Skip to main content
Erschienen in: Lasers in Manufacturing and Materials Processing 1/2022

01.03.2022

Nanonetworks fabrication by laser ablation in water of bimetallic compositions of platinum and palladium with gold and silver

verfasst von: Ro. G. Nikov, N. N. Nedyalkov, A. Og. Dikovska, D. B. Karashanova

Erschienen in: Lasers in Manufacturing and Materials Processing | Ausgabe 1/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With the advancement of nanosciences and nanotechnologies, the goal of synthesizing nanomaterials with controllable composition and morphology, and hence optical, electronic and catalytic properties, seems increasingly within grasp. We propose and discuss a methodology for fabrication of bimetallic nanostructures with easily-controllable composition by using nanosecond laser ablation in liquid (LAL) of bimetallic films. Under certain process conditions, bimetallic Au-Pd, Ag-Pd, Au-Pt, and Ag-Pt nanonetworks (NNs) are obtained. TEM analysis shows that the LAL of bimetallic Au-Pd, Ag-Pd, and Au-Pt mainly leads to the formation of NNs, while in the case of ablation of Ag-Pt films, in addition to the NNs spherical nanoparticles are also observed. HRTEM analysis reveals that the NNs are composed of both alloyed sections and monometallic ones. A relative association is established between the relative content of Au and Ag in Pd- and Pt-based bimetallic films and the morphology of the nanostructures formed by LAL. The method presented is promising in view of synthesizing contamination-free nanostructures with complex composition and morphology that could find effective uses in fields such as biomedicine, sensorics, and electrochemistry.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ström, L., Ström, H., Carlsson, P.-A., Skoglundh, M., Härelind, H.: Catalytically Active Pd–Ag Alloy Nanoparticles Synthesized in Microemulsion Template. Langmuir 34(33), 9754–9761 (2018)CrossRef Ström, L., Ström, H., Carlsson, P.-A., Skoglundh, M., Härelind, H.: Catalytically Active Pd–Ag Alloy Nanoparticles Synthesized in Microemulsion Template. Langmuir 34(33), 9754–9761 (2018)CrossRef
2.
Zurück zum Zitat Kunwar, S., Pandey, P., Pandit, S., Sui, M., Lee, J.: Improved Morphological and Localized Surface Plasmon Resonance (LSPR) Properties of Fully Alloyed Bimetallic AgPt and Monometallic Pt NPs Via the One-Step Solid-State Dewetting (SSD) of the Ag/Pt Bilayers. Nanoscale Res. Lett. 14, 332 (2019)CrossRef Kunwar, S., Pandey, P., Pandit, S., Sui, M., Lee, J.: Improved Morphological and Localized Surface Plasmon Resonance (LSPR) Properties of Fully Alloyed Bimetallic AgPt and Monometallic Pt NPs Via the One-Step Solid-State Dewetting (SSD) of the Ag/Pt Bilayers. Nanoscale Res. Lett. 14, 332 (2019)CrossRef
3.
Zurück zum Zitat Zhao, L., Thomas, J.P., Heinig, N.F., -Ellah, M.A., Wang, X., Leung, K.T.: Au–Pt alloy nanocatalysts for electro-oxidation of methanol and their application for fast-response non-enzymatic alcohol sensing. J. Mater. Chem. C 2, 2707–2714 (2014)CrossRef Zhao, L., Thomas, J.P., Heinig, N.F., -Ellah, M.A., Wang, X., Leung, K.T.: Au–Pt alloy nanocatalysts for electro-oxidation of methanol and their application for fast-response non-enzymatic alcohol sensing. J. Mater. Chem. C 2, 2707–2714 (2014)CrossRef
4.
Zurück zum Zitat -Krishnan, S.K., -Gonzalez, M.E., Perez, R., Esparza, R., Meyyappan, M.: A general seed-mediated approach to the synthesis of AgM (M = Au, Pt, and Pd) core–shell nanoplates and their SERS properties. RSC Adv. 7, 27170–27176 (2017)CrossRef -Krishnan, S.K., -Gonzalez, M.E., Perez, R., Esparza, R., Meyyappan, M.: A general seed-mediated approach to the synthesis of AgM (M = Au, Pt, and Pd) core–shell nanoplates and their SERS properties. RSC Adv. 7, 27170–27176 (2017)CrossRef
5.
