Skip to main content
Erschienen in: Archive of Applied Mechanics 7/2019

03.01.2019 | Original

Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling

verfasst von: Michele De Angelo, Emilio Barchiesi, Ivan Giorgio, B. Emek Abali

Erschienen in: Archive of Applied Mechanics | Ausgabe 7/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mechanical properties are investigated for a class of microstructured materials with promising applications. Specifically, we consider a composite material with orthogonal, mutually interconnected fibers building a pantographic substructure. In order to predict the behavior of such a system in three-dimensional continuum, a reduced-order model is introduced by means of a bi-dimensional elastic surface accurately describing large deformations. The properties of this reduced-order model are characterized by an elastic energy density that involves second space derivatives of the displacement for capturing the resistance of twisted and bent fibers in plane as well as out of plane. For determining the coefficients in the elastic energy of the reduced-order model, we utilize a numerical inverse analysis and make use of ad hoc computational experiments performed by a direct numerical simulation on the microscale with detailed modeling of the pantographic substructure. This reduced-order model represents a homogenized material on macro-scale with its substructure on microscale. The homogenized model is capable of describing materials response at a significantly less computational cost than the direct numerical simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
We use the wedge product, \(\wedge \), defined as, \(({\varvec{u}}\wedge {\varvec{v}})_{ij} = u_i v_j - v_i u_j\). Therefore, we have \({\mathbf {D}}_i\wedge {\mathbf {D}}_j = {\mathbf {D}}_i\otimes {\mathbf {D}}_j - {\mathbf {D}}_j\otimes {\mathbf {D}}_i\), where \(\otimes \) is the usual tensor (dyadic) product.
 
Literatur
1.
Zurück zum Zitat Abali, B.E.: Computational Reality: Solving Nonlinear and Coupled Problems in Continuum Mechanics. Advanced Structured Materials, vol. 55. Springer, Berlin (2016) Abali, B.E.: Computational Reality: Solving Nonlinear and Coupled Problems in Continuum Mechanics. Advanced Structured Materials, vol. 55. Springer, Berlin (2016)
2.
Zurück zum Zitat Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)CrossRef Abali, B.E., Müller, W.H., dell’Isola, F.: Theory and computation of higher gradient elasticity theories based on action principles. Arch. Appl. Mech. 87(9), 1495–1510 (2017)CrossRef
3.
Zurück zum Zitat Abali, B.E., Wu, C.-C., Müller, W.H.: An energy-based method to determine material constants in nonlinear rheology with applications. Contin. Mech. Thermodyn. 28(5), 1221–1246 (2016)MathSciNetMATHCrossRef Abali, B.E., Wu, C.-C., Müller, W.H.: An energy-based method to determine material constants in nonlinear rheology with applications. Contin. Mech. Thermodyn. 28(5), 1221–1246 (2016)MathSciNetMATHCrossRef
4.
Zurück zum Zitat Alibert, J., Corte, A.Della: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)MathSciNetMATHCrossRef Alibert, J., Corte, A.Della: Second-gradient continua as homogenized limit of pantographic microstructured plates: a rigorous proof. Z. Angew. Math. Phys. 66(5), 2855–2870 (2015)MathSciNetMATHCrossRef
5.
Zurück zum Zitat Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetMATHCrossRef Alibert, J.-J., Seppecher, P., dell’Isola, F.: Truss modular beams with deformation energy depending on higher displacement gradients. Math. Mech. Solids 8(1), 51–73 (2003)MathSciNetMATHCrossRef
6.
Zurück zum Zitat Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-D foam-like representative volume elements. Mech. Mater. 98, 44–58 (2016)CrossRef Alsayednoor, J., Harrison, P.: Evaluating the performance of microstructure generation algorithms for 2-D foam-like representative volume elements. Mech. Mater. 98, 44–58 (2016)CrossRef
7.
Zurück zum Zitat Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-D periodic representative volume element for random foam microstructures. Mech. Mater. 66, 7–20 (2013)CrossRef Alsayednoor, J., Harrison, P., Guo, Z.: Large strain compressive response of 2-D periodic representative volume element for random foam microstructures. Mech. Mater. 66, 7–20 (2013)CrossRef
8.
