Skip to main content

2017 | OriginalPaper | Buchkapitel

Recent Results on Stability of Planar Detonations

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We describe recent analytical and numerical results on stability and behavior of viscous and inviscid detonation waves obtained by dynamical systems/Evans function techniques like those used to study shock and reaction diffusion waves. In the first part, we give a broad description of viscous and inviscid results for 1D perturbations; in the second, we focus on inviscid high-frequency stability in multi-D and associated questions in turning point theory/WKB expansion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
Condition [44, (5.13)] comparing relative sizes of oscillatory modes in the first-order expansion of decaying solution \(\tilde{Z}\), depending on the geometry of background profile \(\bar{W}\); see [44, Prop. 5.1] and discussion just below.
 
2
As discussed in [45], Erpenbeck treated turning points/glancing modes at points x bounded away from 0 and ; however, these cases necessarily occur at certain boundary frequencies, so must be considered in a complete stability analysis, as must be issues not treated in [22] of uniformity for frequencies near but not at a glancing point.
 
Literatur
1.
Zurück zum Zitat M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 For sale by the Superintendent of Documents (U.S. Government Printing Office, Washington DC, 1964), xiv+1046pp. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55 For sale by the Superintendent of Documents (U.S. Government Printing Office, Washington DC, 1964), xiv+1046pp.
2.
Zurück zum Zitat J. Alexander, R. Gardner, C. Jones, A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)MathSciNetMATH J. Alexander, R. Gardner, C. Jones, A topological invariant arising in the stability analysis of travelling waves. J. Reine Angew. Math. 410, 167–212 (1990)MathSciNetMATH
3.
Zurück zum Zitat S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels (French) [Existence of rarefaction waves for multidimensional hyperbolic quasilinear systems]. Commun. Partial Differ. Equ. 14 (2), 173–230 (1989)CrossRefMATH S. Alinhac, Existence d’ondes de raréfaction pour des systèmes quasi-linéaires hyperboliques multidimensionnels (French) [Existence of rarefaction waves for multidimensional hyperbolic quasilinear systems]. Commun. Partial Differ. Equ. 14 (2), 173–230 (1989)CrossRefMATH
5.
Zurück zum Zitat B. Barker, J. Humpherys, G. Lyng, K. Zumbrun, Viscous hyperstabilization of detonation waves in one space dimension. SIAM J. Appl. Math. 75 (3), 885–906 (2015)MathSciNetCrossRefMATH B. Barker, J. Humpherys, G. Lyng, K. Zumbrun, Viscous hyperstabilization of detonation waves in one space dimension. SIAM J. Appl. Math. 75 (3), 885–906 (2015)MathSciNetCrossRefMATH
6.
Zurück zum Zitat B. Barker, K. Zumbrun, A numerical investigation of stability of ZND detonations for Majda’s model, preprint. arxiv:1011.1561 B. Barker, K. Zumbrun, A numerical investigation of stability of ZND detonations for Majda’s model, preprint. arxiv:1011.1561
7.
Zurück zum Zitat B. Barker K. Zumbrun, Numerical stability of ZND detonations, in preparation B. Barker K. Zumbrun, Numerical stability of ZND detonations, in preparation
8.
Zurück zum Zitat G. K. Batchelor. An Introduction to Fluid Dynamics, paperback edn. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1999)MATH G. K. Batchelor. An Introduction to Fluid Dynamics, paperback edn. Cambridge Mathematical Library (Cambridge University Press, Cambridge, 1999)MATH
9.
Zurück zum Zitat M. Beck, B. Sandstede, K. Zumbrun, Nonlinear stability of time-periodic viscous shocks. Arch. Ration. Mech. Anal. 196 (3), 1011–1076 (2010)MathSciNetCrossRefMATH M. Beck, B. Sandstede, K. Zumbrun, Nonlinear stability of time-periodic viscous shocks. Arch. Ration. Mech. Anal. 196 (3), 1011–1076 (2010)MathSciNetCrossRefMATH
10.
Zurück zum Zitat A. Bourlioux, A. Majda, V. Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343 (1991)MathSciNetCrossRefMATH A. Bourlioux, A. Majda, V. Roytburd, Theoretical and numerical structure for unstable one-dimensional detonations. SIAM J. Appl. Math. 51, 303–343 (1991)MathSciNetCrossRefMATH
13.