Zurück zum Zitat Pandey, P., Shin, K., Jang, A.-R., Seo, M.-K., Hong, W.-K., Sohn, J.I.: Highly sensitive multiplex-detection of surface-enhanced Raman scattering via self-assembly arrays of porous AuAg nanoparticles with built-in nanogaps. J. Alloys Compd. 888, 161504 6 (2021)CrossRef Pandey, P., Shin, K., Jang, A.-R., Seo, M.-K., Hong, W.-K., Sohn, J.I.: Highly sensitive multiplex-detection of surface-enhanced Raman scattering via self-assembly arrays of porous AuAg nanoparticles with built-in nanogaps. J. Alloys Compd. 888, 161504 6 (2021)CrossRef
6.
Zurück zum Zitat Liu, W., Zheng, G., Wong, W.-L., Wong, K.-Y.: Au-Pd alloy nanoparticles catalyze the colorimetric detection of hydrazine with methylene blue. Inorg. Chem. Commun. 107, 107455 (2019)CrossRef Liu, W., Zheng, G., Wong, W.-L., Wong, K.-Y.: Au-Pd alloy nanoparticles catalyze the colorimetric detection of hydrazine with methylene blue. Inorg. Chem. Commun. 107, 107455 (2019)CrossRef
7.
Zurück zum Zitat Yamamoto, M., Kakiuchi, H., Kashiwagi, Y., Yoshida, Y., Ohno, T., Nakamoto, M.: Synthesis of Ag-Pd Alloy Nanoparticles Suitable as Precursors for Ionic Migration-Resistant Conductive Film. Bull. Chem. Soc. Jpn 83(11), 1386–1391 (2010)CrossRef Yamamoto, M., Kakiuchi, H., Kashiwagi, Y., Yoshida, Y., Ohno, T., Nakamoto, M.: Synthesis of Ag-Pd Alloy Nanoparticles Suitable as Precursors for Ionic Migration-Resistant Conductive Film. Bull. Chem. Soc. Jpn 83(11), 1386–1391 (2010)CrossRef
8.
Zurück zum Zitat Kunwar, S., Pandit, S., Kulkarni, R., Mandavkar, R., Lin, S., Li, M.-Y., Lee, J.: Hybrid Device Architecture Using Plasmonic Nanoparticles, Graphene Quantum Dots, and Titanium Dioxide for UV Photodetectors. ACS Appl. Mater. Interfaces 13, 3408–3418 (2021)CrossRef Kunwar, S., Pandit, S., Kulkarni, R., Mandavkar, R., Lin, S., Li, M.-Y., Lee, J.: Hybrid Device Architecture Using Plasmonic Nanoparticles, Graphene Quantum Dots, and Titanium Dioxide for UV Photodetectors. ACS Appl. Mater. Interfaces 13, 3408–3418 (2021)CrossRef
9.
Zurück zum Zitat Jiang, X., Fu, G., Wu, X., Liu, Y., Zhang, M., Sun, D., Xu, L., Tang, Y.: Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. NanoRes 11(1), 499–510 (2018) Jiang, X., Fu, G., Wu, X., Liu, Y., Zhang, M., Sun, D., Xu, L., Tang, Y.: Ultrathin AgPt alloy nanowires as a high-performance electrocatalyst for formic acid oxidation. NanoRes 11(1), 499–510 (2018)
10.
Zurück zum Zitat Kim, K., Kim, K.L., Shin, K.S.: Coreduced Pt/Ag Alloy Nanoparticles: Surface-Enhanced Raman Scattering and Electrocatalytic Activity. J. Phys. Chem. C 115, 23374–23380 (2011)CrossRef Kim, K., Kim, K.L., Shin, K.S.: Coreduced Pt/Ag Alloy Nanoparticles: Surface-Enhanced Raman Scattering and Electrocatalytic Activity. J. Phys. Chem. C 115, 23374–23380 (2011)CrossRef
11.
Zurück zum Zitat Xian, T., Sun, X., Di, L., Li, H., Yang, H.: Improved photocatalytic degradation and reduction performance of Bi2O3 by the decoration of AuPt alloy nanoparticles. Opt. Mater. 111, 110614 (2021)CrossRef Xian, T., Sun, X., Di, L., Li, H., Yang, H.: Improved photocatalytic degradation and reduction performance of Bi2O3 by the decoration of AuPt alloy nanoparticles. Opt. Mater. 111, 110614 (2021)CrossRef
12.
