Skip to main content
Erschienen in: Microsystem Technologies 3/2016

24.05.2015 | Technical Paper

Micro-mixer device with deep channels in silicon using modified RIE process: fabrication, packaging and characterization

verfasst von: Saakshi Dhanekar, Sudhir Chandra, R. Balasubramaniam

Erschienen in: Microsystem Technologies | Ausgabe 3/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the present work, silicon based micromixer microfluidic devices have been fabricated in silicon substrates of 2-inch diameter. These devices are of 2-input and 1-output port configuration bearing channel depth in the range 80–280 µm. Conventional reactive ion etching (RIE) process used in integrated circuit fabrication was modified to get reasonably high silicon etch rate (~1.2 µm/min). It was anticipated that devices with channel depth in excess of 150 µm would become weak and susceptible to breakage. For such devices, a bonded pair of silicon having a 0.5 µm SiO2 at the bonded interface was used as the starting substrate. The processed silicon wafer bearing channels was anodically bonded to a Corning® 7740 glass plate of identical size for fluid confinement. Through-holes for input/output ports were made either in Si substrate or in glass plate before carrying out anodic bonding. Micro-channels were characterized using stylus and optical profiler. Surface roughness of the channel was observed to increase with increasing channel depth. The devices were packaged in a polycarbonate housing and pressure drop versus flow rate measurements were carried out. Reynolds number and friction factor were calculated for devices with 82 µm deep channels. It was observed that up to 25 sccm of gas and 10 ml/min of liquid, the flow was laminar in nature. It is envisaged that using bonded silicon wafer pair and combination of RIE and wet etching, it is possible to get an etch stop at the SiO2 layer of the bonded silicon interface with much smaller value of surface roughness rendering smooth channel surface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices. Top Curr Chem 304:27–68CrossRef Capretto L, Cheng W, Hill M, Zhang X (2011) Micromixing within microfluidic devices. Top Curr Chem 304:27–68CrossRef
Zurück zum Zitat Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61–62:907–914CrossRef Fujii T (2002) PDMS-based microfluidic devices for biomedical applications. Microelectron Eng 61–62:907–914CrossRef
Zurück zum Zitat Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3:168–182CrossRef Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3:168–182CrossRef
Zurück zum Zitat Haestad Methods Engineering staff, Meadows ME, Walski TM, Barnard TE, Durrans SR (2002) Chapter 2: basic hydraulic principles In: Computer applications in hydraulic engineering, 5th edn, Haestad Methods, Waterbury, pp 1–30 Haestad Methods Engineering staff, Meadows ME, Walski TM, Barnard TE, Durrans SR (2002) Chapter 2: basic hydraulic principles In: Computer applications in hydraulic engineering, 5th edn, Haestad Methods, Waterbury, pp 1–30
Zurück zum Zitat Jansen H, Gardeniers H, Boer M, Elwenspoek M, Fluitman J (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6:14–28CrossRef Jansen H, Gardeniers H, Boer M, Elwenspoek M, Fluitman J (1996) A survey on the reactive ion etching of silicon in microtechnology. J Micromech Microeng 6:14–28CrossRef
Zurück zum Zitat Jeong GS, Chung S, Kim C, Lee S (2010) Applications of micromixing technology. Analyst 135:460–473CrossRef Jeong GS, Chung S, Kim C, Lee S (2010) Applications of micromixing technology. Analyst 135:460–473CrossRef
Zurück zum Zitat Lee C, Chang C, Wang Y, Fu L (2011) Microfluidic mixing—a review. Int J Mol Sci 12:3263–3287CrossRef Lee C, Chang C, Wang Y, Fu L (2011) Microfluidic mixing—a review. Int J Mol Sci 12:3263–3287CrossRef
Zurück zum Zitat Lo RC (2013) Application of microfluidics in chemical engineering. Chem Eng Process Technol 442:368–373 Lo RC (2013) Application of microfluidics in chemical engineering. Chem Eng Process Technol 442:368–373
Zurück zum Zitat McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef
Zurück zum Zitat Nguyen N, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16CrossRef Nguyen N, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16CrossRef
Zurück zum Zitat Pal P, Sato K, Chandra S (2007) Fabrication techniques of convex corners in a (1 0 0)-silicon wafer using bulk micromachining: a review. J Micromech Microeng 17:R111–R133CrossRef Pal P, Sato K, Chandra S (2007) Fabrication techniques of convex corners in a (1 0 0)-silicon wafer using bulk micromachining: a review. J Micromech Microeng 17:R111–R133CrossRef
Zurück zum Zitat Pfund D, Rector D, Shekarriz A, Popescu A, Weity J (2000) Pressure drop measurements in a microchannel, fluid mechanics and transport phenomena. AIChE J 46:1496–1507CrossRef Pfund D, Rector D, Shekarriz A, Popescu A, Weity J (2000) Pressure drop measurements in a microchannel, fluid mechanics and transport phenomena. AIChE J 46:1496–1507CrossRef
Zurück zum Zitat Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1:82–111CrossRef Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1:82–111CrossRef
Zurück zum Zitat Tang SKY, Whitesides GM (2009) Chapter 2: Basic microfluidic and soft lithographic techniques in optofluidics. In: Fainman Y, Lee L, Psaltis D, Yang C (eds) Fundamentals, devices and applications, 1st edn. McGraw-Hill, New York Tang SKY, Whitesides GM (2009) Chapter 2: Basic microfluidic and soft lithographic techniques in optofluidics. In: Fainman Y, Lee L, Psaltis D, Yang C (eds) Fundamentals, devices and applications, 1st edn. McGraw-Hill, New York
Zurück zum Zitat Tuomikoski S, Franssila S (2005) Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sens Actuators A 120:408–415CrossRef Tuomikoski S, Franssila S (2005) Free-standing SU-8 microfluidic chips by adhesive bonding and release etching. Sens Actuators A 120:408–415CrossRef
Zurück zum Zitat Weilen Q, Mala GhM, Dongquing L (2000) Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:353–364CrossRef Weilen Q, Mala GhM, Dongquing L (2000) Pressure-driven water flows in trapezoidal silicon microchannels. Int J Heat Mass Transf 43:353–364CrossRef
Metadaten
Titel
Micro-mixer device with deep channels in silicon using modified RIE process: fabrication, packaging and characterization
verfasst von
Saakshi Dhanekar
Sudhir Chandra
R. Balasubramaniam
Publikationsdatum
24.05.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 3/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2579-3

Weitere Artikel der Ausgabe 3/2016

Microsystem Technologies 3/2016 Zur Ausgabe

Neuer Inhalt