Zurück zum Zitat J. Buckmaster, J. Neves, One-dimensional detonation stability: the spectrum for infinite activation energy. Phys. Fluids 31 (12), 3572–3576 (1988)CrossRefMATH J. Buckmaster, J. Neves, One-dimensional detonation stability: the spectrum for infinite activation energy. Phys. Fluids 31 (12), 3572–3576 (1988)CrossRefMATH
15.
Zurück zum Zitat P. Clavin, L. He, Stability and nonlinear dynamics of one-dimensional overdriven detonations in gases. J. Fluid Mech. 306, 306–353 (1996)MathSciNetCrossRefMATH P. Clavin, L. He, Stability and nonlinear dynamics of one-dimensional overdriven detonations in gases. J. Fluid Mech. 306, 306–353 (1996)MathSciNetCrossRefMATH
16.
Zurück zum Zitat E.A. Coddington, M. Levinson, Theory of Ordinary Differential Equations (McGraw–Hill Book Company, Inc., New York, 1955)MATH E.A. Coddington, M. Levinson, Theory of Ordinary Differential Equations (McGraw–Hill Book Company, Inc., New York, 1955)MATH
17.
Zurück zum Zitat R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Springer–Verlag, New York, 1976), xvi+464pp. R. Courant, K.O. Friedrichs, Supersonic Flow and Shock Waves (Springer–Verlag, New York, 1976), xvi+464pp.
19.
21.
Zurück zum Zitat J.J. Erpenbeck, Stability of idealized one-reaction detonations. Phys. Fluids 7, 684 (1964)CrossRefMATH J.J. Erpenbeck, Stability of idealized one-reaction detonations. Phys. Fluids 7, 684 (1964)CrossRefMATH
22.
Zurück zum Zitat J.J. Erpenbeck, Stability of Detonations for Disturbances of Small Transverse Wave-Length Los Alamos, LA-3306 (1965), 136pp. https://www.google.com/search?tbm=bks&hl=en&q=Stability+of+detonation+for+disturbances+of+small+transverse+wavelength+Report+of+los+Alamos+LA3306+1965 J.J. Erpenbeck, Stability of Detonations for Disturbances of Small Transverse Wave-Length Los Alamos, LA-3306 (1965), 136pp. https://​www.​google.​com/​search?​tbm=​bks&​hl=​en&​q=​Stability+of+det​onation+for+dist​urbances+of+smal​l+transverse+wav​elength+Report+o​f+los+Alamos+LA3​306+1965
23.
Zurück zum Zitat J.J. Erpenbeck, Detonation stability for disturbances of small transverse wave length. Phys. Fluids 9, 1293–1306 (1966)CrossRefMATH J.J. Erpenbeck, Detonation stability for disturbances of small transverse wave length. Phys. Fluids 9, 1293–1306 (1966)CrossRefMATH
24.
Zurück zum Zitat L.M. Faria, A.R. Kasimov, R.R. Rosales, Study of a model equation in detonation theory. SIAM J. Appl. Math. 74 (2), 547–570 (2014)MathSciNetCrossRefMATH L.M. Faria, A.R. Kasimov, R.R. Rosales, Study of a model equation in detonation theory. SIAM J. Appl. Math. 74 (2), 547–570 (2014)MathSciNetCrossRefMATH
25.
Zurück zum Zitat W. Fickett, W.C. Davis, Detonation (University of California Press, Berkeley, 1979); reissued as Detonation: Theory and Experiment (Dover Press, Mineola, New York 2000). ISBN:0-486-41456-6 W. Fickett, W.C. Davis, Detonation (University of California Press, Berkeley, 1979); reissued as Detonation: Theory and Experiment (Dover Press, Mineola, New York 2000). ISBN:0-486-41456-6
26.
Zurück zum Zitat W. Fickett, W. Wood, Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903–916 (1966)CrossRef W. Fickett, W. Wood, Flow calculations for pulsating one-dimensional detonations. Phys. Fluids 9, 903–916 (1966)CrossRef
27.
