Skip to main content
Erschienen in: Physics of Metals and Metallography 4/2022

01.04.2022 | ELECTRICAL AND MAGNETIC PROPERTIES

Review of Modern Theoretical Approaches for Study of Magnetocaloric Materials

verfasst von: V. V. Sokolovskiy, O. N. Miroshkina, V. D. Buchelnikov

Erschienen in: Physics of Metals and Metallography | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For a quarter-century since the discovery of the giant magnetocaloric effect (MCE), the world scientific community has paid great attention to comprehensive studies of magnetically ordered compounds with a first-order magnetostructural phase transformation. The interest in the study is due both to the potential application of the MCE in magnetic cooling technology and the need to provide a deeper understanding of the fundamental concepts of the problems and mechanisms underlying the magnetostructural transition. This review covers the thermodynamic foundations of the MCE, a comparative analysis of magnetocaloric materials with magnetostructural phase transitions, and outlines the phenomenological and microscopic models for predicting magnetocaloric properties developed by the global scientific community over the past 20 years.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. A. Gschneidner Jr. and V. K. Pecharsky, “Magnetocaloric materials,” Annu. Rev. Mater. Sci. 30 (1), 387–429 (2000).CrossRef K. A. Gschneidner Jr. and V. K. Pecharsky, “Magnetocaloric materials,” Annu. Rev. Mater. Sci. 30 (1), 387–429 (2000).CrossRef
2.
Zurück zum Zitat A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, Magnetocaloric Energy Conversion: From Theory to Applications (Springer, Cham, 2016). A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ožbolt, and A. Poredoš, Magnetocaloric Energy Conversion: From Theory to Applications (Springer, Cham, 2016).
3.
Zurück zum Zitat V. K. Pecharsky and K. A. Gschneidner, Jr., “Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290 K,” Appl. Phys. Lett. 70 (24), 3299–3301 (1997).CrossRef V. K. Pecharsky and K. A. Gschneidner, Jr., “Tunable magnetic regenerator alloys with a giant magnetocaloric effect for magnetic refrigeration from 20 to 290 K,” Appl. Phys. Lett. 70 (24), 3299–3301 (1997).CrossRef
4.
Zurück zum Zitat O. Tegus, E. Brück, L. Zhang, K. H. J. Buschow, and F. R. De Boer, “Magnetic-phase transitions and magnetocaloric effects,” Phys. B (Amsterdam) 319 (1–4), 174–192 (2002).CrossRef O. Tegus, E. Brück, L. Zhang, K. H. J. Buschow, and F. R. De Boer, “Magnetic-phase transitions and magnetocaloric effects,” Phys. B (Amsterdam) 319 (1–4), 174–192 (2002).CrossRef
5.
Zurück zum Zitat B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, and Z. Chen, “Review on research of room temperature magnetic refrigeration,” Int. J. Refrig. 26 (6), 622–636 (2003).CrossRef B. F. Yu, Q. Gao, B. Zhang, X. Z. Meng, and Z. Chen, “Review on research of room temperature magnetic refrigeration,” Int. J. Refrig. 26 (6), 622–636 (2003).CrossRef
6.
Zurück zum Zitat K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68 (6), 1479–1539 (2005).CrossRef K. A. Gschneidner Jr., V. K. Pecharsky, and A. O. Tsokol, “Recent developments in magnetocaloric materials,” Rep. Prog. Phys. 68 (6), 1479–1539 (2005).CrossRef
7.
Zurück zum Zitat K. A. Gschneidner Jr. and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” Int. J. Refrig. 31 (6), 945–961 (2008).CrossRef K. A. Gschneidner Jr. and V. K. Pecharsky, “Thirty years of near room temperature magnetic cooling: Where we are today and future prospects,” Int. J. Refrig. 31 (6), 945–961 (2008).CrossRef
8.
Zurück zum Zitat A. Planes, L. Mañosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Condens. Matter Phys. 21 (23), 233201 (2009).CrossRef A. Planes, L. Mañosa, and M. Acet, “Magnetocaloric effect and its relation to shape-memory properties in ferromagnetic Heusler alloys,” J. Condens. Matter Phys. 21 (23), 233201 (2009).CrossRef
9.
