Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2024

21.03.2023 | Technical Article

NiAl Coatings Produced by Magnetron Sputtering from Mosaic Targets

verfasst von: T. S. Ogneva, A. A. Ruktuev, N. Yu. Cherkasova, Yu. N. Malyutina, M. N. Khomyakov, V. G. Burov, I. A. Bataev

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this study, NiAl-based intermetallic films were obtained by magnetron sputtering of mosaic targets, consisting of nickel and aluminum. Two-segment target consisted of nickel and aluminum semicircular parts; six-segment target was assembled from nickel and aluminum alternating bars. The structure and properties of coatings were evaluated depending on the type of mosaic target, target-to-substrate distance (Ht-s) and substrate material. NiAl grains had predominant (111) or (110) crystallographic orientation parallel to the substrate surface. Sputtering of the six-segment target led to the uniform elemental composition of the coatings. When using the two-segment target, the heterogeneous distribution of Ni and Al in NiAl over the substrate was observed. Ni-rich regions of the coatings had a fine-grained structure, while Al-rich areas predominantly consisted of larger columnar grains. As the Ht-s distance decreased, the morphology of the surface of all films changed from a rough island-type to a smoother one. The correlations between the texture, composition of films, and sputtering conditions are described. The obtained results are analyzed and explained based on fundamental principles of films growth during magnetron sputtering. The nanohardness of the films varied in a range from 6 to 12 GPa, and the coatings possessed high wear resistance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.T. Liu and J.G. Duh, Hardness Evolution of NiTi and NiTiAl Thin Films under Various Annealing Temperatures, Surf. Coatings Technol., 2008, 202(12), p 2737–2742.CrossRef K.T. Liu and J.G. Duh, Hardness Evolution of NiTi and NiTiAl Thin Films under Various Annealing Temperatures, Surf. Coatings Technol., 2008, 202(12), p 2737–2742.CrossRef
2.
Zurück zum Zitat Q. Wu, S. Li, Y. Ma, and S. Gong, Study on Behavior of NiAl Coating with Different Ni/Al Ratios, Vacuum, 2013, 93, p 37–44.CrossRefADS Q. Wu, S. Li, Y. Ma, and S. Gong, Study on Behavior of NiAl Coating with Different Ni/Al Ratios, Vacuum, 2013, 93, p 37–44.CrossRefADS
3.
Zurück zum Zitat S. Singh, S. Chang, C.S. Kaira, J.K. Baldwin, N. Mara, and N. Chawla, Microstructure and Mechanical Properties of Co-Sputtered Al-SiC Composites, Mater. Des., 2019, 168, p 107670.CrossRef S. Singh, S. Chang, C.S. Kaira, J.K. Baldwin, N. Mara, and N. Chawla, Microstructure and Mechanical Properties of Co-Sputtered Al-SiC Composites, Mater. Des., 2019, 168, p 107670.CrossRef
4.
Zurück zum Zitat S. Simões, F. Viana, A.S. Ramos, M.T. Vieira, and M.F. Vieira, Anisothermal Solid-State Reactions of Ni/Al Nanometric Multilayers, Intermetallics, 2011, 19(3), p 350–356.CrossRef S. Simões, F. Viana, A.S. Ramos, M.T. Vieira, and M.F. Vieira, Anisothermal Solid-State Reactions of Ni/Al Nanometric Multilayers, Intermetallics, 2011, 19(3), p 350–356.CrossRef
5.
Zurück zum Zitat J. Noro, A.S. Ramos, and M.T. Vieira, Intermetallic Phase Formation in Nanometric Ni/Al Multilayer Thin Films, Intermetallics, 2008, 16(9), p 1061–1065.CrossRef J. Noro, A.S. Ramos, and M.T. Vieira, Intermetallic Phase Formation in Nanometric Ni/Al Multilayer Thin Films, Intermetallics, 2008, 16(9), p 1061–1065.CrossRef
7.
Zurück zum Zitat D.B. Miracle, Overview No 104 the Physical and Mechanical Properties of NiAl, Acta Metall. Mater., 1993, 41(3), p 649–684.CrossRef D.B. Miracle, Overview No 104 the Physical and Mechanical Properties of NiAl, Acta Metall. Mater., 1993, 41(3), p 649–684.CrossRef
8.
