Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2021

07.06.2021

Microstructure and Wear Resistance of Single- and Multi-Layered Low-Carbon Fe-Cr-C-Mo-Mn Clads Deposited by Shielded Metal Arc Welding

verfasst von: Elyas Pournajaf, Alireza Abbasi, Hamidreza Najafi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Different layers of a low-carbon Fe-Cr-C-Mo-Mn electrode were deposited on a plain low-carbon steel using shielded metal arc welding (SMAW). The microstructure, hardness, and wear resistance of the clads were investigated by optical microscope, scanning electron microscope (SEM), hardness test, and sand-rubber wheel wear test. Microstructure of the single-layered clad consisted of lath martensite and a small amount of retained austenite. Three different microstructural regions including plate martensite surrounded by delta ferrite, tempered martensite surrounded by delta ferrite, and tempered martensite were observed at the top, middle and bottom regions of the multilayered clads, respectively. The hardness of single-, double- and triple-layered clads was, respectively, 3.2, 4.1 and 4.3 times more than that of the substrate. The hardness of multilayered clads increased gradually from bottom to the top of the clads. A direct relation was observed between wear resistance and hardness of the clads. In comparison with the single-layered clad, the wear rates of the double- and triple-layered clads were reduced by 33 and 67%, respectively. Wear mechanism changed from severe delamination and abrasion to insignificant abrasion by increasing the number of layers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R. Kumar, P. Kumari and K.L.A. Khan, A Review Paper on Research Work Done in Hardfacing, Int. J. Appl. Innov. Eng. Manag., 2016, 5(9), p 129–134. R. Kumar, P. Kumari and K.L.A. Khan, A Review Paper on Research Work Done in Hardfacing, Int. J. Appl. Innov. Eng. Manag., 2016, 5(9), p 129–134.
2.
Zurück zum Zitat X.H. Wang, F. Han, X.M. Liu, S.Y. Qu and Z.D. Zou, Effect of Molybdenum on the Microstructure and Wear Resistance of Fe-Based Hardfacing Coatings, Mater. Sci. Eng. A, 2008, 489(1–2), p 193–200.CrossRef X.H. Wang, F. Han, X.M. Liu, S.Y. Qu and Z.D. Zou, Effect of Molybdenum on the Microstructure and Wear Resistance of Fe-Based Hardfacing Coatings, Mater. Sci. Eng. A, 2008, 489(1–2), p 193–200.CrossRef
3.
Zurück zum Zitat V.E. Buchanan, Solidification and Microstructural Characterisation of Iron-Chromium Based Hardfaced Coatings Deposited by SMAW and Electric Arc Spraying, Surf. Coatings Technol., 2009, 203(23), p 3638–3646.CrossRef V.E. Buchanan, Solidification and Microstructural Characterisation of Iron-Chromium Based Hardfaced Coatings Deposited by SMAW and Electric Arc Spraying, Surf. Coatings Technol., 2009, 203(23), p 3638–3646.CrossRef
4.
Zurück zum Zitat V.E. Buchanan, P.H. Shipway and D.G. McCartney, Microstructure and Abrasive Wear Behaviour of Shielded Metal Arc Welding Hardfacings Used in the Sugarcane Industry, Wear, 2007, 263(1–6), p 99–110.CrossRef V.E. Buchanan, P.H. Shipway and D.G. McCartney, Microstructure and Abrasive Wear Behaviour of Shielded Metal Arc Welding Hardfacings Used in the Sugarcane Industry, Wear, 2007, 263(1–6), p 99–110.CrossRef
5.
Zurück zum Zitat J. Hornung, A. Zikin, K. Pichelbauer, M. Kalin and M. Kirchgaßner, Influence of Cooling Speed on the Microstructure and Wear Behaviour of Hypereutectic Fe–Cr–C Hardfacings, Mater. Sci. Eng. A, 2013, 576, p 243–251.CrossRef J. Hornung, A. Zikin, K. Pichelbauer, M. Kalin and M. Kirchgaßner, Influence of Cooling Speed on the Microstructure and Wear Behaviour of Hypereutectic Fe–Cr–C Hardfacings, Mater. Sci. Eng. A, 2013, 576, p 243–251.CrossRef
6.