Zurück zum Zitat Altenbach, H., Eremeyev, V.A.: Surface viscoelasticity and effective properties of materials and structures. In: Altenbach, H., Kruch, S. (eds.) Advanced Materials Modelling for Structures, vol. 19, pp. 9–16. Springer, Berlin (2013)CrossRef Altenbach, H., Eremeyev, V.A.: Surface viscoelasticity and effective properties of materials and structures. In: Altenbach, H., Kruch, S. (eds.) Advanced Materials Modelling for Structures, vol. 19, pp. 9–16. Springer, Berlin (2013)CrossRef
9.
Zurück zum Zitat Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)MathSciNetMATHCrossRef Andreaus, U., dell’Isola, F., Giorgio, I., Placidi, L., Lekszycki, T., Rizzi, N.L.: Numerical simulations of classical problems in two-dimensional (non) linear second gradient elasticity. Int. J. Eng. Sci. 108, 34–50 (2016)MathSciNetMATHCrossRef
11.
Zurück zum Zitat Assidi, M., Boubaker, B.B., Ganghoffer, J.-F.: Equivalent properties of monolayer fabric from mesoscopic modelling strategies. Int. J. Solids Struct. 48(20), 2920–2930 (2011)CrossRef Assidi, M., Boubaker, B.B., Ganghoffer, J.-F.: Equivalent properties of monolayer fabric from mesoscopic modelling strategies. Int. J. Solids Struct. 48(20), 2920–2930 (2011)CrossRef
13.
Zurück zum Zitat Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Sumbatyan, M. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, vol. 59, pp. 239–258. Springer, Singapore (2017)CrossRef Barchiesi, E., Placidi, L.: A review on models for the 3D statics and 2D dynamics of pantographic fabrics. In: Sumbatyan, M. (ed.) Wave Dynamics and Composite Mechanics for Microstructured Materials and Metamaterials, vol. 59, pp. 239–258. Springer, Singapore (2017)CrossRef
15.
Zurück zum Zitat Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N.L., Turco, E.: Frequency shifts induced by large deformations in planar pantographic continua. Nanomech. Sci. Technol. Int. J. 6(2), 161–178 (2015)CrossRef Battista, A., Cardillo, C., Del Vescovo, D., Rizzi, N.L., Turco, E.: Frequency shifts induced by large deformations in planar pantographic continua. Nanomech. Sci. Technol. Int. J. 6(2), 161–178 (2015)CrossRef
16.
Zurück zum Zitat Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)MathSciNetMATHCrossRef Boutin, C., dell’Isola, F., Giorgio, I., Placidi, L.: Linear pantographic sheets: asymptotic micro-macro models identification. Math. Mech. Complex Syst. 5(2), 127–162 (2017)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Carinci, G., De Masi, A., Giardinà, C., Presutti, Errico: Hydrodynamic limit in a particle system with topological interactions. Arab. J. Math. 3(4), 381–471 (2014)MathSciNetMATHCrossRef Carinci, G., De Masi, A., Giardinà, C., Presutti, Errico: Hydrodynamic limit in a particle system with topological interactions. Arab. J. Math. 3(4), 381–471 (2014)MathSciNetMATHCrossRef
18.
Zurück zum Zitat Challamel, N., Kocsis, A., Wang, C.M.: Discrete and non-local elastica. Int. J. Non-Linear Mech. 77, 128–140 (2015)CrossRef Challamel, N., Kocsis, A., Wang, C.M.: Discrete and non-local elastica. Int. J. Non-Linear Mech. 77, 128–140 (2015)CrossRef
19.
Zurück zum Zitat Chaouachi, F., Rahali, Y., Ganghoffer, J.-F.: A micromechanical model of woven structures accounting for yarn-yarn contact based on Hertz theory and energy minimization. Compos. Part B: Eng. 66, 368–380 (2014)CrossRef Chaouachi, F., Rahali, Y., Ganghoffer, J.-F.: A micromechanical model of woven structures accounting for yarn-yarn contact based on Hertz theory and energy minimization. Compos. Part B: Eng. 66, 368–380 (2014)CrossRef
20.
Zurück zum Zitat Cuomo, M., dell’Isola, F., Greco, L.: Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres. Z. Angew. Math. Phys. 67(3), 1–23 (2016)MathSciNetMATHCrossRef Cuomo, M., dell’Isola, F., Greco, L.: Simplified analysis of a generalized bias test for fabrics with two families of inextensible fibres. Z. Angew. Math. Phys. 67(3), 1–23 (2016)MathSciNetMATHCrossRef
21.