Zurück zum Zitat V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Thermal Stability of AlCoCrCuFeNi High Entropy Alloy Thin Films Studied by In-Situ XRD Analysis, Surf. Coat. Technol., 2010, 204(12–13), p 1989–1992.CrossRef V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Thermal Stability of AlCoCrCuFeNi High Entropy Alloy Thin Films Studied by In-Situ XRD Analysis, Surf. Coat. Technol., 2010, 204(12–13), p 1989–1992.CrossRef
9.
Zurück zum Zitat V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Complex Structure/Composition Relationship in Thin Films of AlCoCrCuFeNi High Entropy Alloy, Mater. Chem. Phys., 2009, 117(1), p 142–147.CrossRef V. Dolique, A.L. Thomann, P. Brault, Y. Tessier, and P. Gillon, Complex Structure/Composition Relationship in Thin Films of AlCoCrCuFeNi High Entropy Alloy, Mater. Chem. Phys., 2009, 117(1), p 142–147.CrossRef
10.
Zurück zum Zitat L. Xie, P. Brault, A.L. Thomann, X. Yang, Y. Zhang, and G. Shang, Molecular Dynamics Simulation of Al–Co–Cr–Cu–Fe–Ni High Entropy Alloy Thin Film Growth, Intermetallics, 2016, 68, p 78–86.CrossRef L. Xie, P. Brault, A.L. Thomann, X. Yang, Y. Zhang, and G. Shang, Molecular Dynamics Simulation of Al–Co–Cr–Cu–Fe–Ni High Entropy Alloy Thin Film Growth, Intermetallics, 2016, 68, p 78–86.CrossRef
11.
Zurück zum Zitat X. Sun, X. Cheng, H. Cai, S. Ma, Z. Xu, and T. Ali, Microstructure, Mechanical and Physical Properties of FeCoNiAlMnW High-Entropy Films Deposited by Magnetron Sputtering, Appl. Surf. Sci., 2020, 507, p 145131.CrossRef X. Sun, X. Cheng, H. Cai, S. Ma, Z. Xu, and T. Ali, Microstructure, Mechanical and Physical Properties of FeCoNiAlMnW High-Entropy Films Deposited by Magnetron Sputtering, Appl. Surf. Sci., 2020, 507, p 145131.CrossRef
12.
Zurück zum Zitat X. Feng, K. Zhang, Y. Zheng, H. Zhou, and Z. Wan, Effect of Zr Content on Structure and Mechanical Properties of (CrTaNbMoV)Zrx High-Entropy Alloy Films, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms., 2019, 457, p 56–62.CrossRefADS X. Feng, K. Zhang, Y. Zheng, H. Zhou, and Z. Wan, Effect of Zr Content on Structure and Mechanical Properties of (CrTaNbMoV)Zrx High-Entropy Alloy Films, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms., 2019, 457, p 56–62.CrossRefADS
13.
Zurück zum Zitat B.R. Braeckman, F. Boydens, H. Hidalgo, P. Dutheil, M. Jullien, A.L. Thomann, and D. Depla, High Entropy Alloy Thin Films Deposited by Magnetron Sputtering of Powder Targets, Thin Solid Films, 2015, 580, p 71–76.CrossRefADS B.R. Braeckman, F. Boydens, H. Hidalgo, P. Dutheil, M. Jullien, A.L. Thomann, and D. Depla, High Entropy Alloy Thin Films Deposited by Magnetron Sputtering of Powder Targets, Thin Solid Films, 2015, 580, p 71–76.CrossRefADS
14.
Zurück zum Zitat Z.B. Bataeva, A.A. Ruktuev, I.V. Ivanov, A.B. Yurgin, and I.A. Bataev, Review of Alloys Developed Using the Entropy Approach, Obrab. Met. Work. Mater. Sci., 2021, 23(2), p 116–146. Z.B. Bataeva, A.A. Ruktuev, I.V. Ivanov, A.B. Yurgin, and I.A. Bataev, Review of Alloys Developed Using the Entropy Approach, Obrab. Met. Work. Mater. Sci., 2021, 23(2), p 116–146.
15.
Zurück zum Zitat X. Feng, K. Zhang, Y. Zheng, H. Zhou, and Z. Wan, Chemical State, Structure and Mechanical Properties of Multi-Element (CrTaNbMoV)Nx Films by Reactive Magnetron Sputtering, Mater. Chem. Phys., 2020, 239, p 121991.CrossRef X. Feng, K. Zhang, Y. Zheng, H. Zhou, and Z. Wan, Chemical State, Structure and Mechanical Properties of Multi-Element (CrTaNbMoV)Nx Films by Reactive Magnetron Sputtering, Mater. Chem. Phys., 2020, 239, p 121991.CrossRef
16.