Zurück zum Zitat Y.K. Singla, R. Chhibber, N. Arora, K. Singh and K. Khanna, On the Microstructure and Wear Behavior of Fe–xCr–4Mn–3C Hardfacing Alloys, Trans. Indian Inst. Met., 2017, 70, p 1555–1561.CrossRef Y.K. Singla, R. Chhibber, N. Arora, K. Singh and K. Khanna, On the Microstructure and Wear Behavior of Fe–xCr–4Mn–3C Hardfacing Alloys, Trans. Indian Inst. Met., 2017, 70, p 1555–1561.CrossRef
7.
Zurück zum Zitat M. Eroglu, Boride Coatings on Steel Using Shielded Metal Arc Welding Electrode: Microstructure and Hardness, Surf. Coatings Technol., 2009, 203, p 2229–2235.CrossRef M. Eroglu, Boride Coatings on Steel Using Shielded Metal Arc Welding Electrode: Microstructure and Hardness, Surf. Coatings Technol., 2009, 203, p 2229–2235.CrossRef
8.
Zurück zum Zitat C.M. Lin, C.M. Chang, J.H. Chen, C.C. Hsieh and W. Wu, Microstructure and Wear Characteristics of High-Carbon Cr-Based Alloy Claddings Formed by Gas Tungsten Arc Welding (GTAW), Surf. Coatings Technol., 2010, 205(7), p 2590–2596.CrossRef C.M. Lin, C.M. Chang, J.H. Chen, C.C. Hsieh and W. Wu, Microstructure and Wear Characteristics of High-Carbon Cr-Based Alloy Claddings Formed by Gas Tungsten Arc Welding (GTAW), Surf. Coatings Technol., 2010, 205(7), p 2590–2596.CrossRef
9.
Zurück zum Zitat M. Kirchgaßner, E. Badisch and F. Franek, Behaviour of Iron-Based Hardfacing Alloys under Abrasion and Impact, Wear, 2008, 265(5–6), p 772–779.CrossRef M. Kirchgaßner, E. Badisch and F. Franek, Behaviour of Iron-Based Hardfacing Alloys under Abrasion and Impact, Wear, 2008, 265(5–6), p 772–779.CrossRef
10.
Zurück zum Zitat D. Liu, R. Liu, Y. Wei, Y. Ma and K. Zhu, Microstructure and Wear Properties of Fe-15Cr-2.5Ti-2C-xB wt% Hardfacing Alloys, Appl. Surf. Sci., 2013, 271, p 253–259.CrossRef D. Liu, R. Liu, Y. Wei, Y. Ma and K. Zhu, Microstructure and Wear Properties of Fe-15Cr-2.5Ti-2C-xB wt% Hardfacing Alloys, Appl. Surf. Sci., 2013, 271, p 253–259.CrossRef
11.
Zurück zum Zitat C.M. Chang, Y.C. Chen and W. Wu, Microstructural and Abrasive Characteristics of High Carbon Fe-Cr-C Hardfacing Alloy, Tribol. Int., 2010, 43(5–6), p 929–934.CrossRef C.M. Chang, Y.C. Chen and W. Wu, Microstructural and Abrasive Characteristics of High Carbon Fe-Cr-C Hardfacing Alloy, Tribol. Int., 2010, 43(5–6), p 929–934.CrossRef
12.
Zurück zum Zitat J.J. Coronado, H.F. Caicedo and A.L. Gómez, The Effects of Welding Processes on Abrasive Wear Resistance for Hardfacing Deposits, Tribol., 2009, 42(5), p 745–749.CrossRef J.J. Coronado, H.F. Caicedo and A.L. Gómez, The Effects of Welding Processes on Abrasive Wear Resistance for Hardfacing Deposits, Tribol., 2009, 42(5), p 745–749.CrossRef
13.