Zurück zum Zitat V. D. Buchelnikov and V. V. Sokolovskiy, “Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys,” Phys. Met. Metallogr. 112, 633–665 (2011).CrossRef V. D. Buchelnikov and V. V. Sokolovskiy, “Magnetocaloric effect in Ni–Mn–X (X = Ga, In, Sn, Sb) Heusler alloys,” Phys. Met. Metallogr. 112, 633–665 (2011).CrossRef
10.
Zurück zum Zitat V. Franco, J.S. Blázquez, B. Ingale, and A. Conde, “The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models,” Annu. Rev. Mater. Res. 42, 305–342 (2012).CrossRef V. Franco, J.S. Blázquez, B. Ingale, and A. Conde, “The magnetocaloric effect and magnetic refrigeration near room temperature: materials and models,” Annu. Rev. Mater. Res. 42, 305–342 (2012).CrossRef
11.
Zurück zum Zitat K. G. Sandeman, “Magnetocaloric materials: the search for new systems,” Scr. Mater. 67 (6), 566–571 (2012).CrossRef K. G. Sandeman, “Magnetocaloric materials: the search for new systems,” Scr. Mater. 67 (6), 566–571 (2012).CrossRef
12.
Zurück zum Zitat V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, “Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds,” Phys. Status Solidi B 251 (10), 2104–2113 (2014).CrossRef V. V. Khovaylo, V. V. Rodionova, S. N. Shevyrtalov, and V. Novosad, “Magnetocaloric effect in “reduced” dimensions: thin films, ribbons, and microwires of Heusler alloys and related compounds,” Phys. Status Solidi B 251 (10), 2104–2113 (2014).CrossRef
13.
Zurück zum Zitat X. Moya, S. Kar-Narayan, and N. D. Mathur, “Caloric materials near ferroic phase transitions,” Nat. Mater. 13 (5), 439–450 (2014).CrossRef X. Moya, S. Kar-Narayan, and N. D. Mathur, “Caloric materials near ferroic phase transitions,” Nat. Mater. 13 (5), 439–450 (2014).CrossRef
14.
Zurück zum Zitat O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, and M. Farle, “Mastering hysteresis in magnetocaloric materials,” Philos. Trans. R. Soc., A 374 (2074), 20150308 (2016). O. Gutfleisch, T. Gottschall, M. Fries, D. Benke, I. Radulov, K. P. Skokov, H. Wende, M. Gruner, M. Acet, P. Entel, and M. Farle, “Mastering hysteresis in magnetocaloric materials,” Philos. Trans. R. Soc., A 374 (2074), 20150308 (2016).
15.
Zurück zum Zitat J. Lyubina, “Magnetocaloric materials for energy efficient cooling,” J. Phys. D: Appl. Phys. 50 (5), 053002 (2017).CrossRef J. Lyubina, “Magnetocaloric materials for energy efficient cooling,” J. Phys. D: Appl. Phys. 50 (5), 053002 (2017).CrossRef
16.
Zurück zum Zitat V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018).CrossRef V. Franco, J. S. Blázquez, J. J. Ipus, J. Y. Law, L. M. Moreno-Ramírez, and A. Conde, “Magnetocaloric effect: From materials research to refrigeration devices,” Prog. Mater. Sci. 93, 112–232 (2018).CrossRef
17.
Zurück zum Zitat F. Scheibel, T. Gottschall, A. Taubel, M. Fries, K. P. Skokov, A. Terwey, W. Keune, K. Ollefs, H. Wende, M. Farle, M. Acet, O. Gutfleisch, and M. E. Gruner, “Hysteresis design of magnetocaloric materials—From basic mechanisms to applications,” Energy Technol. 6 (8), 1397–1428 (2018).CrossRef F. Scheibel, T. Gottschall, A. Taubel, M. Fries, K. P. Skokov, A. Terwey, W. Keune, K. Ollefs, H. Wende, M. Farle, M. Acet, O. Gutfleisch, and M. E. Gruner, “Hysteresis design of magnetocaloric materials—From basic mechanisms to applications,” Energy Technol. 6 (8), 1397–1428 (2018).CrossRef
18.