Zurück zum Zitat Y. Yang, M. Keunecke, C. Stein, L.J. Gao, J. Gong, X. Jiang, K. Bewilogua, and C. Sun, Formation of Ti2AlN Phase after Post-Heat Treatment of Ti–Al–N Films Deposited by Pulsed Magnetron Sputtering, Surf. Coat. Technol., 2012, 206(10), p 2661–2666.CrossRef Y. Yang, M. Keunecke, C. Stein, L.J. Gao, J. Gong, X. Jiang, K. Bewilogua, and C. Sun, Formation of Ti2AlN Phase after Post-Heat Treatment of Ti–Al–N Films Deposited by Pulsed Magnetron Sputtering, Surf. Coat. Technol., 2012, 206(10), p 2661–2666.CrossRef
17.
Zurück zum Zitat Y. Xu, G. Li, G. Li, F. Gao, and Y. Xia, Effect of Bias Voltage on the Growth of Super-Hard (AlCrTiVZr)N High-Entropy Alloy Nitride Films Synthesized by High Power Impulse Magnetron Sputtering, Appl. Surf. Sci., 2021, 564, p 150417.CrossRef Y. Xu, G. Li, G. Li, F. Gao, and Y. Xia, Effect of Bias Voltage on the Growth of Super-Hard (AlCrTiVZr)N High-Entropy Alloy Nitride Films Synthesized by High Power Impulse Magnetron Sputtering, Appl. Surf. Sci., 2021, 564, p 150417.CrossRef
19.
Zurück zum Zitat C. Espinoza Torres, A.M. Condó, N. Haberkorn, E. Zelaya, D. Schryvers, J. Guimpel, and F.C. Lovey, Structures in Textured Cu–Al–Ni Shape Memory Thin Films Grown by Sputtering, Mater. Charact., 2014, 96, p 256–262.CrossRef C. Espinoza Torres, A.M. Condó, N. Haberkorn, E. Zelaya, D. Schryvers, J. Guimpel, and F.C. Lovey, Structures in Textured Cu–Al–Ni Shape Memory Thin Films Grown by Sputtering, Mater. Charact., 2014, 96, p 256–262.CrossRef
20.
Zurück zum Zitat P.Y. Li, H.M. Lu, S.C. Tang, and X.K. Meng, An In-Situ TEM Investigation on Microstructure Evolution of Ni-25 at.% Al Thin Films, J. Alloys Compd., 2009, 478(1–2), p 240–245.CrossRef P.Y. Li, H.M. Lu, S.C. Tang, and X.K. Meng, An In-Situ TEM Investigation on Microstructure Evolution of Ni-25 at.% Al Thin Films, J. Alloys Compd., 2009, 478(1–2), p 240–245.CrossRef
21.
Zurück zum Zitat Z. Xu, P. Zhang, W. Wang, Q. Shi, H. Yang, D. Wang, Y. Hong, L. Wang, C. Guo, S. Lin, and M. Dai, AlCoCrNiMo High-Entropy Alloy as Diffusion Barrier between NiAlHf Coating and Ni-Based Single Crystal Superalloy, Surf. Coat. Technol., 2021, 414, p 127101.CrossRef Z. Xu, P. Zhang, W. Wang, Q. Shi, H. Yang, D. Wang, Y. Hong, L. Wang, C. Guo, S. Lin, and M. Dai, AlCoCrNiMo High-Entropy Alloy as Diffusion Barrier between NiAlHf Coating and Ni-Based Single Crystal Superalloy, Surf. Coat. Technol., 2021, 414, p 127101.CrossRef
22.
Zurück zum Zitat C. Zhang, K. Feng, Z. Li, F. Lu, J. Huang, Y. Wu, and P.K. Chu, Enhancement of Hardness and Thermal Stability of W-Doped Ni3Al Thin Films at Elevated Temperature, Mater. Des., 2016, 111, p 575–583.CrossRef C. Zhang, K. Feng, Z. Li, F. Lu, J. Huang, Y. Wu, and P.K. Chu, Enhancement of Hardness and Thermal Stability of W-Doped Ni3Al Thin Films at Elevated Temperature, Mater. Des., 2016, 111, p 575–583.CrossRef
23.