Zurück zum Zitat R.A. Gardner, K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51 (7), 797–855 (1998)MathSciNetCrossRefMATH R.A. Gardner, K. Zumbrun, The gap lemma and geometric criteria for instability of viscous shock profiles. Commun. Pure Appl. Math. 51 (7), 797–855 (1998)MathSciNetCrossRefMATH
28.
Zurück zum Zitat I. Gasser, P. Szmolyan, A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24, 968–986 (1993)MathSciNetCrossRefMATH I. Gasser, P. Szmolyan, A geometric singular perturbation analysis of detonation and deflagration waves. SIAM J. Math. Anal. 24, 968–986 (1993)MathSciNetCrossRefMATH
29.
Zurück zum Zitat O. Gues, G. Métivier, M. Williams, K. Zumbrun, Existence and stability of multidimensional shock fronts in the vanishing viscosity limit. Arch. Ration. Mech. Anal. 175 (2), 151–244 (2005)MathSciNetCrossRefMATH O. Gues, G. Métivier, M. Williams, K. Zumbrun, Existence and stability of multidimensional shock fronts in the vanishing viscosity limit. Arch. Ration. Mech. Anal. 175 (2), 151–244 (2005)MathSciNetCrossRefMATH
30.
Zurück zum Zitat O. Gues, G. Métivier, M. Williams, K. Zumbrun, Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and MHD equations. Arch. Ration. Mech. Anal. 197 (1), 1–87 (2010)MathSciNetCrossRefMATH O. Gues, G. Métivier, M. Williams, K. Zumbrun, Existence and stability of noncharacteristic boundary layers for the compressible Navier-Stokes and MHD equations. Arch. Ration. Mech. Anal. 197 (1), 1–87 (2010)MathSciNetCrossRefMATH
31.
Zurück zum Zitat M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann. 342 (1), 177–243 (2008)MathSciNetCrossRefMATH M. Hager, J. Sjöstrand, Eigenvalue asymptotics for randomly perturbed non-selfadjoint operators. Math. Ann. 342 (1), 177–243 (2008)MathSciNetCrossRefMATH
32.
Zurück zum Zitat J. Hendricks, J. Humpherys, G. Lyng, K. Zumbrun, Stability of viscous weak detonation waves for Majda’s model. J. Dyn. Differ. Equ. 27 (2), 237–260 (2015)MathSciNetCrossRefMATH J. Hendricks, J. Humpherys, G. Lyng, K. Zumbrun, Stability of viscous weak detonation waves for Majda’s model. J. Dyn. Differ. Equ. 27 (2), 237–260 (2015)MathSciNetCrossRefMATH
33.
Zurück zum Zitat J. Humpherys, G. Lyng, K. Zumbrun, Multidimensional spectral stability of large-amplitude Navier-Stokes shocks, preprint. arxiv:1603.03955 J. Humpherys, G. Lyng, K. Zumbrun, Multidimensional spectral stability of large-amplitude Navier-Stokes shocks, preprint. arxiv:1603.03955
34.
Zurück zum Zitat J. Humpherys, K. Zumbrun, An efficient shooting algorithm for Evans function calculations in large systems. Physica D 220 (2), 116–126 (2006)MathSciNetCrossRefMATH J. Humpherys, K. Zumbrun, An efficient shooting algorithm for Evans function calculations in large systems. Physica D 220 (2), 116–126 (2006)MathSciNetCrossRefMATH
35.
Zurück zum Zitat J. Humpherys, G. Lyng, K. Zumbrun, Spectral stability of ideal gas shock layers. Arch. Ration. Mech. Anal. 194 (3), 1029–1079 (2009)MathSciNetCrossRefMATH J. Humpherys, G. Lyng, K. Zumbrun, Spectral stability of ideal gas shock layers. Arch. Ration. Mech. Anal. 194 (3), 1029–1079 (2009)MathSciNetCrossRefMATH
36.
Zurück zum Zitat J. Humpherys, O. Lafitte, K. Zumbrun, Stability of isentropic Navier-Stokes shocks in the high-Mach number limit. Commun. Math. Phys. 293 (1), 1–36 (2010)MathSciNetCrossRefMATH J. Humpherys, O. Lafitte, K. Zumbrun, Stability of isentropic Navier-Stokes shocks in the high-Mach number limit. Commun. Math. Phys. 293 (1), 1–36 (2010)MathSciNetCrossRefMATH
37.