Zurück zum Zitat N.U. Rahman, L. Capuano, A. Van der Meer, M.B. De Rooij, D.T.A. Matthews, G. Walmag, M. Sinnaeve, A. Garcia-Junceda, M. Castillo and G.R.B.E. Römer, Development and Characterization of Multilayer Laser Cladded High Speed Steels, Addit. Manuf., 2018, 24, p 76–85. N.U. Rahman, L. Capuano, A. Van der Meer, M.B. De Rooij, D.T.A. Matthews, G. Walmag, M. Sinnaeve, A. Garcia-Junceda, M. Castillo and G.R.B.E. Römer, Development and Characterization of Multilayer Laser Cladded High Speed Steels, Addit. Manuf., 2018, 24, p 76–85.
14.
Zurück zum Zitat M. Shamanian, S.M.R.M. Abarghouie and S.R.M. Pour, Effects of Surface Alloying on Microstructure and Wear Behavior of Ductile Iron, Mater. Des., 2010, 31(6), p 2760–2766.CrossRef M. Shamanian, S.M.R.M. Abarghouie and S.R.M. Pour, Effects of Surface Alloying on Microstructure and Wear Behavior of Ductile Iron, Mater. Des., 2010, 31(6), p 2760–2766.CrossRef
15.
Zurück zum Zitat N.G. Chaidemenopoulos, P.P. Psyllaki, E. Pavlidou and G. Vourlias, Aspects on Carbides Transformations of Fe-Based Hardfacing Deposits, Surf. CoatingsTechnol, 2018, 2019(57), p 651–661. N.G. Chaidemenopoulos, P.P. Psyllaki, E. Pavlidou and G. Vourlias, Aspects on Carbides Transformations of Fe-Based Hardfacing Deposits, Surf. CoatingsTechnol, 2018, 2019(57), p 651–661.
16.
Zurück zum Zitat F. Sadeghi, H. Najafi and A. Abbasi, The Effect of Ta Substitution for Nb on the Microstructure and Wear Resistance of an Fe-Cr-C Hardfacing Alloy, Surf Coatings Technol., 2017, 324, p 85–91.CrossRef F. Sadeghi, H. Najafi and A. Abbasi, The Effect of Ta Substitution for Nb on the Microstructure and Wear Resistance of an Fe-Cr-C Hardfacing Alloy, Surf Coatings Technol., 2017, 324, p 85–91.CrossRef
17.
Zurück zum Zitat J. Wang, T. Liu, Y. Zho, Y. Xing, X. Liu et al., Effect of Nitrogen Alloying on the Microstructure and Abrasive Impact Wear Resistance of Fe-Cr-C-Ti-Nb Hardfacing Alloy, Surf. Coatings Technol., 2017, 309, p 1072–1080.CrossRef J. Wang, T. Liu, Y. Zho, Y. Xing, X. Liu et al., Effect of Nitrogen Alloying on the Microstructure and Abrasive Impact Wear Resistance of Fe-Cr-C-Ti-Nb Hardfacing Alloy, Surf. Coatings Technol., 2017, 309, p 1072–1080.CrossRef
18.
Zurück zum Zitat S.D. Sun, D. Fabijanic, M. Annasamy et al., Microstructure, Abrasive Wear and Corrosion Characterization of Laser Metal Deposited Fe-30Cr-6Mo-10Ni-2.2C Alloy, Wear, 2019, 438–439(May), p 203070.CrossRef S.D. Sun, D. Fabijanic, M. Annasamy et al., Microstructure, Abrasive Wear and Corrosion Characterization of Laser Metal Deposited Fe-30Cr-6Mo-10Ni-2.2C Alloy, Wear, 2019, 438–439(May), p 203070.CrossRef
19.
Zurück zum Zitat E.O. Correa, N.G. Alcântara, L.C. Valeriano, N.D. Barbedo and R.R. Chaves, The Effect of Microstructure on Abrasive Wear of a Fe-Cr-C-Nb Hardfacing Alloy Deposited by the Open Arc Welding Process, Surf. Coatings Technol., 2015, 276, p 479–484.CrossRef E.O. Correa, N.G. Alcântara, L.C. Valeriano, N.D. Barbedo and R.R. Chaves, The Effect of Microstructure on Abrasive Wear of a Fe-Cr-C-Nb Hardfacing Alloy Deposited by the Open Arc Welding Process, Surf. Coatings Technol., 2015, 276, p 479–484.CrossRef
20.