Zurück zum Zitat Shi, L., Wang, A., Zhang, T., Zhang, B., Su, D., Li, H., Song, Y.: One-Step Synthesis of Au – Pd Alloy Nanodendrites and Their Catalytic Activity. J. Phys. Chem. C 117, 12526–12536 (2013)CrossRef Shi, L., Wang, A., Zhang, T., Zhang, B., Su, D., Li, H., Song, Y.: One-Step Synthesis of Au – Pd Alloy Nanodendrites and Their Catalytic Activity. J. Phys. Chem. C 117, 12526–12536 (2013)CrossRef
13.
Zurück zum Zitat Ding, J., Li, X., Chen, L., Zhang, X., Sun, S., Bao, J., Gao, C., Tian, X.: Au–Pt alloy nanoparticles site-selectively deposited on CaIn2S4 nanosteps as efficient photocatalysts for hydrogen production. J. Mater. Chem. A 4, 12630–12637 (2016)CrossRef Ding, J., Li, X., Chen, L., Zhang, X., Sun, S., Bao, J., Gao, C., Tian, X.: Au–Pt alloy nanoparticles site-selectively deposited on CaIn2S4 nanosteps as efficient photocatalysts for hydrogen production. J. Mater. Chem. A 4, 12630–12637 (2016)CrossRef
14.
Zurück zum Zitat Li, X., Odoom-Wubah, T., Huang, J.: Biosynthesis of Ag–Pd bimetallic alloy nanoparticles through hydrolysis of cellulose triggered by silver sulfate. RSC Adv. 8, 30340–30345 (2018)CrossRef Li, X., Odoom-Wubah, T., Huang, J.: Biosynthesis of Ag–Pd bimetallic alloy nanoparticles through hydrolysis of cellulose triggered by silver sulfate. RSC Adv. 8, 30340–30345 (2018)CrossRef
15.
Zurück zum Zitat Kunal, P., Li, H., Dewing, B.L., Zhang, L., Jarvis, K., Henkelman, G., Humphrey, S.M.: Microwave-Assisted Synthesis of PdxAu100–x Alloy Nanoparticles: A Combined Experimental and Theoretical Assessment of Synthetic and Compositional Effects upon Catalytic Reactivity. ACS Catal. 6, 4882–4893 (2016)CrossRef Kunal, P., Li, H., Dewing, B.L., Zhang, L., Jarvis, K., Henkelman, G., Humphrey, S.M.: Microwave-Assisted Synthesis of PdxAu100–x Alloy Nanoparticles: A Combined Experimental and Theoretical Assessment of Synthetic and Compositional Effects upon Catalytic Reactivity. ACS Catal. 6, 4882–4893 (2016)CrossRef
16.
Zurück zum Zitat Shubin, Y., Plyusnin, P., Sharafutdinov, M.: In situ synchrotron study of Au–Pd nanoporous alloy formation by single-source precursor thermolysis. Nanotechnology 23, 405302 (2012)CrossRef Shubin, Y., Plyusnin, P., Sharafutdinov, M.: In situ synchrotron study of Au–Pd nanoporous alloy formation by single-source precursor thermolysis. Nanotechnology 23, 405302 (2012)CrossRef
17.
Zurück zum Zitat De, G., Rao, C.N.R.: Au–Pt alloy nanocrystals incorporated in silica films. J. Mater. Chem. 15, 891 (2005)CrossRef De, G., Rao, C.N.R.: Au–Pt alloy nanocrystals incorporated in silica films. J. Mater. Chem. 15, 891 (2005)CrossRef
18.
Zurück zum Zitat Ataee-Esfahani, H., Wang, L., Nemoto, Y., Yamauchi, Y.: Synthesis of Bimetallic Au@Pt Nanoparticles with Au Core and Nanostructured Pt Shell toward Highly Active Electrocatalysts. Chem. Mater. 22, 6310–6318 (2010)CrossRef Ataee-Esfahani, H., Wang, L., Nemoto, Y., Yamauchi, Y.: Synthesis of Bimetallic Au@Pt Nanoparticles with Au Core and Nanostructured Pt Shell toward Highly Active Electrocatalysts. Chem. Mater. 22, 6310–6318 (2010)CrossRef
19.