Zurück zum Zitat J. Humpherys, K. Zumbrun, Efficient numerical stability analysis of detonation waves in ZND. Q. Appl. Math. 70 (4), 685–703 (2012)MathSciNetCrossRefMATH J. Humpherys, K. Zumbrun, Efficient numerical stability analysis of detonation waves in ZND. Q. Appl. Math. 70 (4), 685–703 (2012)MathSciNetCrossRefMATH
38.
Zurück zum Zitat E. Jouguet, Sur la propagation des réactions chimiques dans les gaz [On the propagation of chemical reactions in gases]. J. Math. Pures Appl. 6 (1), 347–425 (1905)MATH E. Jouguet, Sur la propagation des réactions chimiques dans les gaz [On the propagation of chemical reactions in gases]. J. Math. Pures Appl. 6 (1), 347–425 (1905)MATH
39.
Zurück zum Zitat E. Jouguet, Sur la propagation des réactions chimiques dans les gaz [On the propagation of chemical reactions in gases]. J. Math. Pures Appl. 6 (2), 5–85 (1906)MATH E. Jouguet, Sur la propagation des réactions chimiques dans les gaz [On the propagation of chemical reactions in gases]. J. Math. Pures Appl. 6 (2), 5–85 (1906)MATH
40.
Zurück zum Zitat H.K. Jenssen, G. Lyng, M. Williams, Equivalence of low-frequency stability conditions for multidimensional detonations in three models of combustion. Indiana Univ. Math. J. 54, 1–64 (2005)MathSciNetCrossRefMATH H.K. Jenssen, G. Lyng, M. Williams, Equivalence of low-frequency stability conditions for multidimensional detonations in three models of combustion. Indiana Univ. Math. J. 54, 1–64 (2005)MathSciNetCrossRefMATH
42.
Zurück zum Zitat T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1985) T. Kato, Perturbation Theory for Linear Operators (Springer, Berlin, 1985)
43.
44.
Zurück zum Zitat O. Lafitte, M. Williams, K. Zumbrun, The Erpenbeck high frequency instability theorem for Zeldovitch-von Neumann-Döring detonations. Arch. Ration. Mech. Anal. 204 (1), 141–187 (2012)MathSciNetCrossRefMATH O. Lafitte, M. Williams, K. Zumbrun, The Erpenbeck high frequency instability theorem for Zeldovitch-von Neumann-Döring detonations. Arch. Ration. Mech. Anal. 204 (1), 141–187 (2012)MathSciNetCrossRefMATH
45.
Zurück zum Zitat O. Lafitte, M. Williams, K. Zumbrun, High-frequency stability of detonations and turning points at infinity. SIAM J. Math. Anal. 47 (3), 1800–1878 (2015)MathSciNetCrossRefMATH O. Lafitte, M. Williams, K. Zumbrun, High-frequency stability of detonations and turning points at infinity. SIAM J. Math. Anal. 47 (3), 1800–1878 (2015)MathSciNetCrossRefMATH
46.
Zurück zum Zitat O. Lafitte, M. Williams, K. Zumbrun, Block-diagonalization of ODEs in the semiclassical limit and C ω vs. C ∞ stationary phase. SIAM J. Math. Anal. 48 (3), 1773–1797 (2016) O. Lafitte, M. Williams, K. Zumbrun, Block-diagonalization of ODEs in the semiclassical limit and C ω vs. C stationary phase. SIAM J. Math. Anal. 48 (3), 1773–1797 (2016)
47.
Zurück zum Zitat P.D. Lax, Hyperbolic systems of conservation laws. II. Commun. Pure Appl. Math. 10, 537–566 (1957)CrossRefMATH P.D. Lax, Hyperbolic systems of conservation laws. II. Commun. Pure Appl. Math. 10, 537–566 (1957)CrossRefMATH
48.
Zurück zum Zitat P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, vol. 11 (Society for Industrial and Applied Mathematics, Philadelphia, 1973), v+48pp. P.D. Lax, Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, vol. 11 (Society for Industrial and Applied Mathematics, Philadelphia, 1973), v+48pp.