Zurück zum Zitat T. Gottschall, K. P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, and O. Gutfleisch, “Making a cool choice: the materials library of magnetic refrigeration,” Adv. Energy Mater. 9 (34), 1901322 (2019).CrossRef T. Gottschall, K. P. Skokov, M. Fries, A. Taubel, I. Radulov, F. Scheibel, D. Benke, S. Riegg, and O. Gutfleisch, “Making a cool choice: the materials library of magnetic refrigeration,” Adv. Energy Mater. 9 (34), 1901322 (2019).CrossRef
19.
Zurück zum Zitat N. A. Zarkevich and V. I. Zverev, “Viable materials with a giant magnetocaloric effect,” Crystals 10 (9), 815–830 (2020).CrossRef N. A. Zarkevich and V. I. Zverev, “Viable materials with a giant magnetocaloric effect,” Crystals 10 (9), 815–830 (2020).CrossRef
20.
Zurück zum Zitat A. Kitanovsky, “Applications of magnetocaloric materials,” in Encyclopedia of Smart Materials, Vol. 5: Magnetic Materials and Smart Materials for Specific Applications (Elsevier, Amsterdam, 2022), pp. 418–432. A. Kitanovsky, “Applications of magnetocaloric materials,” in Encyclopedia of Smart Materials, Vol. 5: Magnetic Materials and Smart Materials for Specific Applications (Elsevier, Amsterdam, 2022), pp. 418–432.
21.
Zurück zum Zitat V.V. Khovaylo and S. V. Taskaev, “Magnetic refrigeration: from theory to applications,” in Encyclopedia of Smart Materials (Elsevier, Oxford, 2022), pp. 407–417. V.V. Khovaylo and S. V. Taskaev, “Magnetic refrigeration: from theory to applications,” in Encyclopedia of Smart Materials (Elsevier, Oxford, 2022), pp. 407–417.
22.
Zurück zum Zitat P. Entel, M. E. Gruner, S. Fähler, M. Acet, A. Çahır, R. Arróyave, S. Sahoo, T. C. Duong, A. Talapatra, L. Sandratskii, S. Mankowsky, T. Gottschall, O. Gutfleisch, P. Lázpita, V. A. Chernenko, et al., “Probing structural and magnetic instabilities and hysteresis in Heuslers by density functional theory calculations,” Phys. Status Solidi B 255 (2), 1700296 (2018).CrossRef P. Entel, M. E. Gruner, S. Fähler, M. Acet, A. Çahır, R. Arróyave, S. Sahoo, T. C. Duong, A. Talapatra, L. Sandratskii, S. Mankowsky, T. Gottschall, O. Gutfleisch, P. Lázpita, V. A. Chernenko, et al., “Probing structural and magnetic instabilities and hysteresis in Heuslers by density functional theory calculations,” Phys. Status Solidi B 255 (2), 1700296 (2018).CrossRef
23.
Zurück zum Zitat V. V. Khovaylo, K. P. Skokov, Yu. S. Koshkid’ko, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, S. V. Taskaev, H. Miki, T. Takagi, and A. N. Vasiliev, “Adiabatic temperature change at first-order magnetic phase transitions: Ni2.19Mn0.81Ga as a case study,” Phys. Rev. B 78 (6), 060403 (2008).CrossRef V. V. Khovaylo, K. P. Skokov, Yu. S. Koshkid’ko, V. V. Koledov, V. G. Shavrov, V. D. Buchelnikov, S. V. Taskaev, H. Miki, T. Takagi, and A. N. Vasiliev, “Adiabatic temperature change at first-order magnetic phase transitions: Ni2.19Mn0.81Ga as a case study,” Phys. Rev. B 78 (6), 060403 (2008).CrossRef
24.
