat M. Hillert and J. Argen, Effect of Surface Free Energy and Surface Stress on Phase Equilibria, Acta Mater., 2002, 50, p 2429–2441CrossRef M. Hillert and J. Argen, Effect of Surface Free Energy and Surface Stress on Phase Equilibria, Acta Mater., 2002, 50, p 2429–2441CrossRef
36.
Zurück zum Zitat U. Tartaglino and E. Tosatti, Strain Effects at Solid Surfaces Near the Melting Point, Surf. Sci., 2003, 532–535, p 623–627CrossRef U. Tartaglino and E. Tosatti, Strain Effects at Solid Surfaces Near the Melting Point, Surf. Sci., 2003, 532–535, p 623–627CrossRef
37.
Zurück zum Zitat Q. Jiang, L.H. Liang, and J.C. Li, Thermodynamic Superheating of Low-Dimensional Metals Embedded in Matrix, Vacuum, 2003, 72, p 249–255CrossRef Q. Jiang, L.H. Liang, and J.C. Li, Thermodynamic Superheating of Low-Dimensional Metals Embedded in Matrix, Vacuum, 2003, 72, p 249–255CrossRef
38.
Zurück zum Zitat Z. Shi, P. Wynblatt, and S.G. Srinivasan, Melting Behavior of Nanosized Lead Particles Embedded in an Aluminium Matrix, Acta Mater., 2004, 52, p 2305–2316CrossRef Z. Shi, P. Wynblatt, and S.G. Srinivasan, Melting Behavior of Nanosized Lead Particles Embedded in an Aluminium Matrix, Acta Mater., 2004, 52, p 2305–2316CrossRef
39.
Zurück zum Zitat V.M. Samsonov and O.A. Malkov, Thermodynamic Model of Crystallization and Melting of Small Particles, Central Eur. J. Phys., 2004, 2(1), p 90–103 V.M. Samsonov and O.A. Malkov, Thermodynamic Model of Crystallization and Melting of Small Particles, Central Eur. J. Phys., 2004, 2(1), p 90–103
40.
Zurück zum Zitat Q.S. Mei, S.C. Wang, H.T. Cong, Z.H. Jin, and K. Lu, Determination of Pressure Effect on the Melting Point Elevation of Al Nanoparticles Encapsulated in Al2O3 Without Epitaxial Interface, Phys. Rev. B, 2004, 70, p 125421CrossRef Q.S. Mei, S.C. Wang, H.T. Cong, Z.H. Jin, and K. Lu, Determination of Pressure Effect on the Melting Point Elevation of Al Nanoparticles Encapsulated in Al2O3 Without Epitaxial Interface, Phys. Rev. B, 2004, 70, p 125421CrossRef
41.
Zurück zum Zitat J. Chang and E. Johnson, Surface and Bulk Melting of Small Metal Clusters, Philos. Mag., 2005, 85(30), p 3617–3627CrossRef J. Chang and E. Johnson, Surface and Bulk Melting of Small Metal Clusters, Philos. Mag., 2005, 85(30), p 3617–3627CrossRef
42.
Zurück zum Zitat J. Slutsker, K. Thornton, A.L. Roytburd, J.A. Warren, and G.B. McFadden, Phase Field Modeling of Solidification Under Stress, Phys. Rev. B, 2006, 74(1), p 014103CrossRef J. Slutsker, K. Thornton, A.L. Roytburd, J.A. Warren, and G.B. McFadden, Phase Field Modeling of Solidification Under Stress, Phys. Rev. B, 2006, 74(1), p 014103CrossRef
43.
Zurück zum Zitat J.J. Hoyt, Effect of Stress on Melting and Freezing in Nanopores, Phys. Rev. Lett., 2006, 96(4), p 045702CrossRef J.J. Hoyt, Effect of Stress on Melting and Freezing in Nanopores, Phys. Rev. Lett., 2006, 96(4), p 045702CrossRef
44.
Zurück zum Zitat G. Guisbiers and M. Wautelet, Size, Shape and Stress Effects on the Melting Temperature of Nano-Polyhedral Grains on a Substrate, Nanotechnology, 2006, 17, p 2008–2011CrossRef G. Guisbiers and M. Wautelet, Size, Shape and Stress Effects on the Melting Temperature of Nano-Polyhedral Grains on a Substrate, Nanotechnology, 2006, 17, p 2008–2011CrossRef
45.