49.
Zurück zum Zitat H.I. Lee, D.S. Stewart, Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 216, 103–132 (1990)CrossRefMATH H.I. Lee, D.S. Stewart, Calculation of linear detonation instability: one-dimensional instability of plane detonation. J. Fluid Mech. 216, 103–132 (1990)CrossRefMATH
50.
Zurück zum Zitat J.H.S. Lee, The Detonation Phenomenon (Cambridge University Press, Cambridge/New York, 2008). ISBN-13:978-0521897235 J.H.S. Lee, The Detonation Phenomenon (Cambridge University Press, Cambridge/New York, 2008). ISBN-13:978-0521897235
51.
Zurück zum Zitat N. Levinson, The asymptotic nature of solutions of linear systems of differential equations. Duke Math. J. 15, 111–126 (1948)MathSciNetCrossRefMATH N. Levinson, The asymptotic nature of solutions of linear systems of differential equations. Duke Math. J. 15, 111–126 (1948)MathSciNetCrossRefMATH
52.
Zurück zum Zitat T.-P. Liu, S.-H. Yu, Nonlinear stability of weak detonation waves for a combustion model. Commun. Math. Phys. 204 (3), 551–586 (1999)MathSciNetCrossRefMATH T.-P. Liu, S.-H. Yu, Nonlinear stability of weak detonation waves for a combustion model. Commun. Math. Phys. 204 (3), 551–586 (1999)MathSciNetCrossRefMATH
53.
Zurück zum Zitat G. Lyng, K. Zumbrun, One-dimensional stability of viscous strong detonation waves. Arch. Ration. Mech. Anal. 173 (2), 213–277 (2004)MathSciNetCrossRefMATH G. Lyng, K. Zumbrun, One-dimensional stability of viscous strong detonation waves. Arch. Ration. Mech. Anal. 173 (2), 213–277 (2004)MathSciNetCrossRefMATH
54.
Zurück zum Zitat G. Lyng, K. Zumbrun, A stability index for detonation waves in Majda’s model for reacting flow. Physica D 194, 1–29 (2004)MathSciNetCrossRefMATH G. Lyng, K. Zumbrun, A stability index for detonation waves in Majda’s model for reacting flow. Physica D 194, 1–29 (2004)MathSciNetCrossRefMATH
55.
Zurück zum Zitat G. Lyng, M. Raoofi, B. Texier, K. Zumbrun, Pointwise Green function bounds and stability of combustion waves. J. Differ. Equ. 233, 654–698 (2007)MathSciNetCrossRefMATH G. Lyng, M. Raoofi, B. Texier, K. Zumbrun, Pointwise Green function bounds and stability of combustion waves. J. Differ. Equ. 233, 654–698 (2007)MathSciNetCrossRefMATH
56.
Zurück zum Zitat A. Martinez, An Introduction to Semiclassical and Microlocal Analysis (Springer, New York, 2002)CrossRefMATH A. Martinez, An Introduction to Semiclassical and Microlocal Analysis (Springer, New York, 2002)CrossRefMATH
57.
Zurück zum Zitat G. Métivier, K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Am. Math. Soc. 175 (826), vi+107pp (2005) G. Métivier, K. Zumbrun, Large viscous boundary layers for noncharacteristic nonlinear hyperbolic problems. Mem. Am. Math. Soc. 175 (826), vi+107pp (2005)
59.
Zurück zum Zitat A. Majda, The stability of multi-dimensional shock fronts – a new problem for linear hyperbolic equations. Mem. Am. Math. Soc. 275, 1–95 (1983) A. Majda, The stability of multi-dimensional shock fronts – a new problem for linear hyperbolic equations. Mem. Am. Math. Soc. 275, 1–95 (1983)
60.
Zurück zum Zitat A. Majda, R. Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts. I. The basic perturbation analysis. SIAM J. Appl. Math. 43, 1310–1334 (1983)MATH A. Majda, R. Rosales, A theory for spontaneous Mach stem formation in reacting shock fronts. I. The basic perturbation analysis. SIAM J. Appl. Math. 43, 1310–1334 (1983)MATH
61.