Zurück zum Zitat J.H. Bulloch, Alloy Classification of Hardfacing Materials, Int. J. Pres. Ves. Piping, 1991, 47, p 127–158.CrossRef J.H. Bulloch, Alloy Classification of Hardfacing Materials, Int. J. Pres. Ves. Piping, 1991, 47, p 127–158.CrossRef
21.
Zurück zum Zitat M. Hajihashemi, M. Shamanian and G. Azimi, Physical, Mechanical, and Dry Sliding Wear Properties of Fe-Cr-WC Hardfacing Alloys under Different Tungsten Addition, Metall. Mater. Trans. B, 2015, 46(2), p 919–927.CrossRef M. Hajihashemi, M. Shamanian and G. Azimi, Physical, Mechanical, and Dry Sliding Wear Properties of Fe-Cr-WC Hardfacing Alloys under Different Tungsten Addition, Metall. Mater. Trans. B, 2015, 46(2), p 919–927.CrossRef
22.
Zurück zum Zitat G. Azimi and M. Shamanian, Effect of Silicon Content on the Microstructure and Properties of Fe–Cr–C Hardfacing Alloys, J. Mater. Sci, 2010, 45(3), p 842–849.CrossRef G. Azimi and M. Shamanian, Effect of Silicon Content on the Microstructure and Properties of Fe–Cr–C Hardfacing Alloys, J. Mater. Sci, 2010, 45(3), p 842–849.CrossRef
23.
Zurück zum Zitat G. Azimi and M. Shamanian, Effects of Silicon Content on the Microstructure and Corrosion Behavior of Fe–Cr–C Hardfacing Alloys, J. Alloys Compd., 2010, 505(2), p 598–603.CrossRef G. Azimi and M. Shamanian, Effects of Silicon Content on the Microstructure and Corrosion Behavior of Fe–Cr–C Hardfacing Alloys, J. Alloys Compd., 2010, 505(2), p 598–603.CrossRef
24.
Zurück zum Zitat B. Srikarun, H.Z. Oo, S. Petchsang and P. Muangjunburee, The Effects of Dilution and Choice of Added Powder on Hardfacing Deposited by Submerged Arc Welding, Wear, 2019, 424–425(February), p 246–254.CrossRef B. Srikarun, H.Z. Oo, S. Petchsang and P. Muangjunburee, The Effects of Dilution and Choice of Added Powder on Hardfacing Deposited by Submerged Arc Welding, Wear, 2019, 424–425(February), p 246–254.CrossRef
25.
Zurück zum Zitat M. Morsy and E. El-Kashif, The Effect of Microstructure on High-stress Abrasion Resistance of Fe-Cr-C Hardfacing Deposits, Weld Word, 2014, 58, p 491–497.CrossRef M. Morsy and E. El-Kashif, The Effect of Microstructure on High-stress Abrasion Resistance of Fe-Cr-C Hardfacing Deposits, Weld Word, 2014, 58, p 491–497.CrossRef
26.
Zurück zum Zitat B. Gülenç and N. Kahraman, Wear Behaviour of Bulldozer Rollers Welded using a Submerged Arc Welding Process, Mater. Des., 2003, 24(7), p 537–542.CrossRef B. Gülenç and N. Kahraman, Wear Behaviour of Bulldozer Rollers Welded using a Submerged Arc Welding Process, Mater. Des., 2003, 24(7), p 537–542.CrossRef
27.
Zurück zum Zitat P.F. Mendez, N. Barnes, K. Bell et al., Welding Processes for Wear Resistant Overlays, J. Manuf. Process., 2014, 16(1), p 4–25.CrossRef P.F. Mendez, N. Barnes, K. Bell et al., Welding Processes for Wear Resistant Overlays, J. Manuf. Process., 2014, 16(1), p 4–25.CrossRef
28.