Zurück zum Zitat Zhang, D., Gökce, B., Barcikowski, S.: Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 117, 3990–4103 (2017)CrossRef Zhang, D., Gökce, B., Barcikowski, S.: Laser Synthesis and Processing of Colloids: Fundamentals and Applications. Chem. Rev. 117, 3990–4103 (2017)CrossRef
20.
Zurück zum Zitat Zhang, D., Wada, H.: Laser Ablation in Liquids for Nanomaterial Synthesis and Applications. In: By, K., Sugioka (eds.) Handbook of Laser Micro- and Nano-Engineering, pp. 1–35. Springer, Cham (2021) Zhang, D., Wada, H.: Laser Ablation in Liquids for Nanomaterial Synthesis and Applications. In: By, K., Sugioka (eds.) Handbook of Laser Micro- and Nano-Engineering, pp. 1–35. Springer, Cham (2021)
21.
Zurück zum Zitat Amendola, V., Amans, D., Ishikawa, Y., Koshizaki, N., Scire, S., Compagnini, G., Reichenberger, S., Barcikowski, S.: Room-Temperature Laser Synthesis in Liquid of Oxide, Metal-Oxide Core-Shells, and Doped Oxide Nanoparticles. Chem. Eur. J. 26, 9206–9242 (2020)CrossRef Amendola, V., Amans, D., Ishikawa, Y., Koshizaki, N., Scire, S., Compagnini, G., Reichenberger, S., Barcikowski, S.: Room-Temperature Laser Synthesis in Liquid of Oxide, Metal-Oxide Core-Shells, and Doped Oxide Nanoparticles. Chem. Eur. J. 26, 9206–9242 (2020)CrossRef
22.
Zurück zum Zitat Waag, F., Streubel, R., Gökce, B., Barcikowski, S.: Synthesis of gold, platinum, and gold–platinum alloy nanoparticle colloids with high–power megahertz–repetition–rate lasers: the importance of the beam guidance method. Appl. Nanosci. 11, 1303–1312 (2021)CrossRef Waag, F., Streubel, R., Gökce, B., Barcikowski, S.: Synthesis of gold, platinum, and gold–platinum alloy nanoparticle colloids with high–power megahertz–repetition–rate lasers: the importance of the beam guidance method. Appl. Nanosci. 11, 1303–1312 (2021)CrossRef
23.
Zurück zum Zitat Hansen, M., Anderko, K.: Consitution of Binary Alloys. McGraw-Hill, New York (1958) Hansen, M., Anderko, K.: Consitution of Binary Alloys. McGraw-Hill, New York (1958)
24.
Zurück zum Zitat Oko, D.N., Garbarino, S., Zhang, J., Xu, Z., Chaker, M., Ma, D., Guay, D., Tavares, A.C.: Dopamine and ascorbic acid electro-oxidation on Au, AuPt and Pt nanoparticles prepared by pulse laser ablation in water. Electrochim. Acta 159, 174–183 (2015)CrossRef Oko, D.N., Garbarino, S., Zhang, J., Xu, Z., Chaker, M., Ma, D., Guay, D., Tavares, A.C.: Dopamine and ascorbic acid electro-oxidation on Au, AuPt and Pt nanoparticles prepared by pulse laser ablation in water. Electrochim. Acta 159, 174–183 (2015)CrossRef
25.
Zurück zum Zitat Kane, K.A., Reber, A.C., Khanna, S.N., Bertino, M.F.: Laser synthesized nanoparticle alloys of metals with bulk miscibility gaps. Pro Nat. Sci-Mater 28, 456–463 (2018)CrossRef Kane, K.A., Reber, A.C., Khanna, S.N., Bertino, M.F.: Laser synthesized nanoparticle alloys of metals with bulk miscibility gaps. Pro Nat. Sci-Mater 28, 456–463 (2018)CrossRef
26.
Zurück zum Zitat Amendola, V., Scaramuzza, S., Carraro, F.: E.Cattaruzza, Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment. J. Colloid Interface Sci. 489, 18–27 (2017)CrossRef Amendola, V., Scaramuzza, S., Carraro, F.: E.Cattaruzza, Formation of alloy nanoparticles by laser ablation of Au/Fe multilayer films in liquid environment. J. Colloid Interface Sci. 489, 18–27 (2017)CrossRef
27.