Zurück zum Zitat C. Mascia, K. Zumbrun, Pointwise Green’s function bounds for shock profiles with degenerate viscosity. Arch. Ration. Mech. Anal. 169, 177–263 (2003)MathSciNetCrossRefMATH C. Mascia, K. Zumbrun, Pointwise Green’s function bounds for shock profiles with degenerate viscosity. Arch. Ration. Mech. Anal. 169, 177–263 (2003)MathSciNetCrossRefMATH
62.
Zurück zum Zitat G. Métivier, The block structure condition for symmetric hyperbolic problems. Bull. Lond. Math. Soc. 32, 689–702 (2000)CrossRefMATH G. Métivier, The block structure condition for symmetric hyperbolic problems. Bull. Lond. Math. Soc. 32, 689–702 (2000)CrossRefMATH
63.
Zurück zum Zitat G. Métivier, Stability of multidimensional shocks, in Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations and Applications, vol. 47 (Birkhäuser Boston, Boston, 2001), pp. 25–103 G. Métivier, Stability of multidimensional shocks, in Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations and Applications, vol. 47 (Birkhäuser Boston, Boston, 2001), pp. 25–103
64.
Zurück zum Zitat T. Nguyen, Stability of multi-dimensional viscous shocks for symmetric systems with variable multiplicities. Duke Math. J. 150 (3), 577–614 (2009)MathSciNetCrossRefMATH T. Nguyen, Stability of multi-dimensional viscous shocks for symmetric systems with variable multiplicities. Duke Math. J. 150 (3), 577–614 (2009)MathSciNetCrossRefMATH
65.
Zurück zum Zitat F.W.U. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974)MATH F.W.U. Olver, Asymptotics and Special Functions (Academic Press, New York, 1974)MATH
66.
Zurück zum Zitat R. L. Pego, M. I. Weinstein, Eigenvalues, and instabilities of solitary waves. Philos. Trans. R. Soc. Lond. Ser. A 340 (1656), 47–94 (1992)MathSciNetCrossRefMATH R. L. Pego, M. I. Weinstein, Eigenvalues, and instabilities of solitary waves. Philos. Trans. R. Soc. Lond. Ser. A 340 (1656), 47–94 (1992)MathSciNetCrossRefMATH
67.
Zurück zum Zitat R. Pemantle, M.C. Wilson, Asymptotic expansions of oscillatory integrals with complex phase, in Algorithmic Probability and Combinatorics. Contemporary Mathematics, vol. 520 (American Mathematical Society, Providence, 2010), pp. 221–240 R. Pemantle, M.C. Wilson, Asymptotic expansions of oscillatory integrals with complex phase, in Algorithmic Probability and Combinatorics. Contemporary Mathematics, vol. 520 (American Mathematical Society, Providence, 2010), pp. 221–240
68.
Zurück zum Zitat R. Plaza, K. Zumbrun, An Evans function approach to spectral stability of small-amplitude shock profiles. J. Discret. Cont. Dyn. Sys. 10, 885–924 (2004)MathSciNetCrossRefMATH R. Plaza, K. Zumbrun, An Evans function approach to spectral stability of small-amplitude shock profiles. J. Discret. Cont. Dyn. Sys. 10, 885–924 (2004)MathSciNetCrossRefMATH
69.
Zurück zum Zitat J.M. Powers, S. Paolucci, Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43 (5), 1088–1099 (2005)CrossRef J.M. Powers, S. Paolucci, Accurate spatial resolution estimates for reactive supersonic flow with detailed chemistry. AIAA J. 43 (5), 1088–1099 (2005)CrossRef
71.
Zurück zum Zitat C.M. Romick, T.D. Aslam, J.D. Powers, The effect of diffusion on the dynamics of unsteady detonations. J. Fluid Mech. 699, 453–464 (2012) C.M. Romick, T.D. Aslam, J.D. Powers, The effect of diffusion on the dynamics of unsteady detonations. J. Fluid Mech. 699, 453–464 (2012)
72.
Zurück zum Zitat J.-M. Roquejoffre, J.-P. Vila, Stability of ZND detonation waves in the Majda combustion model. Asymptot. Anal. 18 (3–4), 329–348 (1998)MathSciNetMATH J.-M. Roquejoffre, J.-P. Vila, Stability of ZND detonation waves in the Majda combustion model. Asymptot. Anal. 18 (3–4), 329–348 (1998)MathSciNetMATH
74.