Zurück zum Zitat N. Ur Rahman, M.B. de Rooij, D.T.A. Matthews, G. Walmag, M. Sinnaeve and G.R.B.E. Römer, Wear Characterization of Multilayer Laser Cladded High Speed Steels, Tribol. Int., 2019, 130, p 52–62.CrossRef N. Ur Rahman, M.B. de Rooij, D.T.A. Matthews, G. Walmag, M. Sinnaeve and G.R.B.E. Römer, Wear Characterization of Multilayer Laser Cladded High Speed Steels, Tribol. Int., 2019, 130, p 52–62.CrossRef
29.
Zurück zum Zitat K.Y. Luo, X. Xu, Z. Zhao, S.S. Zhao, Z.G. Cheng and J.Z. Lu, Microstructural Evolution and Characteristics of Bonding Zone in Multilayer Laser Cladding of Fe-Based Coating, J. Mater. Process. Technol., 2018, 2019(263), p 50–58. K.Y. Luo, X. Xu, Z. Zhao, S.S. Zhao, Z.G. Cheng and J.Z. Lu, Microstructural Evolution and Characteristics of Bonding Zone in Multilayer Laser Cladding of Fe-Based Coating, J. Mater. Process. Technol., 2018, 2019(263), p 50–58.
30.
Zurück zum Zitat S.S. Sandhu and A.S. Shahi, Metallurgical, Wear and Fatigue Performance of Inconel 625 Weld Claddings, J. Mater. Process. Technol., 2016, 233, p 1–8.CrossRef S.S. Sandhu and A.S. Shahi, Metallurgical, Wear and Fatigue Performance of Inconel 625 Weld Claddings, J. Mater. Process. Technol., 2016, 233, p 1–8.CrossRef
31.
Zurück zum Zitat C.M. Chang, Y.C. Chen and W. Wu, Microstructural and Abrasive Characteristics of High Carbon Fe-Cr-C Hardfacing Alloy, Tribol Int., 2010, 43(5–6), p 929–934.CrossRef C.M. Chang, Y.C. Chen and W. Wu, Microstructural and Abrasive Characteristics of High Carbon Fe-Cr-C Hardfacing Alloy, Tribol Int., 2010, 43(5–6), p 929–934.CrossRef
32.
Zurück zum Zitat L. Lu, H. Soda and A. McLean, Microstructure and Mechanical Properties of Fe_/Cr_/C Eutectic Composites, Mater. Sci. Eng. A, 2003, 347, p 214–222.CrossRef L. Lu, H. Soda and A. McLean, Microstructure and Mechanical Properties of Fe_/Cr_/C Eutectic Composites, Mater. Sci. Eng. A, 2003, 347, p 214–222.CrossRef
33.
Zurück zum Zitat J.N. Lemke, L. Rovatti, M. Colombo and M. Vedani, Interrelation Between Macroscopic, Microscopic and Chemical Dilution in Hardfacing Alloys, Mater. Des., 2016, 91, p 368–377.CrossRef J.N. Lemke, L. Rovatti, M. Colombo and M. Vedani, Interrelation Between Macroscopic, Microscopic and Chemical Dilution in Hardfacing Alloys, Mater. Des., 2016, 91, p 368–377.CrossRef
34.
Zurück zum Zitat American Society of Metals, Volume 3, Alloy Phase Diagrams, 2004. American Society of Metals, Volume 3, Alloy Phase Diagrams, 2004.
35.
Zurück zum Zitat M. Atkins, Atlas of continious cooling transformation diagrams for engineering steels, ASM International, Metals Park, Ohio, 1980. M. Atkins, Atlas of continious cooling transformation diagrams for engineering steels, ASM International, Metals Park, Ohio, 1980.
36.
Zurück zum Zitat J. Trzaska, A. Jagiełło and L.A. Dobrzañski, The Calculation of CCT Diagrams for Engineering Steels, Arch. Mater. Sci. Eng., 2009, 39(1), p 13–20. J. Trzaska, A. Jagiełło and L.A. Dobrzañski, The Calculation of CCT Diagrams for Engineering Steels, Arch. Mater. Sci. Eng., 2009, 39(1), p 13–20.
37.