Zurück zum Zitat J. Sun and S.L. Simon, The Melting Behavior of Aluminum Nanoparticles, Thermochim. Acta, 2007, 463, p 32–40CrossRef J. Sun and S.L. Simon, The Melting Behavior of Aluminum Nanoparticles, Thermochim. Acta, 2007, 463, p 32–40CrossRef
46.
Zurück zum Zitat G. Guisbiers, O. Van Overschelde, and M. Wautelet, Nanoparticulate Origin of Intrinsic Residual Stress in Thin Films, Acta Mater., 2007, 55, p 3541–3546CrossRef G. Guisbiers, O. Van Overschelde, and M. Wautelet, Nanoparticulate Origin of Intrinsic Residual Stress in Thin Films, Acta Mater., 2007, 55, p 3541–3546CrossRef
47.
Zurück zum Zitat O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.M. Dmytruk, Size-Dependent Melting of Spherical Copper Nanoparticles Embedded in a Silica Matrix, Phys Rev B, 2007, 75(8), p 085434CrossRef O.A. Yeshchenko, I.M. Dmitruk, A.A. Alexeenko, and A.M. Dmytruk, Size-Dependent Melting of Spherical Copper Nanoparticles Embedded in a Silica Matrix, Phys Rev B, 2007, 75(8), p 085434CrossRef
48.
Zurück zum Zitat P. Letellier, A. Mayaffre, and M. Turmine, Melting Point Depression of Nanosolids: Nonextensive Thermodynamics Approach, Phys. Rev. B, 2007, 76, p 045428CrossRef P. Letellier, A. Mayaffre, and M. Turmine, Melting Point Depression of Nanosolids: Nonextensive Thermodynamics Approach, Phys. Rev. B, 2007, 76, p 045428CrossRef
49.
Zurück zum Zitat J. Lee, T. Tanaka, J. Lee, and H. Mori, Effect of Substrates on the Melting Temperature of Gold Nanoparticles, Calphad, 2007, 31, p 105–111CrossRef J. Lee, T. Tanaka, J. Lee, and H. Mori, Effect of Substrates on the Melting Temperature of Gold Nanoparticles, Calphad, 2007, 31, p 105–111CrossRef
50.
Zurück zum Zitat K.K. Nanda, Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model, Pramana J. Phys., 2009, 172, p 617–628CrossRef K.K. Nanda, Size-Dependent Melting of Nanoparticles: Hundred Years of Thermodynamic Model, Pramana J. Phys., 2009, 172, p 617–628CrossRef
51.
Zurück zum Zitat V.I. Levitas, M. Pantoya, G. Chauhan, and I.J. Rivero, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Chem. C., 2009, 113(32), p 14088–14096CrossRef V.I. Levitas, M. Pantoya, G. Chauhan, and I.J. Rivero, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Chem. C., 2009, 113(32), p 14088–14096CrossRef
52.
Zurück zum Zitat G. Kaptay, The Extension of the Phase Rule to Nano-Systems and on the Quaternary Point in One-Component Nano Phase Diagrams, J. Nanosci. Nanotechnol., 2010, 10, p 8164–8170CrossRef G. Kaptay, The Extension of the Phase Rule to Nano-Systems and on the Quaternary Point in One-Component Nano Phase Diagrams, J. Nanosci. Nanotechnol., 2010, 10, p 8164–8170CrossRef
53.
Zurück zum Zitat W. Luo, L. Deng, K. Su, K. Li, G. Liao, and S. Xiao, Gibbs Free Energy Approach to Calculate the Thermodynamic Properties of Copper Nanocrystals, Phys. B, 2011, 406, p 859–863CrossRef W. Luo, L. Deng, K. Su, K. Li, G. Liao, and S. Xiao, Gibbs Free Energy Approach to Calculate the Thermodynamic Properties of Copper Nanocrystals, Phys. B, 2011, 406, p 859–863CrossRef
54.
Zurück zum Zitat V.I. Levitas and K. Samani, Size and Mechanics Effects in Surface-Induced Melting of Nanoparticles, Nature Comm., 2011, 2, p 284CrossRef V.I. Levitas and K. Samani, Size and Mechanics Effects in Surface-Induced Melting of Nanoparticles, Nature Comm., 2011, 2, p 284CrossRef
55.