Zurück zum Zitat Shih, C.-Y., Chen, C., Rehbock, C., Tymoczko, A., Wiedwald, U., Kamp, M., Schuermann, U., Kienle, L., Barcikowski, S., Zhigilei, L.V.: Limited Elemental Mixing in Nanoparticles Generated by Ultrashort Pulse Laser Ablation of AgCu Bilayer Thin Films in a Liquid Environment: Atomistic Modeling and Experiments. J. Phys. Chem. C 125(3), 2132–2155 (2021)CrossRef Shih, C.-Y., Chen, C., Rehbock, C., Tymoczko, A., Wiedwald, U., Kamp, M., Schuermann, U., Kienle, L., Barcikowski, S., Zhigilei, L.V.: Limited Elemental Mixing in Nanoparticles Generated by Ultrashort Pulse Laser Ablation of AgCu Bilayer Thin Films in a Liquid Environment: Atomistic Modeling and Experiments. J. Phys. Chem. C 125(3), 2132–2155 (2021)CrossRef
28.
Zurück zum Zitat Hong, W., Wang, J., Wang, E.: Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 10, 3262–3265 (2014)CrossRef Hong, W., Wang, J., Wang, E.: Dendritic Au/Pt and Au/PtCu nanowires with enhanced electrocatalytic activity for methanol electrooxidation. Small 10, 3262–3265 (2014)CrossRef
29.
Zurück zum Zitat Nikov, R.G., Nedyalkov, N.N., Nikov, Ru.G., Karashanova, D.B.: Nanosecond laser ablation of Ag–Au films in water for fabrication of nanostructures with tunable optical properties. Appl. Phys. A 124, 847 (2018)CrossRef Nikov, R.G., Nedyalkov, N.N., Nikov, Ru.G., Karashanova, D.B.: Nanosecond laser ablation of Ag–Au films in water for fabrication of nanostructures with tunable optical properties. Appl. Phys. A 124, 847 (2018)CrossRef
30.
Zurück zum Zitat Marzun, G., Nakamura, J., Zhang, X., Barcikowski, S., Wagener, P.: Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts. Appl. Surf. Sci. 348, 75–84 (2015)CrossRef Marzun, G., Nakamura, J., Zhang, X., Barcikowski, S., Wagener, P.: Size control and supporting of palladium nanoparticles made by laser ablation in saline solution as a facile route to heterogeneous catalysts. Appl. Surf. Sci. 348, 75–84 (2015)CrossRef
31.
Zurück zum Zitat Jana, D., Dandapat, A., De, G.: Au@Pd Core-Shell Nanoparticle Incorporated Alumina Sols and Coatings: Transformation of Au@Pd to Au-Pd Alloy Nanoparticles. J. Phys. Chem. C 113, 9101–9107 (2009)CrossRef Jana, D., Dandapat, A., De, G.: Au@Pd Core-Shell Nanoparticle Incorporated Alumina Sols and Coatings: Transformation of Au@Pd to Au-Pd Alloy Nanoparticles. J. Phys. Chem. C 113, 9101–9107 (2009)CrossRef
32.
Zurück zum Zitat Nichols, W.T., Sasaki, T., Koshizaki, N.: Laser ablation of a platinum target in water. III. Laser-induced reactions. J. Appl. Phys. 100, 114913 (2006)CrossRef Nichols, W.T., Sasaki, T., Koshizaki, N.: Laser ablation of a platinum target in water. III. Laser-induced reactions. J. Appl. Phys. 100, 114913 (2006)CrossRef
33.
Zurück zum Zitat De Marchi, S., Nuñez-Sánchez, S., Bodelón, G., Pérez-Juste, J.: I. Pastoriza-Santos, Pd nanoparticles as plasmonic material: synthesis, optical properties and applications. Nanoscale 12, 23424–23443 (2020)CrossRef De Marchi, S., Nuñez-Sánchez, S., Bodelón, G., Pérez-Juste, J.: I. Pastoriza-Santos, Pd nanoparticles as plasmonic material: synthesis, optical properties and applications. Nanoscale 12, 23424–23443 (2020)CrossRef
34.
