Skip to main content
Erschienen in: Microsystem Technologies 7/2017

25.07.2016 | Technical Paper

Modeling and verification of a piezoelectric frequency-up-conversion energy harvesting system

verfasst von: Shun Chen, Li Ma, Tao Chen, Huicong Liu, Lining Sun, Jianxiang Wang

Erschienen in: Microsystem Technologies | Ausgabe 7/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An impact-based frequency-up-conversion (FUC) energy harvesting system has been studied for realizing high power density from ambient vibration. It can harvest the lower frequency environment vibration and convert into a higher frequency self-oscillation. The energy output is greatly improved. In this paper, theoretical modeling of the FUC energy harvesting system is established, including a lower frequency piezoelectric bimorph (LFPB) and a higher frequency piezoelectric bimorph (HFPB). The dynamic analysis is carried out and the output performance is simulated. Experiments indicate that the developed FUC system can generate a high peak power of 2.62 mW and an average power of 0.58 mW from an external excitation acceleration of 1 g at 29 Hz. The peak power output of the HFPB operating at 153.8 Hz is about 4.5 times higher than that of the LFPB at 29 Hz. This work provides a theoretical basis and methodology for developing impact-based FUC energy harvesting system, which opens up a way for achieving high power output at low ambient frequency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Deng L, Wen Z, Zhao X, Yuan C, Luo G, Mo J (2014) High voltage output MEMS vibration energy harvester in d31 mode with PZT thin film. J Microelectromech Syst 23:855–861CrossRef Deng L, Wen Z, Zhao X, Yuan C, Luo G, Mo J (2014) High voltage output MEMS vibration energy harvester in d31 mode with PZT thin film. J Microelectromech Syst 23:855–861CrossRef
Zurück zum Zitat Dhakar L, Tay FEH, Lee C (2014) Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures. J Micromech Microeng 24:104002CrossRef Dhakar L, Tay FEH, Lee C (2014) Investigation of contact electrification based broadband energy harvesting mechanism using elastic PDMS microstructures. J Micromech Microeng 24:104002CrossRef
Zurück zum Zitat Feng Y, Kei H, Iguchi Y, Suzuki Y (2012) Trench-filled cellular parylene electret for piezoelectric transducer. Appl Phys Lett 100:262901CrossRef Feng Y, Kei H, Iguchi Y, Suzuki Y (2012) Trench-filled cellular parylene electret for piezoelectric transducer. Appl Phys Lett 100:262901CrossRef
Zurück zum Zitat Galchev TV, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Syst 20:852–866 Galchev TV, Kim H, Najafi K (2011) Micro power generator for harvesting low-frequency and nonperiodic vibrations. J Microelectromech Syst 20:852–866
Zurück zum Zitat Gu L, Livemore C (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low-frequency operation. Smart Mater Struct 20:045004CrossRef Gu L, Livemore C (2011) Impact-driven, frequency up-converting coupled vibration energy harvesting device for low-frequency operation. Smart Mater Struct 20:045004CrossRef
Zurück zum Zitat Halim MA, Park JK (2014) Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation. Sens Actuator A Phys 208:56–65CrossRef Halim MA, Park JK (2014) Theoretical modeling and analysis of mechanical impact driven and frequency up-converted piezoelectric energy harvester for low-frequency and wide-bandwidth operation. Sens Actuator A Phys 208:56–65CrossRef
Zurück zum Zitat Halim MA, Park JK (2015) Modeling and experiment of a handy motion driven, frequency up-converting electromagnetic energy harvester using transverse impact by spherical ball. Sens Actuator A Phys 229:50–58CrossRef Halim MA, Park JK (2015) Modeling and experiment of a handy motion driven, frequency up-converting electromagnetic energy harvester using transverse impact by spherical ball. Sens Actuator A Phys 229:50–58CrossRef
Zurück zum Zitat Han D, Yun KS (2014) Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration. Microsyst Technol 21:1669–1676CrossRef Han D, Yun KS (2014) Piezoelectric energy harvester using mechanical frequency up conversion for operation at low-level accelerations and low-frequency vibration. Microsyst Technol 21:1669–1676CrossRef
Zurück zum Zitat Han M, Yuan Q, Sun X, Zhang H (2014) Design and fabrication of integrated magnetic mems energy harvester for low frequency applications. J Microelectromech Syst 23:204–212CrossRef Han M, Yuan Q, Sun X, Zhang H (2014) Design and fabrication of integrated magnetic mems energy harvester for low frequency applications. J Microelectromech Syst 23:204–212CrossRef
Zurück zum Zitat Jang M, Song S, Park YH, Yun KS (2015) Piezoelectric energy harvester operated by noncontact mechanical frequency up-conversion using shell cantilever structure. Jpn J Appl Phys 54:06FP08CrossRef Jang M, Song S, Park YH, Yun KS (2015) Piezoelectric energy harvester operated by noncontact mechanical frequency up-conversion using shell cantilever structure. Jpn J Appl Phys 54:06FP08CrossRef
Zurück zum Zitat Jung SM, Yun KS (2010) Energy-harvesting device with mechanical frequency up-conversion mechanism for increased power efficiency and wideband operation. Appl Phys Lett 96:111906CrossRef Jung SM, Yun KS (2010) Energy-harvesting device with mechanical frequency up-conversion mechanism for increased power efficiency and wideband operation. Appl Phys Lett 96:111906CrossRef
Zurück zum Zitat Kittipaisalsilpa K, Kato T, Suzuki Y (2016) Liquid-crystal-enhanced electrostatic vibration generator. In: IEEE MEMS 2016 Conference, pp 24–28 Kittipaisalsilpa K, Kato T, Suzuki Y (2016) Liquid-crystal-enhanced electrostatic vibration generator. In: IEEE MEMS 2016 Conference, pp 24–28