Zurück zum Zitat V.I. Levitas and K. Samani, Coherent Solid/Liquid Interface With Stress Relaxation in a Phase-Field Approach to the Melting/Solidification Transition, Phys. Rev. B, 2011, 84(14), p 140103CrossRef V.I. Levitas and K. Samani, Coherent Solid/Liquid Interface With Stress Relaxation in a Phase-Field Approach to the Melting/Solidification Transition, Phys. Rev. B, 2011, 84(14), p 140103CrossRef
56.
Zurück zum Zitat G. Kaptay, The Gibbs Equation Versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-Materials, J. Nanosci. Nanotechnol., 2012, 12(3), p 2625–2633CrossRef G. Kaptay, The Gibbs Equation Versus the Kelvin and the Gibbs-Thomson Equations to Describe Nucleation and Equilibrium of Nano-Materials, J. Nanosci. Nanotechnol., 2012, 12(3), p 2625–2633CrossRef
57.
Zurück zum Zitat A.I. Rusanov, The Development of the Fundamental Concepts of Surface Thermodynamics, Coll. J., 2012, 74(2), p 136–153CrossRef A.I. Rusanov, The Development of the Fundamental Concepts of Surface Thermodynamics, Coll. J., 2012, 74(2), p 136–153CrossRef
58.
Zurück zum Zitat G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems With Nano-Phases and Complexions, J. Mater. Sci., 2012, 47, p 8320–8335CrossRef G. Kaptay, Nano-Calphad: Extension of the Calphad Method to Systems With Nano-Phases and Complexions, J. Mater. Sci., 2012, 47, p 8320–8335CrossRef
59.
Zurück zum Zitat V.I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, and G. Han, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Rev. B, 2012, 85(22), p 220104CrossRef V.I. Levitas, Z. Ren, Y. Zeng, Z. Zhang, and G. Han, Effect of the Alumina Shell on the Melting Temperature Depression for Aluminum Nanoparticles, Phys. Rev. B, 2012, 85(22), p 220104CrossRef
60.
Zurück zum Zitat J. Leitner and M. Kamrádek, Termodynamicky Popis Nanosystemu, Chem. Listy, 2013, 107, p 606–613 J. Leitner and M. Kamrádek, Termodynamicky Popis Nanosystemu, Chem. Listy, 2013, 107, p 606–613
61.
Zurück zum Zitat A. Firmansyah, K. Sullivan, K.S. Lee, Y.H. Kim, R. Zahaf, M.R. Zachariah, and D.J. Lee, Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles, Phys. Chem. C, 2013, 116(1), p 404–411CrossRef A. Firmansyah, K. Sullivan, K.S. Lee, Y.H. Kim, R. Zahaf, M.R. Zachariah, and D.J. Lee, Microstructural Behavior of the Alumina Shell and Aluminum Core Before and After Melting of Aluminum Nanoparticles, Phys. Chem. C, 2013, 116(1), p 404–411CrossRef
62.
Zurück zum Zitat J. Lee and K.J. Sim, General Equations of Calphad-Type Thermodynamic Description for Metallic Nanoparticle Systems, Calphad, 2014, 44, p 129–132CrossRef J. Lee and K.J. Sim, General Equations of Calphad-Type Thermodynamic Description for Metallic Nanoparticle Systems, Calphad, 2014, 44, p 129–132CrossRef
63.
Zurück zum Zitat A. Junkaew, B. Ham, X. Zhang, and R. Arróyave, Tailoring the Formation of Metastable Mg Through Interfacial Engineering: A Phase Stability Analysis, Calphad, 2014, 45, p 45–150CrossRef A. Junkaew, B. Ham, X. Zhang, and R. Arróyave, Tailoring the Formation of Metastable Mg Through Interfacial Engineering: A Phase Stability Analysis, Calphad, 2014, 45, p 45–150CrossRef
64.
Zurück zum Zitat I. Atanasov, R. Ferrando, and R.L. Johnston, Structure and Solid Solution Properties of Cu–Ag Nanoalloys, J. Phys.: Condens. Matter, 2014, 26, p 275301–275309 I. Atanasov, R. Ferrando, and R.L. Johnston, Structure and Solid Solution Properties of Cu–Ag Nanoalloys, J. Phys.: Condens. Matter, 2014, 26, p 275301–275309
65.