Zurück zum Zitat Lu, F., Sun, D., Huang, J., Du, M., Yang, F., Chen, H., Hong, Y., Li, Q.: Plant-Mediated Synthesis of Ag – Pd Alloy Nanoparticles and Their Application as Catalyst toward Selective Hydrogenation. ACS Sustainable Chem. Eng. 2, 1212–1218 (2014)CrossRef Lu, F., Sun, D., Huang, J., Du, M., Yang, F., Chen, H., Hong, Y., Li, Q.: Plant-Mediated Synthesis of Ag – Pd Alloy Nanoparticles and Their Application as Catalyst toward Selective Hydrogenation. ACS Sustainable Chem. Eng. 2, 1212–1218 (2014)CrossRef
35.
Zurück zum Zitat Chen, Y., Tseng, Y., Yeh, C.: Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles. J. Mater. Chem. 12, 1419–1422 (2002)CrossRef Chen, Y., Tseng, Y., Yeh, C.: Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles. J. Mater. Chem. 12, 1419–1422 (2002)CrossRef
36.
Zurück zum Zitat Nikolov, A.S., Nedyalkov, N.N., Nikov, R.G., Dimitrov, I.G., Atanasov, P.A., Maximova, K., Delaporte, Ph, Kabashin, A., Alexandrov, M.T., Karashanova, D.B.: Processing conditions in pulsed laser ablation of gold in liquid for fabrication of nanowire networks. Appl. Surf. Sci. 302, 243–249 (2014)CrossRef Nikolov, A.S., Nedyalkov, N.N., Nikov, R.G., Dimitrov, I.G., Atanasov, P.A., Maximova, K., Delaporte, Ph, Kabashin, A., Alexandrov, M.T., Karashanova, D.B.: Processing conditions in pulsed laser ablation of gold in liquid for fabrication of nanowire networks. Appl. Surf. Sci. 302, 243–249 (2014)CrossRef
37.
Zurück zum Zitat Wu, M.-L., Chen, D.-H., Huang, T.-C.: Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles. Langmuir 17, 3877–3883 (2001)CrossRef Wu, M.-L., Chen, D.-H., Huang, T.-C.: Synthesis of Au/Pd Bimetallic Nanoparticles in Reverse Micelles. Langmuir 17, 3877–3883 (2001)CrossRef
38.
Zurück zum Zitat Bigall, N.C., Hartling, T., Klose, M., Simon, P., Eng, L.M., Eychmuller, A.: Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm: Synthesis and Distinct Optical Properties. Nano Lett. 8, 4588–4592 (2008)CrossRef Bigall, N.C., Hartling, T., Klose, M., Simon, P., Eng, L.M., Eychmuller, A.: Monodisperse Platinum Nanospheres with Adjustable Diameters from 10 to 100 nm: Synthesis and Distinct Optical Properties. Nano Lett. 8, 4588–4592 (2008)CrossRef
39.
Zurück zum Zitat Cueto, M., Sanz, M., Oujja, M., Gamez, F., -Haya, B.M., Castillejo, M.: Platinum Nanoparticles Prepared by Laser Ablation in Aqueous Solutions: Fabrication and Application to Laser Desorption Ionization. J. Phys. Chem. C 115, 22217–22224 (2011)CrossRef Cueto, M., Sanz, M., Oujja, M., Gamez, F., -Haya, B.M., Castillejo, M.: Platinum Nanoparticles Prepared by Laser Ablation in Aqueous Solutions: Fabrication and Application to Laser Desorption Ionization. J. Phys. Chem. C 115, 22217–22224 (2011)CrossRef
40.
Zurück zum Zitat Mafune, F., Kohno, J., Takeda, Y., Kondow, T.: Nanoscale Soldering of Metal Nanoparticles for Construction of Higher-Order Structures. J. Am. Chem. Soc. 125, 1686–1687 (2003)CrossRef Mafune, F., Kohno, J., Takeda, Y., Kondow, T.: Nanoscale Soldering of Metal Nanoparticles for Construction of Higher-Order Structures. J. Am. Chem. Soc. 125, 1686–1687 (2003)CrossRef
41.
Zurück zum Zitat Kreibig, U., Vollmer, M.: Optical properties of metal clusters. Springer, Berlin (1995)CrossRef Kreibig, U., Vollmer, M.: Optical properties of metal clusters. Springer, Berlin (1995)CrossRef
42.