Zurück zum Zitat D. Serre, Systèmes de lois de conservation I–II (Fondations, Diderot Editeur, Paris, 1996), iv+308pp. ISBN:2-84134-072-4 and xii+300pp. ISBN:2-84134-068-6 D. Serre, Systèmes de lois de conservation I–II (Fondations, Diderot Editeur, Paris, 1996), iv+308pp. ISBN:2-84134-072-4 and xii+300pp. ISBN:2-84134-068-6
75.
Zurück zum Zitat M. Short, An Asymptotic Derivation of the Linear Stability of the Square-Wave Detonation using the Newtonian limit. Proc. R. Soc. Lond. A 452, 2203–2224 (1996)MathSciNetCrossRefMATH M. Short, An Asymptotic Derivation of the Linear Stability of the Square-Wave Detonation using the Newtonian limit. Proc. R. Soc. Lond. A 452, 2203–2224 (1996)MathSciNetCrossRefMATH
76.
Zurück zum Zitat M. Short, Multidimensional linear stability of a detonation wave at high activation energy. SIAM J. Appl. Math. 57 (2), 307–326 (1997)MathSciNetCrossRefMATH M. Short, Multidimensional linear stability of a detonation wave at high activation energy. SIAM J. Appl. Math. 57 (2), 307–326 (1997)MathSciNetCrossRefMATH
77.
Zurück zum Zitat J. Smoller, Shock Waves and Reaction–Diffusion Equations, 2nd edn. Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 258 (Springer, New York, 1994), xxiv+632pp. ISBN:0-387-94259-9 J. Smoller, Shock Waves and Reaction–Diffusion Equations, 2nd edn. Grundlehren der Mathematischen Wissenschaften, Fundamental Principles of Mathematical Sciences, vol. 258 (Springer, New York, 1994), xxiv+632pp. ISBN:0-387-94259-9
78.
Zurück zum Zitat D.S. Stewart, A.R. Kasimov, State of detonation stability theory and its application to propulsion. J. Propuls. Power 22 (6), 1230–1244 (2006)CrossRef D.S. Stewart, A.R. Kasimov, State of detonation stability theory and its application to propulsion. J. Propuls. Power 22 (6), 1230–1244 (2006)CrossRef
81.
Zurück zum Zitat B. Texier, K. Zumbrun, Hopf bifurcation of viscous shock waves in gas dynamics and MHD. Arch. Ration. Mech. Anal. 190, 107–140 (2008)MathSciNetCrossRefMATH B. Texier, K. Zumbrun, Hopf bifurcation of viscous shock waves in gas dynamics and MHD. Arch. Ration. Mech. Anal. 190, 107–140 (2008)MathSciNetCrossRefMATH
82.
Zurück zum Zitat B. Texier, K. Zumbrun, Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to time-periodic galloping solutions. Commun. Math. Phys. 302 (1), 1–51 (2011)MathSciNetCrossRefMATH B. Texier, K. Zumbrun, Transition to longitudinal instability of detonation waves is generically associated with Hopf bifurcation to time-periodic galloping solutions. Commun. Math. Phys. 302 (1), 1–51 (2011)MathSciNetCrossRefMATH
83.
Zurück zum Zitat J. von Neumann, Theory of Detonation Waves, Aberdeen Proving Ground, Maryland: Office of Scientific Research and Development, Report No. 549, Ballistic Research Laboratory File No. X-122 Progress Report to the National Defense Research Committee, Division B, OSRD-549 (April 1, 1942. PB 31090). (4 May 1942), 34 pages J. von Neumann, Theory of Detonation Waves, Aberdeen Proving Ground, Maryland: Office of Scientific Research and Development, Report No. 549, Ballistic Research Laboratory File No. X-122 Progress Report to the National Defense Research Committee, Division B, OSRD-549 (April 1, 1942. PB 31090). (4 May 1942), 34 pages
84.