Zurück zum Zitat De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles. J. Stat. Phys. 133(2), 281–345 (2008)MathSciNetMATHCrossRef De Masi, A., Merola, I., Presutti, E., Vignaud, Y.: Potts models in the continuum. Uniqueness and exponential decay in the restricted ensembles. J. Stat. Phys. 133(2), 281–345 (2008)MathSciNetMATHCrossRef
22.
Zurück zum Zitat Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)MathSciNetMATHCrossRef Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)MathSciNetMATHCrossRef
23.
Zurück zum Zitat dell’Isola, F., Cuomo, M., Greco, L., Corte, A.Della: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2016)MathSciNetMATHCrossRef dell’Isola, F., Cuomo, M., Greco, L., Corte, A.Della: Bias extension test for pantographic sheets: numerical simulations based on second gradient shear energies. J. Eng. Math. 103(1), 127–157 (2016)MathSciNetMATHCrossRef
24.
Zurück zum Zitat dell’Isola, F., Corte, A.Della, Giorgio, I., Scerrato, D.: Pantographic 2D sheets: discussion of some numericalinvestigations and potential applications. Int. J. Non-Linear Mech. 80, 200–208 (2016)CrossRef dell’Isola, F., Corte, A.Della, Giorgio, I., Scerrato, D.: Pantographic 2D sheets: discussion of some numericalinvestigations and potential applications. Int. J. Non-Linear Mech. 80, 200–208 (2016)CrossRef
25.
Zurück zum Zitat dell’Isola, F., Corte, A.Della, Greco, L., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)CrossRef dell’Isola, F., Corte, A.Della, Greco, L., Luongo, A.: Plane bias extension test for a continuum with two inextensible families of fibers: a variational treatment with lagrange multipliers and a perturbation solution. Int. J. Solids Struct. 81, 1–12 (2016)CrossRef
26.
Zurück zum Zitat dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 23 (2016)CrossRef dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.: Large deformations of planar extensible beams and pantographic lattices: heuristic homogenization, experimental and numerical examples of equilibrium. Proc. R. Soc. A 472(2185), 23 (2016)CrossRef
27.
Zurück zum Zitat dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. 66, 3473–3498 (2015)MathSciNetMATHCrossRef dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric metamaterial being highly macroscopically tough under directional extension: first experimental evidence. Z. Angew. Math. Phys. 66, 3473–3498 (2015)MathSciNetMATHCrossRef
29.
Zurück zum Zitat dell’Isola, F., Steigmann, D.J.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 18, 113–125 (2015)MathSciNetMATHCrossRef dell’Isola, F., Steigmann, D.J.: A two-dimensional gradient-elasticity theory for woven fabrics. J. Elast. 18, 113–125 (2015)MathSciNetMATHCrossRef
30.
Zurück zum Zitat Di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterialsbased on local resonances: Homogenization, optimization andapplications. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 1, vol. 89, pp. 247–274. Springer, Cham (2018)CrossRef Di Cosmo, F., Laudato, M., Spagnuolo, M.: Acoustic metamaterialsbased on local resonances: Homogenization, optimization andapplications. In: Altenbach, H., Pouget, J., Rousseau, M., Collet, B., Michelitsch, T. (eds.) Generalized Models and Non-classical Approaches in Complex Materials 1, vol. 89, pp. 247–274. Springer, Cham (2018)CrossRef
31.
Zurück zum Zitat Dos Reis, F., Ganghoffer, J.-F.: Discrete homogenization of architectured materials: implementation of the method in a simulation tool for the systematic prediction of their effective elastic properties. Tech. Mech. 30(1–3), 85–109 (2010) Dos Reis, F., Ganghoffer, J.-F.: Discrete homogenization of architectured materials: implementation of the method in a simulation tool for the systematic prediction of their effective elastic properties. Tech. Mech. 30(1–3), 85–109 (2010)
32.
Zurück zum Zitat Dos Reis, F., Ganghoffer, J.-F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354–363 (2012)CrossRef Dos Reis, F., Ganghoffer, J.-F.: Construction of micropolar continua from the asymptotic homogenization of beam lattices. Comput. Struct. 112, 354–363 (2012)CrossRef
33.