Zurück zum Zitat D. Zhong, J.J. Moore, E. Sutter, and B. Mishra, Microstructure, Composition and Oxidation Resistance of Nanostructured NiAl and Ni–Al–N Coatings Produced by Magnetron Sputtering, Surf. Coat. Technol., 2005, 200(5–6), p 1236–1241.CrossRef D. Zhong, J.J. Moore, E. Sutter, and B. Mishra, Microstructure, Composition and Oxidation Resistance of Nanostructured NiAl and Ni–Al–N Coatings Produced by Magnetron Sputtering, Surf. Coat. Technol., 2005, 200(5–6), p 1236–1241.CrossRef
25.
Zurück zum Zitat C.C. Wu and F.B. Wu, Microstructure and Mechanical Properties of Magnetron Co-Sputtered Ni-Al Coatings, Surf. Coat. Technol., 2009, 204(6–7), p 854–859.CrossRef C.C. Wu and F.B. Wu, Microstructure and Mechanical Properties of Magnetron Co-Sputtered Ni-Al Coatings, Surf. Coat. Technol., 2009, 204(6–7), p 854–859.CrossRef
26.
Zurück zum Zitat Y. Ding, Y. Zhang, D.O. Northwood, and A.T. Alpas, PVD NiAl Intermetallic Coatings: Microstructure and Mechanical Properties, Surf. Coat. Technol., 1997, 94–95, p 483–489.CrossRef Y. Ding, Y. Zhang, D.O. Northwood, and A.T. Alpas, PVD NiAl Intermetallic Coatings: Microstructure and Mechanical Properties, Surf. Coat. Technol., 1997, 94–95, p 483–489.CrossRef
28.
Zurück zum Zitat B. Rainer and W. Eckstein Eds., Sputtering by Particle Bombardment (Berlin), Springer-Verlag, Berlin Heidelberg, 2007 B. Rainer and W. Eckstein Eds., Sputtering by Particle Bombardment (Berlin), Springer-Verlag, Berlin Heidelberg, 2007
29.
Zurück zum Zitat V. Kudinov and G. Bobrov (1992) “Nanesenie Pokrytij Napyleniem. Teoriya, Tekhnologiya, Oborudovanie, in Russian (Application of Coatings by Spraying. Theory, Technology, Equipment),” B.S. Mitin, Ed. (Moscow), Metallurgy V. Kudinov and G. Bobrov (1992) “Nanesenie Pokrytij Napyleniem. Teoriya, Tekhnologiya, Oborudovanie, in Russian (Application of Coatings by Spraying. Theory, Technology, Equipment),” B.S. Mitin, Ed. (Moscow), Metallurgy
31.
Zurück zum Zitat P. Ren, S. Zhu, and F. Wang, Microstructure and Oxidation Behavior of a Ni+CrAlYSiHfN/AlN Multilayer Coating Fabricated by Reactive Magnetron Sputtering, Corros. Sci., 2016, 104, p 197–206.CrossRef P. Ren, S. Zhu, and F. Wang, Microstructure and Oxidation Behavior of a Ni+CrAlYSiHfN/AlN Multilayer Coating Fabricated by Reactive Magnetron Sputtering, Corros. Sci., 2016, 104, p 197–206.CrossRef
32.
Zurück zum Zitat C. Yang, Y. Hu, R. Shen, Y. Ye, S. Wang, and T. Hua, Fabrication and Performance Characterization of Al/Ni Multilayer Energetic Films, Appl. Phys. A, 2014, 114(2), p 459–464.CrossRefADS C. Yang, Y. Hu, R. Shen, Y. Ye, S. Wang, and T. Hua, Fabrication and Performance Characterization of Al/Ni Multilayer Energetic Films, Appl. Phys. A, 2014, 114(2), p 459–464.CrossRefADS
33.
Zurück zum Zitat J.T. Chang, A. Davison, J.L. He, and A. Matthews, Deposition of Ni–Al–Y Alloy Films Using a Hybrid Arc Ion Plating and Magnetron Sputtering System, Surf. Coat. Technol., 2006, 200(20–21), p 5877–5883.CrossRef J.T. Chang, A. Davison, J.L. He, and A. Matthews, Deposition of Ni–Al–Y Alloy Films Using a Hybrid Arc Ion Plating and Magnetron Sputtering System, Surf. Coat. Technol., 2006, 200(20–21), p 5877–5883.CrossRef
34.