Zurück zum Zitat A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, A. S. Los, V. I. Nizhankovskii, K. Rogacki, I. S. Tereshina, Yu. S. Koshkid’ko, M. V. Lyange, V. V. Khovaylo, and P. Ari-Gur, “Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe,” J. Appl. Phys. 117 (16), 163903 (2015).CrossRef A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, E. T. Dilmieva, V. G. Shavrov, J. Cwik, A. S. Los, V. I. Nizhankovskii, K. Rogacki, I. S. Tereshina, Yu. S. Koshkid’ko, M. V. Lyange, V. V. Khovaylo, and P. Ari-Gur, “Magnetocaloric and thermomagnetic properties of Ni2.18Mn0.82Ga Heusler alloy in high magnetic fields up to 140 kOe,” J. Appl. Phys. 117 (16), 163903 (2015).CrossRef
25.
Zurück zum Zitat T. Gottschall, K. P. Skokov, R. Burriel, and O. Gutfleisch, “On the S(T) diagram of magnetocaloric materials with first-order transition: kinetic and cyclic effects of Heusler alloys,” Acta Mater. 107, 1–8 (2016).CrossRef T. Gottschall, K. P. Skokov, R. Burriel, and O. Gutfleisch, “On the S(T) diagram of magnetocaloric materials with first-order transition: kinetic and cyclic effects of Heusler alloys,” Acta Mater. 107, 1–8 (2016).CrossRef
26.
Zurück zum Zitat A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul’, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3,” Appl. Phys. Lett. 109 (20), 202407 (2016).CrossRef A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. P. Kamantsev, V. V. Koledov, A. V. Mashirov, V. G. Shavrov, R. M. Grechishkin, A. R. Kaul’, and V. Sampath, “Reversible magnetocaloric effect in materials with first order phase transitions in cyclic magnetic fields: Fe48Rh52 and Sm0.6Sr0.4MnO3,” Appl. Phys. Lett. 109 (20), 202407 (2016).CrossRef
27.
Zurück zum Zitat A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. V. Mashirov, E. T. Dil’mieva, V. V. Koledov, and V. G. Shavrov, “Degradation of the magnetocaloric effect in Ni49.3Mn40.4In10.3 in a cyclic magnetic field,” Solid State Phys. 62, 837–840 (2020).CrossRef A. M. Aliev, A. B. Batdalov, L. N. Khanov, A. V. Mashirov, E. T. Dil’mieva, V. V. Koledov, and V. G. Shavrov, “Degradation of the magnetocaloric effect in Ni49.3Mn40.4In10.3 in a cyclic magnetic field,” Solid State Phys. 62, 837–840 (2020).CrossRef
28.
Zurück zum Zitat N. A. De Oliveira and P. J. von Ranke, “Theoretical aspects of the magnetocaloric effect,” Phys. Rep. 489 (4–5), 89–159 (2010).CrossRef N. A. De Oliveira and P. J. von Ranke, “Theoretical aspects of the magnetocaloric effect,” Phys. Rep. 489 (4–5), 89–159 (2010).CrossRef
29.
Zurück zum Zitat N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric and barocaloric effects: theoretical description and trends,” Int. J. Refrig. 37, 237–248 (2014).CrossRef N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric and barocaloric effects: theoretical description and trends,” Int. J. Refrig. 37, 237–248 (2014).CrossRef
30.
Zurück zum Zitat A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003).CrossRef A. M. Tishin and Y. I. Spichkin, The Magnetocaloric Effect and its Applications (CRC Press, Boca Raton, FL, 2003).CrossRef
31.
Zurück zum Zitat V. Basso, Basics of the magnetocaloric effect, 2017. arXiv:1702.08347. V. Basso, Basics of the magnetocaloric effect, 2017. arXiv:1702.08347.
32.
Zurück zum Zitat T. Kihara, X. Xu, W. Ito, R. Kainuma, and M. Tokunaga, “Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn,” Phys. Rev. B 90 (21), 214409 (2014).CrossRef T. Kihara, X. Xu, W. Ito, R. Kainuma, and M. Tokunaga, “Direct measurements of inverse magnetocaloric effects in metamagnetic shape-memory alloy NiCoMnIn,” Phys. Rev. B 90 (21), 214409 (2014).CrossRef
33.