Zurück zum Zitat Dos Reis, F., Ganghoffer, J.-F.: Homogenized elastoplastic response of repetitive 2D lattice truss materials. Comput. Mater. Sci. 84, 145–155 (2014)CrossRef Dos Reis, F., Ganghoffer, J.-F.: Homogenized elastoplastic response of repetitive 2D lattice truss materials. Comput. Mater. Sci. 84, 145–155 (2014)CrossRef
34.
Zurück zum Zitat El Nady, K., Dos Reis, F., Ganghoffer, J.-F.: Computation of the homogenized nonlinear elastic response of 2D and 3D auxetic structures based on micropolar continuum models. Compos. Struct. 170, 271–290 (2017)CrossRef El Nady, K., Dos Reis, F., Ganghoffer, J.-F.: Computation of the homogenized nonlinear elastic response of 2D and 3D auxetic structures based on micropolar continuum models. Compos. Struct. 170, 271–290 (2017)CrossRef
35.
Zurück zum Zitat Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132(2), 175–196 (2018)MathSciNetMATHCrossRef Eremeyev, V.A., dell’Isola, F., Boutin, C., Steigmann, D.: Linear pantographic sheets: existence and uniqueness of weak solutions. J. Elast. 132(2), 175–196 (2018)MathSciNetMATHCrossRef
36.
Zurück zum Zitat Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)MathSciNetMATHCrossRef Eremeyev, V.A., Pietraszkiewicz, W.: Material symmetry group and constitutive equations of micropolar anisotropic elastic solids. Math. Mech. Solids 21(2), 210–221 (2016)MathSciNetMATHCrossRef
38.
Zurück zum Zitat Ganzosch, G., dell’Isola, F., Turco, e, Lekszycki, T., Müller, W.H.: Shearing tests applied to pantographic structures. Acta Polytech. CTU Proc. 7, 1–6 (2016)CrossRef Ganzosch, G., dell’Isola, F., Turco, e, Lekszycki, T., Müller, W.H.: Shearing tests applied to pantographic structures. Acta Polytech. CTU Proc. 7, 1–6 (2016)CrossRef
39.
Zurück zum Zitat Giorgio, I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Phys. 67(4), 1–17 (2016)MathSciNetMATHCrossRef Giorgio, I.: Numerical identification procedure between a micro-Cauchy model and a macro-second gradient model for planar pantographic structures. Z. Angew. Math. Phys. 67(4), 1–17 (2016)MathSciNetMATHCrossRef
40.
Zurück zum Zitat Giorgio, I., Corte, A.Della, dell’Isola, F., Steigmann, D.: Buckling modes in pantographic lattices. C. R. Mec. 344(7), 487–501 (2016)CrossRef Giorgio, I., Corte, A.Della, dell’Isola, F., Steigmann, D.: Buckling modes in pantographic lattices. C. R. Mec. 344(7), 487–501 (2016)CrossRef
41.
Zurück zum Zitat Giorgio, I., Harrison, P., dell’Isola, F., Alsayednoor, J., Turco, E.: Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. Proc. R. Soc. A 474(2216), 20 (2018)CrossRef Giorgio, I., Harrison, P., dell’Isola, F., Alsayednoor, J., Turco, E.: Wrinkling in engineering fabrics: a comparison between two different comprehensive modelling approaches. Proc. R. Soc. A 474(2216), 20 (2018)CrossRef
43.
Zurück zum Zitat Goda, I., Assidi, M., Ganghoffer, J.-F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61(12), 2537–2565 (2013)CrossRef Goda, I., Assidi, M., Ganghoffer, J.-F.: Equivalent mechanical properties of textile monolayers from discrete asymptotic homogenization. J. Mech. Phys. Solids 61(12), 2537–2565 (2013)CrossRef
44.
45.
Zurück zum Zitat Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local \({\bar{B}}\) formulation for isogeometric Kirchhoff-Love shells. Comput. Methods Appl. Mech. Eng. 332, 462–487 (2018)MathSciNetCrossRef Greco, L., Cuomo, M., Contrafatto, L.: A reconstructed local \({\bar{B}}\) formulation for isogeometric Kirchhoff-Love shells. Comput. Methods Appl. Mech. Eng. 332, 462–487 (2018)MathSciNetCrossRef
46.