Zurück zum Zitat J. Sopousek, O. Zobac, J. Bursık, P. Roupcova, V. Vykoukal, P. Broz, J. Pinkas, and J. Vrestal, Heat-Induced Spinodal Decomposition of Ag–Cu Nanoparticles, Phys. Chem. Chem. Phys., 2015, doi:10.1039/c5cp00198f J. Sopousek, O. Zobac, J. Bursık, P. Roupcova, V. Vykoukal, P. Broz, J. Pinkas, and J. Vrestal, Heat-Induced Spinodal Decomposition of Ag–Cu Nanoparticles, Phys. Chem. Chem. Phys., 2015, doi:10.​1039/​c5cp00198f
66.
Zurück zum Zitat S. Bajaj, M.G. Haverty, R. Arróyave, W.A. Goddard, III, and S. Shankar, Phase Stability in Nanoscale Material Systems: Extension From Bulk Phase Diagrams, Nanoscale, 2015, doi:10.1039/c5nr01535a S. Bajaj, M.G. Haverty, R. Arróyave, W.A. Goddard, III, and S. Shankar, Phase Stability in Nanoscale Material Systems: Extension From Bulk Phase Diagrams, Nanoscale, 2015, doi:10.​1039/​c5nr01535a
67.
Zurück zum Zitat L. Wojtczak, The Melting point of Thin Films, Phys. Stat. Sol., 1967, 22, p K163–K166CrossRef L. Wojtczak, The Melting point of Thin Films, Phys. Stat. Sol., 1967, 22, p K163–K166CrossRef
68.
Zurück zum Zitat C.L. Chen, J.-G. Lee, K. Arakawa, and H. Mori, In Situ Observations of Crystalline-to-Liquid and Crystalline-to-Gas Transitions of Substrate-Supported Ag Nanoparticles, Appl. Phys. Lett., 2010, 96, p 253104CrossRef C.L. Chen, J.-G. Lee, K. Arakawa, and H. Mori, In Situ Observations of Crystalline-to-Liquid and Crystalline-to-Gas Transitions of Substrate-Supported Ag Nanoparticles, Appl. Phys. Lett., 2010, 96, p 253104CrossRef
69.
Zurück zum Zitat L.P.H. Jeurgens, Z. Wang, and E.J. Mittemeijer, Thermodynamics of Reactions and Phase Transformations at Interfaces and Surfaces, Int. J. Mater. Res., 2009, 100, p 1281–1307CrossRef L.P.H. Jeurgens, Z. Wang, and E.J. Mittemeijer, Thermodynamics of Reactions and Phase Transformations at Interfaces and Surfaces, Int. J. Mater. Res., 2009, 100, p 1281–1307CrossRef
70.
Zurück zum Zitat D.G. Gromov and S.A. Gavrilov, Manifestation of the Heterogeneous Mechanism Upon Melting of Low-Dimensional Systems, Phys. Solid State, 2009, 51(10), p 2135–2144CrossRef D.G. Gromov and S.A. Gavrilov, Manifestation of the Heterogeneous Mechanism Upon Melting of Low-Dimensional Systems, Phys. Solid State, 2009, 51(10), p 2135–2144CrossRef
71.
Zurück zum Zitat H.W. Sheng, G. Ren, L.M. Peng, Z.Q. Hu, and K. Lu, Epitaxial Dependence of the Melting Behavior of In Nanoparticles Embedded in Al matrices, J Mater Res, 1997, 12(1), p 119–123CrossRef H.W. Sheng, G. Ren, L.M. Peng, Z.Q. Hu, and K. Lu, Epitaxial Dependence of the Melting Behavior of In Nanoparticles Embedded in Al matrices, J Mater Res, 1997, 12(1), p 119–123CrossRef
72.
73.
Zurück zum Zitat L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, and E.J. Mittemeijer, Thermodynamic Stability of Amorphous Oxide Films on Metals: Application to Aluminium-Oxide Films on Aluminium Substrates, Physical Review B, 2000, 62, p 4707–4719CrossRef L.P.H. Jeurgens, W.G. Sloof, F.D. Tichelaar, and E.J. Mittemeijer, Thermodynamic Stability of Amorphous Oxide Films on Metals: Application to Aluminium-Oxide Films on Aluminium Substrates, Physical Review B, 2000, 62, p 4707–4719CrossRef
74.
Zurück zum Zitat J. Emsley, The Elements, Clarendon Press, Oxford, 1989 J. Emsley, The Elements, Clarendon Press, Oxford, 1989
75.