Zurück zum Zitat V.V. Khovailo, K. Oikawa, T. Abe, and T. Takagi, “Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni2 + xMn1 – xGa,” J. Appl. Phys. 93 (10), 8483–8485 (2003).CrossRef V.V. Khovailo, K. Oikawa, T. Abe, and T. Takagi, “Entropy change at the martensitic transformation in ferromagnetic shape memory alloys Ni2 + xMn1 – xGa,” J. Appl. Phys. 93 (10), 8483–8485 (2003).CrossRef
34.
Zurück zum Zitat V. Khovaylo, “Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys,” J. Alloys Compd. 577, S362–S366 (2013).CrossRef V. Khovaylo, “Inconvenient magnetocaloric effect in ferromagnetic shape memory alloys,” J. Alloys Compd. 577, S362–S366 (2013).CrossRef
35.
Zurück zum Zitat M. Wolloch, M. E. Gruner, W. Keune, P. Mohn, J. Redinger, F. Hofer, D. Suess, R. Podloucky, J. Landers, S. Salamon, F. Scheibel, D. Spoddig, R. Witte, B. Roldan Cuenya, O. Gutfleisch, et al., “Impact of lattice dynamics on the phase stability of metamagnetic FeRh: bulk and thin films,” Phys. Rev. B 94 (17), 174435 (2016).CrossRef M. Wolloch, M. E. Gruner, W. Keune, P. Mohn, J. Redinger, F. Hofer, D. Suess, R. Podloucky, J. Landers, S. Salamon, F. Scheibel, D. Spoddig, R. Witte, B. Roldan Cuenya, O. Gutfleisch, et al., “Impact of lattice dynamics on the phase stability of metamagnetic FeRh: bulk and thin films,” Phys. Rev. B 94 (17), 174435 (2016).CrossRef
36.
Zurück zum Zitat R. M. Vieira, O. Eriksson, A. Bergman, and H. C. Herper, “High-throughput compatible approach for entropy estimation in magnetocaloric materials: FeRh as a test case,” J. Alloys Compd. 857, 157811 (2021).CrossRef R. M. Vieira, O. Eriksson, A. Bergman, and H. C. Herper, “High-throughput compatible approach for entropy estimation in magnetocaloric materials: FeRh as a test case,” J. Alloys Compd. 857, 157811 (2021).CrossRef
37.
Zurück zum Zitat P. J. von Ranke, N. A. De Oliveira, and S. Gama, “Understanding the influence of the first-order magnetic phase transition on the magnetocaloric effect: application to Gd5(SixGe1 – x)4,” J. Magn. Magn. Mater. 277 (1–2), 78–83 (2004).CrossRef P. J. von Ranke, N. A. De Oliveira, and S. Gama, “Understanding the influence of the first-order magnetic phase transition on the magnetocaloric effect: application to Gd5(SixGe1 – x)4,” J. Magn. Magn. Mater. 277 (1–2), 78–83 (2004).CrossRef
38.
Zurück zum Zitat A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, “Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys,” J. Magn. Magn. Mater. 67 (1), 65–74 (1987).CrossRef A. I. Liechtenstein, M. I. Katsnelson, V. P. Antropov, and V. A. Gubanov, “Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys,” J. Magn. Magn. Mater. 67 (1), 65–74 (1987).CrossRef
39.
Zurück zum Zitat P. Entel, M. Siewert, M. E. Gruner, H. C. Herper, D. Comtesse, R. Arróyave, N. Singh, A. Talapatra, V. V. Sokolovskiy, V. D. Buchelnikov, F. Albertini, L. Righi, and V. A. Chernenko, “Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles,” Eur. Phys. J. B 86 (2), 65–11 (2013).CrossRef P. Entel, M. Siewert, M. E. Gruner, H. C. Herper, D. Comtesse, R. Arróyave, N. Singh, A. Talapatra, V. V. Sokolovskiy, V. D. Buchelnikov, F. Albertini, L. Righi, and V. A. Chernenko, “Complex magnetic ordering as a driving mechanism of multifunctional properties of Heusler alloys from first principles,” Eur. Phys. J. B 86 (2), 65–11 (2013).CrossRef
40.
