Skip to main content
Erschienen in: Quantum Information Processing 10/2019

01.10.2019

Permutation-based special linear transforms with application in quantum image encryption algorithm

verfasst von: Mubashar Khan, Amer Rasheed

Erschienen in: Quantum Information Processing | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A cryptographic system based on substitution–permutation network involves various linear and affine transforms in order to create diffusion in the ciphertext. In this paper, special linear unitary transforms associated with permutations of n distinct objects are designed. These transforms are composed of n components each of which is a controlled NOT operation. The domain of special linear transforms is the \(2^n\)-dimensional Hilbert space \({{\mathbb {H}}}^{\otimes n}\), and these transforms define bijection from the set of computational basis onto itself. The latter characteristic of these transforms has enabled us to propose an efficient quantum image scrambling strategy. The application of special linear transform on the quantum state, which represents pixels positional information, results in the scrambled quantum state of positional information. On the other hand, its application on quantum state representing pixels value produces the encrypted quantum state. Accordingly, an efficient quantum image encryption algorithm based on special linear transforms and Chen chaotic dynamical system is presented for the novel quantum representation of color digital images (NCQI) model. Firstly, a selected pair of special linear transforms is employed to scramble the quantum image state of the original image. Then, the scrambled image is processed under the controlled special linear transforms determined by the values of three sequences generated from Chen chaotic system. The objective of this part is to encrypt color information of red, green and blue layers of the image. For an image of size \(2^n \times 2^n\), the time complexity of the proposed quantum image scrambling method is 2n while the time complexity of the proposed quantum image encryption algorithm is \(O(2^{2n})\), which is linear in the size of image. Finally, the simulation experiments are performed in order to measure the strength of proposed encryption algorithm. It is evident from the analyses of the simulation results that the newly proposed algorithm is fast, secure and reliable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)MATH Nielsen, M.A., Chuang, I.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2000)MATH
3.
Zurück zum Zitat Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400(1818), 97–117 (1985)ADSMathSciNetCrossRef Deutsch, D.: Quantum theory, the church-turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400(1818), 97–117 (1985)ADSMathSciNetCrossRef
4.
Zurück zum Zitat Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994) Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, 1994 Proceedings, pp. 124–134. IEEE (1994)
5.
Zurück zum Zitat Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996) Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, pp. 212–219. ACM (1996)
6.
Zurück zum Zitat Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation, vol. 5105, pp. 137–148. International Society for Optics and Photonics (2003) Venegas-Andraca, S.E., Bose, S.: Storing, processing, and retrieving an image using quantum mechanics. In: Quantum Information and Computation, vol. 5105, pp. 137–148. International Society for Optics and Photonics (2003)
8.
Zurück zum Zitat Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRef Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)MathSciNetCrossRef
9.
Zurück zum Zitat Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRef Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)MathSciNetCrossRef
10.
Zurück zum Zitat Zhang, Y., Kai, L., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef Zhang, Y., Kai, L., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)ADSMathSciNetCrossRef
11.
Zurück zum Zitat Zhang, Y., Kai, L., Gao, Y., Kai, X.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetCrossRef Zhang, Y., Kai, L., Gao, Y., Kai, X.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12(9), 3103–3126 (2013)ADSMathSciNetCrossRef
12.
Zurück zum Zitat Sun, B., Iliyasu, A.M., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)CrossRef Sun, B., Iliyasu, A.M., Yan, F., Dong, F., Hirota, K.: An RGB multi-channel representation for images on quantum computers. J. Adv. Comput. Intell. Intell. Inform. 17(3), 404–417 (2013)CrossRef
13.
Zurück zum Zitat Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 42 (2017)ADSMathSciNetCrossRef Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16(2), 42 (2017)ADSMathSciNetCrossRef
15.
Zurück zum Zitat Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)ADSMathSciNetCrossRef Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147 (1996)ADSMathSciNetCrossRef
16.
Zurück zum Zitat Jiang, N., Wen-Ya, W., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRef Jiang, N., Wen-Ya, W., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)ADSMathSciNetCrossRef
17.
Zurück zum Zitat Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetCrossRef Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)ADSMathSciNetCrossRef
18.
Zurück zum Zitat Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetCrossRef Zhou, N.R., Hua, T.X., Gong, L.H., Pei, D.J., Liao, Q.H.: Quantum image encryption based on generalized arnold transform and double random-phase encoding. Quantum Inf. Process. 14(4), 1193–1213 (2015)ADSMathSciNetCrossRef