Zurück zum Zitat Greco, L., Giorgio, I., Battista, A.: In plane shear and bending for first gradient inextensible pantographic sheets: numerical study of deformed shapes and global constraint reactions. Math. Mech. Solids 22(10), 1950–1975 (2017)MathSciNetMATHCrossRef Greco, L., Giorgio, I., Battista, A.: In plane shear and bending for first gradient inextensible pantographic sheets: numerical study of deformed shapes and global constraint reactions. Math. Mech. Solids 22(10), 1950–1975 (2017)MathSciNetMATHCrossRef
47.
Zurück zum Zitat Guo, Z., Shi, X., Chen, Y., Chen, H., Peng, X., Harrison, P.: Mechanical modeling of incompressible particle-reinforced neo-Hookean composites based on numerical homogenization. Mech. Mater. 70, 1–17 (2014)CrossRef Guo, Z., Shi, X., Chen, Y., Chen, H., Peng, X., Harrison, P.: Mechanical modeling of incompressible particle-reinforced neo-Hookean composites based on numerical homogenization. Mech. Mater. 70, 1–17 (2014)CrossRef
48.
Zurück zum Zitat Harrison, P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos. Part A Appl. Sci. Manuf. 81, 145–157 (2016)CrossRef Harrison, P.: Modelling the forming mechanics of engineering fabrics using a mutually constrained pantographic beam and membrane mesh. Compos. Part A Appl. Sci. Manuf. 81, 145–157 (2016)CrossRef
50.
Zurück zum Zitat Khakalo, S., Balobanov, V., Niiranen, J.: Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. Int. J. Eng. Sci. 127, 33–52 (2018)MathSciNetMATHCrossRef Khakalo, S., Balobanov, V., Niiranen, J.: Modelling size-dependent bending, buckling and vibrations of 2D triangular lattices by strain gradient elasticity models: applications to sandwich beams and auxetics. Int. J. Eng. Sci. 127, 33–52 (2018)MathSciNetMATHCrossRef
51.
Zurück zum Zitat Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano-to macro-scales. Eur. J. Mech. A Solids 71, 292–319 (2018)MathSciNetMATHCrossRef Khakalo, S., Niiranen, J.: Form II of Mindlin’s second strain gradient theory of elasticity with a simplification: for materials and structures from nano-to macro-scales. Eur. J. Mech. A Solids 71, 292–319 (2018)MathSciNetMATHCrossRef
52.
Zurück zum Zitat Laudato, M., Di Cosmo, F.: Euromech 579 Arpino 3–8 April 2017: Generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly) inextensible fibers—a review of presentations and discussions. Continu. Mech. Thermodyn. https://doi.org/10.1007/s00161-018-0654-6 (2018) Laudato, M., Di Cosmo, F.: Euromech 579 Arpino 3–8 April 2017: Generalized and microstructured continua: new ideas in modeling and/or applications to structures with (nearly) inextensible fibers—a review of presentations and discussions. Continu. Mech. Thermodyn. https://​doi.​org/​10.​1007/​s00161-018-0654-6 (2018)
53.
Zurück zum Zitat Mandadapu, K.K., Abali, B.E., Papadopoulos, P.: On the polar nature and invariance properties of a thermomechanical theory for continuum-on-continuum homogenization. arXiv preprint arXiv:1808.02540 (2018) Mandadapu, K.K., Abali, B.E., Papadopoulos, P.: On the polar nature and invariance properties of a thermomechanical theory for continuum-on-continuum homogenization. arXiv preprint arXiv:​1808.​02540 (2018)
55.
Zurück zum Zitat Milton, G., Briane, M., Harutyunyan, D.: On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math. Mech. Complex Syst. 5(1), 41–94 (2017)MathSciNetMATHCrossRef Milton, G., Briane, M., Harutyunyan, D.: On the possible effective elasticity tensors of 2-dimensional and 3-dimensional printed materials. Math. Mech. Complex Syst. 5(1), 41–94 (2017)MathSciNetMATHCrossRef
56.
Zurück zum Zitat Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)MathSciNetMATHCrossRef Misra, A., Poorsolhjouy, P.: Identification of higher-order elastic constants for grain assemblies based upon granular micromechanics. Math. Mech. Complex Syst. 3(3), 285–308 (2015)MathSciNetMATHCrossRef
58.