Zurück zum Zitat P. Entel, M. Siewert, M. E. Gruner, A. Chakrabarti, S. R. Barman, V. V. Sokolovskiy, and V. D. Buchelnikov, “Optimization of smart Heusler alloys from first principles,” J. Alloys Compd. 577, S107–S112 (2013).CrossRef P. Entel, M. Siewert, M. E. Gruner, A. Chakrabarti, S. R. Barman, V. V. Sokolovskiy, and V. D. Buchelnikov, “Optimization of smart Heusler alloys from first principles,” J. Alloys Compd. 577, S107–S112 (2013).CrossRef
41.
Zurück zum Zitat P. Entel, M. E. Gruner, D. Comtesse, V. V. Sokolovskiy, and V. D. Buchelnikov, “Interacting magnetic cluster-spin glasses and strain glasses in Ni–Mn based Heusler structured intermetallics,” Phys. Status Solidi B 251 (10), 2135–2148 (2014).CrossRef P. Entel, M. E. Gruner, D. Comtesse, V. V. Sokolovskiy, and V. D. Buchelnikov, “Interacting magnetic cluster-spin glasses and strain glasses in Ni–Mn based Heusler structured intermetallics,” Phys. Status Solidi B 251 (10), 2135–2148 (2014).CrossRef
42.
Zurück zum Zitat A. O. Pecharsky, K. A. Gschneidner, Jr., V. K. Pecharsky, and C. E. Schindler, “The room temperature metastable/stable phase relationships in the pseudo-binary Gd5Si4–Gd5Ge4 system,” J. Alloys Compd. 338 (1–2), 126–135 (2002).CrossRef A. O. Pecharsky, K. A. Gschneidner, Jr., V. K. Pecharsky, and C. E. Schindler, “The room temperature metastable/stable phase relationships in the pseudo-binary Gd5Si4–Gd5Ge4 system,” J. Alloys Compd. 338 (1–2), 126–135 (2002).CrossRef
43.
Zurück zum Zitat L. Morellon, P. A. Algarabel, M. R. Ibarra, J. Blasco, B. Garcia-Landa, Z. Arnold, and F. Albertini, “Magnetic-field-induced structural phase transition in Gd5(Si1.8Ge2.2),” Phys. Rev. B 58 (22), R14721 (1998).CrossRef L. Morellon, P. A. Algarabel, M. R. Ibarra, J. Blasco, B. Garcia-Landa, Z. Arnold, and F. Albertini, “Magnetic-field-induced structural phase transition in Gd5(Si1.8Ge2.2),” Phys. Rev. B 58 (22), R14721 (1998).CrossRef
44.
Zurück zum Zitat L. Morellon, Z. Arnold, C. Magen, C. Ritter, O. Prokhnenko, Y. Skorokhod, P. A. Algarabel, M. R. Ibarra, and J. Kamarad, “Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2,” Phys. Rev. Lett. 93 (13), 137201 (2004).CrossRef L. Morellon, Z. Arnold, C. Magen, C. Ritter, O. Prokhnenko, Y. Skorokhod, P. A. Algarabel, M. R. Ibarra, and J. Kamarad, “Pressure enhancement of the giant magnetocaloric effect in Tb5Si2Ge2,” Phys. Rev. Lett. 93 (13), 137201 (2004).CrossRef
45.
Zurück zum Zitat A. O. Pecharsky, K. A. Gschneidner, Jr., and V. K. Pecharsky, “The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2,” J. Appl. Phys. 93 (8), 4722–4728 (2003).CrossRef A. O. Pecharsky, K. A. Gschneidner, Jr., and V. K. Pecharsky, “The giant magnetocaloric effect of optimally prepared Gd5Si2Ge2,” J. Appl. Phys. 93 (8), 4722–4728 (2003).CrossRef
46.