Zurück zum Zitat Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectromech Syst 20:1131–1142CrossRef Liu H, Tay CJ, Quan C, Kobayashi T, Lee C (2011) Piezoelectric MEMS energy harvester for low-frequency vibrations with wideband operation range and steadily increased output power. J Microelectromech Syst 20:1131–1142CrossRef
Zurück zum Zitat Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012a) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18:497–506CrossRef Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012a) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18:497–506CrossRef
Zurück zum Zitat Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012b) Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens Actuator A Phys 186:242–248CrossRef Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012b) Piezoelectric MEMS-based wideband energy harvesting systems using a frequency-up-conversion cantilever stopper. Sens Actuator A Phys 186:242–248CrossRef
Zurück zum Zitat Liu H, Ji Z, Chen T, Sun L, Menon SC, Lee C (2015) An intermittent self-powered energy harvesting system from low-frequency hand shaking. IEEE Sens J 15:4782–4790CrossRef Liu H, Ji Z, Chen T, Sun L, Menon SC, Lee C (2015) An intermittent self-powered energy harvesting system from low-frequency hand shaking. IEEE Sens J 15:4782–4790CrossRef
Zurück zum Zitat Lu Y, Cottone F, Boisseau S, Marty F, Galayko D, Basset P (2016) Low-frequency and ultra-wideband MEMS electrostatic vibration energy harvester powering an autonomous wireless temperature sensor node. In: IEEE MEMS 2016 Conference, pp 33–36 Lu Y, Cottone F, Boisseau S, Marty F, Galayko D, Basset P (2016) Low-frequency and ultra-wideband MEMS electrostatic vibration energy harvester powering an autonomous wireless temperature sensor node. In: IEEE MEMS 2016 Conference, pp 33–36
Zurück zum Zitat Miller LM, Halvorsen E, Dong T, Wright PK (2011) Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations. J Micromech Microeng 21:045029CrossRef Miller LM, Halvorsen E, Dong T, Wright PK (2011) Modeling and experimental verification of low-frequency MEMS energy harvesting from ambient vibrations. J Micromech Microeng 21:045029CrossRef
Zurück zum Zitat Ralib AAM, Nordin AN, Salleh H (2010) A comparative study on MEMS piezoelectric microgenerators. Microsyst Technol 16:1673–1681CrossRef Ralib AAM, Nordin AN, Salleh H (2010) A comparative study on MEMS piezoelectric microgenerators. Microsyst Technol 16:1673–1681CrossRef
Zurück zum Zitat Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142CrossRef Roundy S, Wright PK (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142CrossRef
Zurück zum Zitat Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef Roundy S, Wright PK, Rabaey J (2003) A study of low level vibrations as a power source for wireless sensor nodes. Comput Commun 26:1131–1144CrossRef
Zurück zum Zitat Tang Q, Li X (2014) Two-stage wideband energy harvester driven by multimode coupled vibration. IEEE ASME Trans Mech 20:115–121MathSciNetCrossRef Tang Q, Li X (2014) Two-stage wideband energy harvester driven by multimode coupled vibration. IEEE ASME Trans Mech 20:115–121MathSciNetCrossRef
Zurück zum Zitat Tang L, Yang Y (2012) A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl Phys Lett 101:094102CrossRef Tang L, Yang Y (2012) A nonlinear piezoelectric energy harvester with magnetic oscillator. Appl Phys Lett 101:094102CrossRef
Zurück zum Zitat Tang G, Liu JQ, Yang B et al (2012) Fabrication and analysis of high-performance piezoelectric MEMS generators. J Micromech Microeng 22:065017CrossRef Tang G, Liu JQ, Yang B et al (2012) Fabrication and analysis of high-performance piezoelectric MEMS generators. J Micromech Microeng 22:065017CrossRef
Zurück zum Zitat Tao K, Wu J, Tang L, Xia X, Lye SW, Miao J, Hu X (2015a) A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester. J Micromech Microeng 26:035020CrossRef Tao K, Wu J, Tang L, Xia X, Lye SW, Miao J, Hu X (2015a) A novel two-degree-of-freedom MEMS electromagnetic vibration energy harvester. J Micromech Microeng 26:035020CrossRef
Zurück zum Zitat Tao K, Lye SW, Miao J, Tang L, Hu X (2015b) Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. J Micromech Microeng 25:104014CrossRef Tao K, Lye SW, Miao J, Tang L, Hu X (2015b) Out-of-plane electret-based MEMS energy harvester with the combined nonlinear effect from electrostatic force and a mechanical elastic stopper. J Micromech Microeng 25:104014CrossRef
Zurück zum Zitat Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Nano Energy 7:9533–9557 Wang ZL (2013) Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. Nano Energy 7:9533–9557
Zurück zum Zitat Zhu Y, Yang B, Liu J, Wang X, Chen X, Yang C (2015) An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF. J Microelectromech Syst 24:513–515CrossRef Zhu Y, Yang B, Liu J, Wang X, Chen X, Yang C (2015) An integrated flexible harvester coupled triboelectric and piezoelectric mechanisms using PDMS/MWCNT and PVDF. J Microelectromech Syst 24:513–515CrossRef
Zurück zum Zitat Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef Zorlu O, Topal ET, Kulah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488CrossRef
Metadaten
Titel
Modeling and verification of a piezoelectric frequency-up-conversion energy harvesting system
verfasst von
Shun Chen
Li Ma
Tao Chen
Huicong Liu
Lining Sun
Jianxiang Wang
Publikationsdatum
25.07.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-016-3077-y

Weitere Artikel der Ausgabe 7/2017

Microsystem Technologies 7/2017 Zur Ausgabe

Neuer Inhalt