19.
Zurück zum Zitat Zhou, R.-G., Sun, Y.-J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)ADSMathSciNetCrossRef Zhou, R.-G., Sun, Y.-J., Fan, P.: Quantum image gray-code and bit-plane scrambling. Quantum Inf. Process. 14(5), 1717–1734 (2015)ADSMathSciNetCrossRef
20.
Zurück zum Zitat Liang, H.-R., Tao, X.-Y., Zhou, N.-R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15(7), 2701–2724 (2016)ADSMathSciNetCrossRef Liang, H.-R., Tao, X.-Y., Zhou, N.-R.: Quantum image encryption based on generalized affine transform and logistic map. Quantum Inf. Process. 15(7), 2701–2724 (2016)ADSMathSciNetCrossRef
21.
Zurück zum Zitat Zhou, N., Yiqun, H., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 164 (2017)ADSMathSciNetCrossRef Zhou, N., Yiqun, H., Gong, L., Li, G.: Quantum image encryption scheme with iterative generalized Arnold transforms and quantum image cycle shift operations. Quantum Inf. Process. 16(6), 164 (2017)ADSMathSciNetCrossRef
22.
Zurück zum Zitat Zhou, N., Yan, X., Liang, H., Tao, X., Li, G.: Multi-image encryption scheme based on quantum 3d Arnold transform and scaled Zhongtang chaotic system. Quantum Inf. Process. 17(12), 338 (2018)ADSCrossRef Zhou, N., Yan, X., Liang, H., Tao, X., Li, G.: Multi-image encryption scheme based on quantum 3d Arnold transform and scaled Zhongtang chaotic system. Quantum Inf. Process. 17(12), 338 (2018)ADSCrossRef
23.
Zurück zum Zitat Li, P., Zhao, Y.: A simple encryption algorithm for quantum color image. Int. J. Theor. Phys. 56(6), 1961–1982 (2017)MathSciNetCrossRef Li, P., Zhao, Y.: A simple encryption algorithm for quantum color image. Int. J. Theor. Phys. 56(6), 1961–1982 (2017)MathSciNetCrossRef
24.
Zurück zum Zitat Li, X.-Z., Chen, W.-W., Wang, Y.-Q.: Quantum image compression-encryption scheme based on quantum discrete cosine transform. Int. J. Theor. Phys. 57(9), 2904–2919 (2018)CrossRef Li, X.-Z., Chen, W.-W., Wang, Y.-Q.: Quantum image compression-encryption scheme based on quantum discrete cosine transform. Int. J. Theor. Phys. 57(9), 2904–2919 (2018)CrossRef
25.
Zurück zum Zitat Wang, J., Geng, Y.-C., Han, L., Liu, J.-Q.: Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys. 58(1), 308–322 (2019)CrossRef Wang, J., Geng, Y.-C., Han, L., Liu, J.-Q.: Quantum image encryption algorithm based on quantum key image. Int. J. Theor. Phys. 58(1), 308–322 (2019)CrossRef
26.
Zurück zum Zitat Heidari, S., Vafaei, M., Houshmand, M., Tabatabaey-Mashadi, N.: A dual quantum image scrambling method. Quantum Inf. Process. 18(1), 9 (2019)ADSCrossRef Heidari, S., Vafaei, M., Houshmand, M., Tabatabaey-Mashadi, N.: A dual quantum image scrambling method. Quantum Inf. Process. 18(1), 9 (2019)ADSCrossRef
27.
Zurück zum Zitat Jiang, N., Dong, X., Hu, H., Ji, Z., Zhang, W.: Quantum image encryption based on Henon mapping. Int. J. Theor. Phys. 58, 1–13 (2019)MathSciNetCrossRef Jiang, N., Dong, X., Hu, H., Ji, Z., Zhang, W.: Quantum image encryption based on Henon mapping. Int. J. Theor. Phys. 58, 1–13 (2019)MathSciNetCrossRef
28.
Zurück zum Zitat Tan, R.-C., Lei, T., Zhao, Q.-M., Gong, L.-H., Zhou, Z.-H.: Quantum color image encryption algorithm based on a hyper-chaotic system and quantum Fourier transform. Int. J. Theor. Phys. 55(12), 5368–5384 (2016)CrossRef Tan, R.-C., Lei, T., Zhao, Q.-M., Gong, L.-H., Zhou, Z.-H.: Quantum color image encryption algorithm based on a hyper-chaotic system and quantum Fourier transform. Int. J. Theor. Phys. 55(12), 5368–5384 (2016)CrossRef
29.
Zurück zum Zitat Ran, Q., Wang, L., Ma, J., Tan, L., Siyuan, Y.: A quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections. Quantum Inf. Process. 17(8), 188 (2018)ADSMathSciNetCrossRef Ran, Q., Wang, L., Ma, J., Tan, L., Siyuan, Y.: A quantum color image encryption scheme based on coupled hyper-chaotic Lorenz system with three impulse injections. Quantum Inf. Process. 17(8), 188 (2018)ADSMathSciNetCrossRef
30.
31.
Zurück zum Zitat Yang, Y.-G., Jia, X., Sun, S.-J., Pan, Q.-X.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)CrossRef Yang, Y.-G., Jia, X., Sun, S.-J., Pan, Q.-X.: Quantum cryptographic algorithm for color images using quantum Fourier transform and double random-phase encoding. Inf. Sci. 277, 445–457 (2014)CrossRef
32.
Zurück zum Zitat Wang, L., Song, H., Liu, P.: A novel hybrid color image encryption algorithm using two complex chaotic systems. Opt. Lasers Eng. 77, 118–125 (2016)CrossRef Wang, L., Song, H., Liu, P.: A novel hybrid color image encryption algorithm using two complex chaotic systems. Opt. Lasers Eng. 77, 118–125 (2016)CrossRef
33.
Zurück zum Zitat Yue, W., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013)MathSciNetCrossRef Yue, W., Zhou, Y., Saveriades, G., Agaian, S., Noonan, J.P., Natarajan, P.: Local Shannon entropy measure with statistical tests for image randomness. Inf. Sci. 222, 323–342 (2013)MathSciNetCrossRef
Metadaten
Titel
Permutation-based special linear transforms with application in quantum image encryption algorithm
verfasst von
Mubashar Khan
Amer Rasheed
Publikationsdatum
01.10.2019
Verlag
Springer US
Erschienen in
Quantum Information Processing / Ausgabe 10/2019
Print ISSN: 1570-0755
Elektronische ISSN: 1573-1332
DOI
https://doi.org/10.1007/s11128-019-2410-7

Weitere Artikel der Ausgabe 10/2019

Quantum Information Processing 10/2019 Zur Ausgabe

Neuer Inhalt