Zurück zum Zitat Shih, C.-Y., Shugaev, M.V., Wu, C., Zhigilei, L.V.: The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations. Phys. Chem. Chem. Phys. 22, 7077–7099 (2020)CrossRef Shih, C.-Y., Shugaev, M.V., Wu, C., Zhigilei, L.V.: The effect of pulse duration on nanoparticle generation in pulsed laser ablation in liquids: insights from large-scale atomistic simulations. Phys. Chem. Chem. Phys. 22, 7077–7099 (2020)CrossRef
43.
Zurück zum Zitat Magnozzi, M., Zaccaria, R.P., Catone, D., O’Keeffe, P., Paladini, A., Toschi, F., Alabastri, A., Canepa, M., Bisio, F.: Interband Transitions Are More Efficient Than Plasmonic Excitation in the Ultrafast Melting of Electromagnetically Coupled Au Nanoparticles. J. Phys. Chem. C 123(27), 16943–16950 (2019)CrossRef Magnozzi, M., Zaccaria, R.P., Catone, D., O’Keeffe, P., Paladini, A., Toschi, F., Alabastri, A., Canepa, M., Bisio, F.: Interband Transitions Are More Efficient Than Plasmonic Excitation in the Ultrafast Melting of Electromagnetically Coupled Au Nanoparticles. J. Phys. Chem. C 123(27), 16943–16950 (2019)CrossRef
44.
Zurück zum Zitat Serkov, A.A., Kuzmin, P.G., Shafeev, G.A.: Laser-induced agglomeration of gold and silver nanoparticles dispersed in liquid. Chem. Phys. Lett. 647, 68–72 (2016)CrossRef Serkov, A.A., Kuzmin, P.G., Shafeev, G.A.: Laser-induced agglomeration of gold and silver nanoparticles dispersed in liquid. Chem. Phys. Lett. 647, 68–72 (2016)CrossRef
45.
Zurück zum Zitat Yamada, K., Miyajima, K., Mafune, F.: Thermionic Emission of Electrons from Gold Nanoparticles by Nanosecond Pulse-Laser Excitation of Interband. J. Phys. Chem. C 111, 11246 (2007)CrossRef Yamada, K., Miyajima, K., Mafune, F.: Thermionic Emission of Electrons from Gold Nanoparticles by Nanosecond Pulse-Laser Excitation of Interband. J. Phys. Chem. C 111, 11246 (2007)CrossRef
46.
Zurück zum Zitat Zav’yalov, A.S., Dorofeev, I.O., Falits, A.V.: Polarizability of a metal rod and wave resistance of a symmetric vibrator. Russ Phys. J. 49, 276 (2006)MATHCrossRef Zav’yalov, A.S., Dorofeev, I.O., Falits, A.V.: Polarizability of a metal rod and wave resistance of a symmetric vibrator. Russ Phys. J. 49, 276 (2006)MATHCrossRef
47.
Zurück zum Zitat Nikov, R.G., Nikolov, A.S., Nedyalkov, N.N., Atanasov, P.A., Alexandrov, M.T., Karashanova, D.B.: Processing condition influence on the characteristics of gold nanoparticles produced by pulsed laser ablation in liquids. Appl. Surf. Sci. 274, 105–109 (2013)CrossRef Nikov, R.G., Nikolov, A.S., Nedyalkov, N.N., Atanasov, P.A., Alexandrov, M.T., Karashanova, D.B.: Processing condition influence on the characteristics of gold nanoparticles produced by pulsed laser ablation in liquids. Appl. Surf. Sci. 274, 105–109 (2013)CrossRef
Metadaten
Titel
Nanonetworks fabrication by laser ablation in water of bimetallic compositions of platinum and palladium with gold and silver
verfasst von
Ro. G. Nikov
N. N. Nedyalkov
A. Og. Dikovska
D. B. Karashanova
Publikationsdatum
01.03.2022
Verlag
Springer US
Erschienen in
Lasers in Manufacturing and Materials Processing / Ausgabe 1/2022
Print ISSN: 2196-7229
Elektronische ISSN: 2196-7237
DOI
https://doi.org/10.1007/s40516-022-00168-4

Weitere Artikel der Ausgabe 1/2022

Lasers in Manufacturing and Materials Processing 1/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.