Zurück zum Zitat Placidi, L., Andreaus, U., Corte, A.Della, Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)MathSciNetMATHCrossRef Placidi, L., Andreaus, U., Corte, A.Della, Lekszycki, T.: Gedanken experiments for the determination of two-dimensional linear second gradient elasticity coefficients. Z. Angew. Math. Phys. 66(6), 3699–3725 (2015)MathSciNetMATHCrossRef
59.
Zurück zum Zitat Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)MathSciNetMATHCrossRef Placidi, L., Andreaus, U., Giorgio, I.: Identification of two-dimensional pantographic structure via a linear D4 orthotropic second gradient elastic model. J. Eng. Math. 103(1), 1–21 (2017)MathSciNetMATHCrossRef
60.
Zurück zum Zitat Placidi, L., El Dhaba, A.R.: Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids 22(5), 919–937 (2017)MathSciNetMATHCrossRef Placidi, L., El Dhaba, A.R.: Semi-inverse method à la Saint-Venant for two-dimensional linear isotropic homogeneous second-gradient elasticity. Math. Mech. Solids 22(5), 919–937 (2017)MathSciNetMATHCrossRef
61.
Zurück zum Zitat Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2D fabric sheet with inextensible fibres. Z. Angew. Math. Phys. 67(5), 114 (2016)MathSciNetMATHCrossRef Placidi, L., Greco, L., Bucci, S., Turco, E., Rizzi, N.L.: A second gradient formulation for a 2D fabric sheet with inextensible fibres. Z. Angew. Math. Phys. 67(5), 114 (2016)MathSciNetMATHCrossRef
62.
Zurück zum Zitat Polizzotto, Castrenze: A second strain gradient elasticity theory with second velocity gradient inertia-Part I: constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50(24), 3749–3765 (2013)CrossRef Polizzotto, Castrenze: A second strain gradient elasticity theory with second velocity gradient inertia-Part I: constitutive equations and quasi-static behavior. Int. J. Solids Struct. 50(24), 3749–3765 (2013)CrossRef
63.
Zurück zum Zitat Polizzotto, Castrenze: A second strain gradient elasticity theory with second velocity gradient inertia-Part II: dynamic behavior. Int. J. Solids Struct. 50(24), 3766–3777 (2013)CrossRef Polizzotto, Castrenze: A second strain gradient elasticity theory with second velocity gradient inertia-Part II: dynamic behavior. Int. J. Solids Struct. 50(24), 3766–3777 (2013)CrossRef
64.
Zurück zum Zitat Queiruga, A., Zohdi, T.: Microscale modeling of effective mechanical and electrical properties of textiles. Int. J. Numer. Methods Eng. 108(13), 1603–1625 (2016)MathSciNetCrossRef Queiruga, A., Zohdi, T.: Microscale modeling of effective mechanical and electrical properties of textiles. Int. J. Numer. Methods Eng. 108(13), 1603–1625 (2016)MathSciNetCrossRef
65.
Zurück zum Zitat Rahali, Y., Ganghoffer, J.-F., Chaouachi, F., Zghal, : Strain gradient continuum models for linear pantographic structures: a classification based on material symmetries. J. Geom. Symmetry Phys. 40, 35–52 (2015)MathSciNetMATHCrossRef Rahali, Y., Ganghoffer, J.-F., Chaouachi, F., Zghal, : Strain gradient continuum models for linear pantographic structures: a classification based on material symmetries. J. Geom. Symmetry Phys. 40, 35–52 (2015)MathSciNetMATHCrossRef
66.
Zurück zum Zitat Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)MathSciNetMATHCrossRef Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola, F.: Homogenization à la Piola produces second gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)MathSciNetMATHCrossRef
67.
Zurück zum Zitat Rahali, Y., Goda, I., Ganghoffer, J.-F.: Numerical identification of classical and nonclassical moduli of 3D woven textiles and analysis of scale effects. Compos. Struct. 135, 122–139 (2016)CrossRef Rahali, Y., Goda, I., Ganghoffer, J.-F.: Numerical identification of classical and nonclassical moduli of 3D woven textiles and analysis of scale effects. Compos. Struct. 135, 122–139 (2016)CrossRef
68.