Zurück zum Zitat J. von Neumann, in John von Neumann, Collected Works, vol. 6. ed. by A.J. Taub (Permagon Press, Elmsford, 1963) [1942], pp. 178–218 J. von Neumann, in John von Neumann, Collected Works, vol. 6. ed. by A.J. Taub (Permagon Press, Elmsford, 1963) [1942], pp. 178–218
85.
Zurück zum Zitat W. Wasow, Linear Turning Point Theory. Applied Mathematical Sciences, vol. 54 (Springer-Verlag, New York, 1985), ix+246pp. W. Wasow, Linear Turning Point Theory. Applied Mathematical Sciences, vol. 54 (Springer-Verlag, New York, 1985), ix+246pp.
86.
Zurück zum Zitat M. Williams, Heteroclinic orbits with fast transitions: a new construction of detonation profiles. Indiana Univ. Math. J. 59 (3), 1145–1209 (2010)MathSciNetCrossRefMATH M. Williams, Heteroclinic orbits with fast transitions: a new construction of detonation profiles. Indiana Univ. Math. J. 59 (3), 1145–1209 (2010)MathSciNetCrossRefMATH
87.
Zurück zum Zitat Y.B. Zel’dovich, [On the theory of the propagation of detonation in gaseous systems]. J. Exp. Theor. Phys. 10, 542–568 (1940). Translated into English in: National Advisory Committee for Aeronautics Technical Memorandum No. 1261 (1950) Y.B. Zel’dovich, [On the theory of the propagation of detonation in gaseous systems]. J. Exp. Theor. Phys. 10, 542–568 (1940). Translated into English in: National Advisory Committee for Aeronautics Technical Memorandum No. 1261 (1950)
88.
Zurück zum Zitat K. Zumbrun, Multidimensional stability of planar viscous shock waves, in Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations and Applications, vol. 47 (Birkhäuser Boston, Boston, 2001), pp. 307–516 K. Zumbrun, Multidimensional stability of planar viscous shock waves, in Advances in the Theory of Shock Waves. Progress in Nonlinear Differential Equations and Applications, vol. 47 (Birkhäuser Boston, Boston, 2001), pp. 307–516
89.
Zurück zum Zitat K. Zumbrun, Stability of large-amplitude shock waves of compressible navier–stokes equations, with an appendix by Helge Kristian Jenssen and Gregory Lyng, in Handbook of Mathematical Fluid Dynamics, vol. III (North-Holland, Amsterdam, 2004), pp. 311–533 K. Zumbrun, Stability of large-amplitude shock waves of compressible navier–stokes equations, with an appendix by Helge Kristian Jenssen and Gregory Lyng, in Handbook of Mathematical Fluid Dynamics, vol. III (North-Holland, Amsterdam, 2004), pp. 311–533
91.
Zurück zum Zitat K. Zumbrun, High-frequency asymptotics and one-dimensional stability of Zel’dovich–von Neumann–Döring detonations in the small-heat release and high-overdrive limits. Arch. Ration. Mech. Anal. 203 (3), 701–717 (2012)MathSciNetCrossRefMATH K. Zumbrun, High-frequency asymptotics and one-dimensional stability of Zel’dovich–von Neumann–Döring detonations in the small-heat release and high-overdrive limits. Arch. Ration. Mech. Anal. 203 (3), 701–717 (2012)MathSciNetCrossRefMATH
92.
Zurück zum Zitat K. Zumbrun, P. Howard, Pointwise semigroup methods and stability of viscous shock waves. Indiana Math. J. 47, 741–871 (1998); Errata, Indiana Univ. Math. J. 51 (4), 1017–1021 (2002) K. Zumbrun, P. Howard, Pointwise semigroup methods and stability of viscous shock waves. Indiana Math. J. 47, 741–871 (1998); Errata, Indiana Univ. Math. J. 51 (4), 1017–1021 (2002)
93.
Zurück zum Zitat K. Zumbrun, D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992 (1999)MathSciNetCrossRefMATH K. Zumbrun, D. Serre, Viscous and inviscid stability of multidimensional planar shock fronts. Indiana Univ. Math. J. 48, 937–992 (1999)MathSciNetCrossRefMATH
Metadaten
Titel
Recent Results on Stability of Planar Detonations
verfasst von
Kevin Zumbrun
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-52042-1_11