Zurück zum Zitat Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermal Expansion, IFI/Plenum, New York, 1977CrossRef Y.S. Touloukian, R.K. Kirby, R.E. Taylor, and T.Y.R. Lee, Thermal Expansion, IFI/Plenum, New York, 1977CrossRef
76.
Zurück zum Zitat G. Kaptay, Approximated Equations for Molar Volumes of Pure Solid Fcc Metals and Their Liquids From Zero Kelvin to Above Their Melting Points at Standard Pressure, J. Mater. Sci., 2015, 50, p 678–687CrossRef G. Kaptay, Approximated Equations for Molar Volumes of Pure Solid Fcc Metals and Their Liquids From Zero Kelvin to Above Their Melting Points at Standard Pressure, J. Mater. Sci., 2015, 50, p 678–687CrossRef
77.
Zurück zum Zitat T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993 T. Iida and R.I.L. Guthrie, The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993
78.
Zurück zum Zitat G. Kaptay, A Unified Model for the Cohesive Enthalpy, Critical Temperature, Surface Tension and Volume Thermal Expansion Coefficient of Liquid Metals of Bcc, Fcc and Hcp Crystals, Mater. Sci. Eng. A, 2008, 495, p 19–26CrossRef G. Kaptay, A Unified Model for the Cohesive Enthalpy, Critical Temperature, Surface Tension and Volume Thermal Expansion Coefficient of Liquid Metals of Bcc, Fcc and Hcp Crystals, Mater. Sci. Eng. A, 2008, 495, p 19–26CrossRef
79.
Zurück zum Zitat N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, Amsterdam, 1999 N. Eustathopoulos, M.G. Nicholas, and B. Drevet, Wettability at High Temperatures, Pergamon, Amsterdam, 1999
80.
Zurück zum Zitat G. Kaptay, E. Báder, and L. Bolyán, Interfacial Forces and Energies Relevant to Production of Metal Matrix Composites, Mater. Sci. Forum, 2000, 329–330, p 151–156CrossRef G. Kaptay, E. Báder, and L. Bolyán, Interfacial Forces and Energies Relevant to Production of Metal Matrix Composites, Mater. Sci. Forum, 2000, 329–330, p 151–156CrossRef
81.
Zurück zum Zitat G. Kaptay, Modeling Interfacial Energies in Metallic Systems, Mater. Sci. Forum, 2005, 473–474, p 1–10CrossRef G. Kaptay, Modeling Interfacial Energies in Metallic Systems, Mater. Sci. Forum, 2005, 473–474, p 1–10CrossRef
82.
Zurück zum Zitat K. Maier, Self-diffusion in Copper at “Low” Temperatures, Phys. Status solidi (a), 1977, 44, p 567CrossRef K. Maier, Self-diffusion in Copper at “Low” Temperatures, Phys. Status solidi (a), 1977, 44, p 567CrossRef
83.
Zurück zum Zitat E. Budke, T. Surholt, S.I. Prokofjev, and L.S. Shvindlerman, Chr. Herzig, Tracer Diffusion of Au and Cu in a Series of Near & #xF053; = 5 (310)(Ref 001) Symmetrical Cu Tilt Grain, Acta Mater., 1999, 47, p 385CrossRef E. Budke, T. Surholt, S.I. Prokofjev, and L.S. Shvindlerman, Chr. Herzig, Tracer Diffusion of Au and Cu in a Series of Near & #xF053; = 5 (310)(Ref 001) Symmetrical Cu Tilt Grain, Acta Mater., 1999, 47, p 385CrossRef
84.
Zurück zum Zitat D.R. Poirier and G.H. Geiger, Transport Phenomena in Materials Processing, TMS, Warrendale, 1994, p 658 D.R. Poirier and G.H. Geiger, Transport Phenomena in Materials Processing, TMS, Warrendale, 1994, p 658
Metadaten
Titel
Melting Point Depression and Fast Diffusion in Nanostructured Brazing Fillers Confined Between Barrier Nanolayers
verfasst von
G. Kaptay
J. Janczak-Rusch
L. P. H. Jeurgens
Publikationsdatum
25.05.2016
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 8/2016
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-016-2123-3

Weitere Artikel der Ausgabe 8/2016

Journal of Materials Engineering and Performance 8/2016 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.