Zurück zum Zitat Saeb, S., Steinmann, P., Javili, A.: Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound. Appl. Mech. Rev. 68(5), 050801 (2016)CrossRef Saeb, S., Steinmann, P., Javili, A.: Aspects of computational homogenization at finite deformations: a unifying review from Reuss’ to Voigt’s bound. Appl. Mech. Rev. 68(5), 050801 (2016)CrossRef
69.
Zurück zum Zitat Scerrato, D., Giorgio, I., Rizzi, N.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67(3), 1–19 (2016)MathSciNetMATHCrossRef Scerrato, D., Giorgio, I., Rizzi, N.: Three-dimensional instabilities of pantographic sheets with parabolic lattices: numerical investigations. Z. Angew. Math. Phys. 67(3), 1–19 (2016)MathSciNetMATHCrossRef
70.
Zurück zum Zitat Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. Z. Angew. Math. Mech.: ZAMM 96(11), 1268–1279 (2016)MathSciNetCrossRef Scerrato, D., Zhurba Eremeeva, I.A., Lekszycki, T., Rizzi, N.L.: On the effect of shear stiffness on the plane deformation of linear second gradient pantographic sheets. Z. Angew. Math. Mech.: ZAMM 96(11), 1268–1279 (2016)MathSciNetCrossRef
72.
Zurück zum Zitat Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)CrossRef Spagnuolo, M., Barcz, K., Pfaff, A., dell’Isola, F., Franciosi, P.: Qualitative pivot damage analysis in aluminum printed pantographic sheets: numerics and experiments. Mech. Res. Commun. 83, 47–52 (2017)CrossRef
73.
Zurück zum Zitat Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)MathSciNetMATHCrossRef Steigmann, D.J., dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending, twisting, and stretching. Acta Mech. Sin. 31(3), 373–382 (2015)MathSciNetMATHCrossRef
74.
Zurück zum Zitat Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67, 28 (2016)MathSciNetMATHCrossRef Turco, E., dell’Isola, F., Cazzani, A., Rizzi, N.L.: Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum models. Z. Angew. Math. Phys. 67, 28 (2016)MathSciNetMATHCrossRef
75.
Zurück zum Zitat Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R. Soc. Open Sci. 4(10), 20 (2017)CrossRef Turco, E., Giorgio, I., Misra, A., dell’Isola, F.: King post truss as a motif for internal structure of (meta) material with controlled elastic properties. R. Soc. Open Sci. 4(10), 20 (2017)CrossRef
76.
Zurück zum Zitat Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B Eng. 118, 1–14 (2017)CrossRef Turco, E., Golaszewski, M., Giorgio, I., D’Annibale, F.: Pantographic lattices with non-orthogonal fibres: experiments and their numerical simulations. Compos. Part B Eng. 118, 1–14 (2017)CrossRef
77.
Zurück zum Zitat Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 147, 94–109 (2018)CrossRef Turco, E., Misra, A., Pawlikowski, M., dell’Isola, F., Hild, F.: Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: numerics and experiments. Int. J. Solids Struct. 147, 94–109 (2018)CrossRef
78.
Zurück zum Zitat Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69 (2016)CrossRef Turco, E., Rizzi, N.L.: Pantographic structures presenting statistically distributed defects: numerical investigations of the effects on deformation fields. Mech. Res. Commun. 77, 65–69 (2016)CrossRef
79.
Zurück zum Zitat Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69(4), 16 (2018)MathSciNetMATHCrossRef Yang, H., Ganzosch, G., Giorgio, I., Abali, B.E.: Material characterization and computations of a polymeric metamaterial with a pantographic substructure. Z. Angew. Math. Phys. 69(4), 16 (2018)MathSciNetMATHCrossRef
Metadaten
Titel
Numerical identification of constitutive parameters in reduced-order bi-dimensional models for pantographic structures: application to out-of-plane buckling
verfasst von
Michele De Angelo
Emilio Barchiesi
Ivan Giorgio
B. Emek Abali
Publikationsdatum
03.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Archive of Applied Mechanics / Ausgabe 7/2019
Print ISSN: 0939-1533
Elektronische ISSN: 1432-0681
DOI
https://doi.org/10.1007/s00419-018-01506-9

Weitere Artikel der Ausgabe 7/2019

Archive of Applied Mechanics 7/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.