Zurück zum Zitat S. Hou, S. Zhu, T. Zhang, and F. Wang, A Magnetron Sputtered Microcrystalline β-NiAl Coating for SC Superalloys. Part I. Characterization and Comparison of Isothermal Oxidation Behavior at 1100 °C with a NiCrAlY Coating, Appl. Surf. Sci. North-Holland, 2015, 324, p 1–12.CrossRefADS S. Hou, S. Zhu, T. Zhang, and F. Wang, A Magnetron Sputtered Microcrystalline β-NiAl Coating for SC Superalloys. Part I. Characterization and Comparison of Isothermal Oxidation Behavior at 1100 °C with a NiCrAlY Coating, Appl. Surf. Sci. North-Holland, 2015, 324, p 1–12.CrossRefADS
35.
Zurück zum Zitat B. Ning, M. Shamsuzzoha, and M.L. Weaver, Influence of Processing Variables on the Properties of Dc Magnetron Sputtered NiAl Coatings Containing Hf Additions, J. Vac. Sci. Technol. A Vacuum. Surfaces Film, 2005, 23(1), p 44–54.CrossRefADS B. Ning, M. Shamsuzzoha, and M.L. Weaver, Influence of Processing Variables on the Properties of Dc Magnetron Sputtered NiAl Coatings Containing Hf Additions, J. Vac. Sci. Technol. A Vacuum. Surfaces Film, 2005, 23(1), p 44–54.CrossRefADS
36.
Zurück zum Zitat Y.A.F.A.S. Dzhumaliev, and Yu.V. Nikulin, Effect of the Polarity of the Bias Voltage of the Substrate on the Texture Microstructure, and Magnetic Properties of Ni Films Obtained by Magnetron Sputtering, Solid state Phys., 2016, 58(6), p 1206–1215.CrossRef Y.A.F.A.S. Dzhumaliev, and Yu.V. Nikulin, Effect of the Polarity of the Bias Voltage of the Substrate on the Texture Microstructure, and Magnetic Properties of Ni Films Obtained by Magnetron Sputtering, Solid state Phys., 2016, 58(6), p 1206–1215.CrossRef
37.
Zurück zum Zitat X.-H. Xu, H.-S. Wu, C.-J. Zhang, and Z.-H. Jin, Morphological Properties of AlN Piezoelectric Thin Films Deposited by DC Reactive Magnetron Sputtering, Thin Solid Films, 2001, 388(1–2), p 62–67.CrossRefADS X.-H. Xu, H.-S. Wu, C.-J. Zhang, and Z.-H. Jin, Morphological Properties of AlN Piezoelectric Thin Films Deposited by DC Reactive Magnetron Sputtering, Thin Solid Films, 2001, 388(1–2), p 62–67.CrossRefADS
38.
Zurück zum Zitat J.A. Thornton, The Micristructure of Soutter-Deposited Coatings, J. Vac. Sci. Technol. A, 1986, 4(6), p 3059–3065.CrossRef J.A. Thornton, The Micristructure of Soutter-Deposited Coatings, J. Vac. Sci. Technol. A, 1986, 4(6), p 3059–3065.CrossRef
39.
Zurück zum Zitat R.A.R.R. Messier and A.P. Giri, Revised Structure Zone Model for Thib Film Physical Structure, Vac. Sci. Technol. A, 1984, 2(2), p 500–503.CrossRef R.A.R.R. Messier and A.P. Giri, Revised Structure Zone Model for Thib Film Physical Structure, Vac. Sci. Technol. A, 1984, 2(2), p 500–503.CrossRef
40.
Zurück zum Zitat D.-M. Mi, S.-L. Zhu, Y.-Q. Liang, Z.-Y. Li, Z.-D. Cui, X.-J. Yang, and A. Inoue, Zr55Al10Ni5Cu30 Amorphous Alloy Film Prepared by Magnetron Sputtering Method, Rare Met., 2021, 40(8), p 2237–2243.CrossRef D.-M. Mi, S.-L. Zhu, Y.-Q. Liang, Z.-Y. Li, Z.-D. Cui, X.-J. Yang, and A. Inoue, Zr55Al10Ni5Cu30 Amorphous Alloy Film Prepared by Magnetron Sputtering Method, Rare Met., 2021, 40(8), p 2237–2243.CrossRef
41.