Zurück zum Zitat P. Ma, Y. Wu, P. Zhang and J. Chen, Solidification Prediction of Laser Cladding 316L by the Finite Element Simulation, Int. J. Adv. Manuf. Technol., 2019, 103(1–4), p 957–969.CrossRef P. Ma, Y. Wu, P. Zhang and J. Chen, Solidification Prediction of Laser Cladding 316L by the Finite Element Simulation, Int. J. Adv. Manuf. Technol., 2019, 103(1–4), p 957–969.CrossRef
38.
Zurück zum Zitat V. Javaheri, A. Pohjonen, J.I. Asperheim, D. Ivanov and D. Porter, Physically Based Modeling, Characterization and Design of an Induction Hardening Process for a New Slurry Pipeline Steel, Mater. Des., 2019, 182, p 108047.CrossRef V. Javaheri, A. Pohjonen, J.I. Asperheim, D. Ivanov and D. Porter, Physically Based Modeling, Characterization and Design of an Induction Hardening Process for a New Slurry Pipeline Steel, Mater. Des., 2019, 182, p 108047.CrossRef
39.
Zurück zum Zitat J. Trzaska, Calculation of the Steel Hardness after Continuous Cooling, Arch Mater Sci Eng., 2013, 61(2), p 87–92. J. Trzaska, Calculation of the Steel Hardness after Continuous Cooling, Arch Mater Sci Eng., 2013, 61(2), p 87–92.
40.
Zurück zum Zitat Q. Wu and M.A. Zikry, Microstructural Modeling of Crack Nucleation and Propagation in High Strength Martensitic Steels, Int. J. Solids Struct., 2014, 51(25–26), p 4345–4356.CrossRef Q. Wu and M.A. Zikry, Microstructural Modeling of Crack Nucleation and Propagation in High Strength Martensitic Steels, Int. J. Solids Struct., 2014, 51(25–26), p 4345–4356.CrossRef
41.
Zurück zum Zitat S. Zidelmel, O. Allaoui, O. Laidi and A. Benchatti, Influence of the Heat Treatments on Martensite Microstructure and Abrasive Wear Behavior of X52 Dual-Phase Steel, Adv. Model. Anal. A., 2017, 86(3), p 582–592. S. Zidelmel, O. Allaoui, O. Laidi and A. Benchatti, Influence of the Heat Treatments on Martensite Microstructure and Abrasive Wear Behavior of X52 Dual-Phase Steel, Adv. Model. Anal. A., 2017, 86(3), p 582–592.
42.
Zurück zum Zitat O.P. Modi, P. Pandit, D.P. Mondal, B.K. Prasad, A.H. Yegneswaran and A. Chrysanthou, High-Stress Abrasive Wear Response of 0.2% Carbon Dual Phase Steel: Effects of Microstructural Features and Experimental Conditions, Mater. Sci. Eng. A, 2007, 458, p 303–311.CrossRef O.P. Modi, P. Pandit, D.P. Mondal, B.K. Prasad, A.H. Yegneswaran and A. Chrysanthou, High-Stress Abrasive Wear Response of 0.2% Carbon Dual Phase Steel: Effects of Microstructural Features and Experimental Conditions, Mater. Sci. Eng. A, 2007, 458, p 303–311.CrossRef
43.
Zurück zum Zitat S. Bhowmick and B.K. Show, Effect of Prior Heat Treatment on Wear Behaviour of 0.23% Carbon Dual Phase Steel, Can. Metall. Q., 2014, 53(1), p 93–99.CrossRef S. Bhowmick and B.K. Show, Effect of Prior Heat Treatment on Wear Behaviour of 0.23% Carbon Dual Phase Steel, Can. Metall. Q., 2014, 53(1), p 93–99.CrossRef
Metadaten
Titel
Microstructure and Wear Resistance of Single- and Multi-Layered Low-Carbon Fe-Cr-C-Mo-Mn Clads Deposited by Shielded Metal Arc Welding
verfasst von
Elyas Pournajaf
Alireza Abbasi
Hamidreza Najafi
Publikationsdatum
07.06.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2021
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-05901-2

Weitere Artikel der Ausgabe 10/2021

Journal of Materials Engineering and Performance 10/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.