Zurück zum Zitat W.J. Lee, Y.K. Fang, J.-J. Ho, W.T. Hsieh, S.F. Ting, D. Huang, and F.C. Ho, Effects of Surface Porosity on Tungsten Trioxide (WO3) Films’ Electrochromic Performance, J. Electron. Mater., 2000, 29(2), p 183–187.CrossRefADS W.J. Lee, Y.K. Fang, J.-J. Ho, W.T. Hsieh, S.F. Ting, D. Huang, and F.C. Ho, Effects of Surface Porosity on Tungsten Trioxide (WO3) Films’ Electrochromic Performance, J. Electron. Mater., 2000, 29(2), p 183–187.CrossRefADS
42.
Zurück zum Zitat L. Zhang, J. Huang, J. Yang, K. Tang, B. Ren, S. Zhang, and L. Wang, The Effects of Substrate Temperature on Properties of B and Ga Co-Doped ZnO Thin Films Grown by RF Magnetron Sputtering, Surf. Coatings Technol., 2016, 307, p 1129–1133.CrossRef L. Zhang, J. Huang, J. Yang, K. Tang, B. Ren, S. Zhang, and L. Wang, The Effects of Substrate Temperature on Properties of B and Ga Co-Doped ZnO Thin Films Grown by RF Magnetron Sputtering, Surf. Coatings Technol., 2016, 307, p 1129–1133.CrossRef
43.
Zurück zum Zitat J. Lee, K.N. Hui, K.S. Hui, Y.R. Cho, and H.-H. Chun, Low Resistivity of Ni-Al Co-Doped ZnO Thin Films Deposited by DC Magnetron Sputtering at Low Sputtering Power, Appl. Surf. Sci., 2014, 293, p 55–61.CrossRefADS J. Lee, K.N. Hui, K.S. Hui, Y.R. Cho, and H.-H. Chun, Low Resistivity of Ni-Al Co-Doped ZnO Thin Films Deposited by DC Magnetron Sputtering at Low Sputtering Power, Appl. Surf. Sci., 2014, 293, p 55–61.CrossRefADS
44.
Zurück zum Zitat I. Bataev, N.T. Panagiotopoulos, F. Charlot, A.M.J. Junior, M. Pons, G.A. Evangelakis, and A.R. Yavari, Structure and Deformation Behavior of Zr–Cu Thin Films Deposited on Kapton Substrates, Surf. Coatings Technol., 2014, 239, p 171–176.CrossRef I. Bataev, N.T. Panagiotopoulos, F. Charlot, A.M.J. Junior, M. Pons, G.A. Evangelakis, and A.R. Yavari, Structure and Deformation Behavior of Zr–Cu Thin Films Deposited on Kapton Substrates, Surf. Coatings Technol., 2014, 239, p 171–176.CrossRef
45.
Zurück zum Zitat S.V. Kositsyn and I.I. Kositsyna, Fazovye i Strukturnye Prevrashcheniya v Splavah Na Osnove Monoalyuminida Nikelya [Phase and Structural Transformations in Alloys Based on Nickel Monoaluminide, in Russian], Usp. Fiz. Met., 2008, 9, p 195–258.CrossRef S.V. Kositsyn and I.I. Kositsyna, Fazovye i Strukturnye Prevrashcheniya v Splavah Na Osnove Monoalyuminida Nikelya [Phase and Structural Transformations in Alloys Based on Nickel Monoaluminide, in Russian], Usp. Fiz. Met., 2008, 9, p 195–258.CrossRef
46.
50.
Zurück zum Zitat R.J. Wasilewski, Elastic Constants and Young’s Modulus of NiAl, Trans. Met. Soc. AIME, 1966, 236, p 455–457. R.J. Wasilewski, Elastic Constants and Young’s Modulus of NiAl, Trans. Met. Soc. AIME, 1966, 236, p 455–457.
51.
Zurück zum Zitat W.S. Walston and R. Darolia, Effect of Alloying on Physical Properties of NiAl, MRS Online Proc. Libr., 1992, 288, p 237.CrossRef W.S. Walston and R. Darolia, Effect of Alloying on Physical Properties of NiAl, MRS Online Proc. Libr., 1992, 288, p 237.CrossRef
Metadaten
Titel
NiAl Coatings Produced by Magnetron Sputtering from Mosaic Targets
verfasst von
T. S. Ogneva
A. A. Ruktuev
N. Yu. Cherkasova
Yu. N. Malyutina
M. N. Khomyakov
V. G. Burov
I. A. Bataev
Publikationsdatum
21.03.2023
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2024
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-023-08096-w

Weitere Artikel der Ausgabe 4/2024

Journal of Materials Engineering and Performance 4/2024 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.