Zurück zum Zitat G. S. Smith, A. G. Tharp, and W. Johnson, “Rare earth–germanium and silicon compounds at 5 : 4 and 5 : 3 compositions,” Acta Crystallogr. 22 (6), 940–943 (1967).CrossRef G. S. Smith, A. G. Tharp, and W. Johnson, “Rare earth–germanium and silicon compounds at 5 : 4 and 5 : 3 compositions,” Acta Crystallogr. 22 (6), 940–943 (1967).CrossRef
47.
Zurück zum Zitat V. K. Pecharsky and K. A. Gschneidner Jr., “Phase relationships and crystallography in the pseudobinary system Gd5Si4–Gd5Ge4,” J. Alloys Compd. 260 (1–2), 98–106 (1997).CrossRef V. K. Pecharsky and K. A. Gschneidner Jr., “Phase relationships and crystallography in the pseudobinary system Gd5Si4–Gd5Ge4,” J. Alloys Compd. 260 (1–2), 98–106 (1997).CrossRef
48.
Zurück zum Zitat T. A. Lograsso, D. L. Schlagel, and A. O. Pecharsky, “Synthesis and characterization of single crystalline Gd5(SixGe1 – x)4 by the Bridgman method,” J. Alloys Compd. 393 (1–2), 141–146 (2005).CrossRef T. A. Lograsso, D. L. Schlagel, and A. O. Pecharsky, “Synthesis and characterization of single crystalline Gd5(SixGe1 – x)4 by the Bridgman method,” J. Alloys Compd. 393 (1–2), 141–146 (2005).CrossRef
49.
Zurück zum Zitat M. Bacmann, J.-L. Soubeyroux, R. Barrett, D. Fruchart, R. Zach, S. Niziol, and R. Fruchart, “Magnetoelastic transition and antiferro-ferromagnetic ordering in the system MnFeP1 – yAsy,” J. Magn. Magn. Mater. 134 (1), 59–67 (1994).CrossRef M. Bacmann, J.-L. Soubeyroux, R. Barrett, D. Fruchart, R. Zach, S. Niziol, and R. Fruchart, “Magnetoelastic transition and antiferro-ferromagnetic ordering in the system MnFeP1 – yAsy,” J. Magn. Magn. Mater. 134 (1), 59–67 (1994).CrossRef
50.
Zurück zum Zitat M. Yuzuri and M. Yamada, “On the magnetic properties of the compound Mn2As,” J. Phys. Soc. Japan. 15 (10), 1845–1850 (1960).CrossRef M. Yuzuri and M. Yamada, “On the magnetic properties of the compound Mn2As,” J. Phys. Soc. Japan. 15 (10), 1845–1850 (1960).CrossRef
51.
Zurück zum Zitat H. Ido, “Magnetic and crystallographic studies of compounds Mn1 – xCrxAs (0.3 ≥ x > 0),” J. Phys. Soc. Jpn. 27 (2), 318–321 (1969).CrossRef H. Ido, “Magnetic and crystallographic studies of compounds Mn1 – xCrxAs (0.3 ≥ x > 0),” J. Phys. Soc. Jpn. 27 (2), 318–321 (1969).CrossRef
52.
Zurück zum Zitat F. Wang, G.-J. Wang, F.-X. Hu, A. Kurbakov, B.‑G. Shen, and Z.-H. Cheng, “Strong interplay between structure and magnetism in the giant magnetocaloric intermetallic compound LaFe11.4Si1.6: a neutron diffraction study,” J. Condens. Matter Phys. 15 (30), 5269–5278 (2003).CrossRef F. Wang, G.-J. Wang, F.-X. Hu, A. Kurbakov, B.‑G. Shen, and Z.-H. Cheng, “Strong interplay between structure and magnetism in the giant magnetocaloric intermetallic compound LaFe11.4Si1.6: a neutron diffraction study,” J. Condens. Matter Phys. 15 (30), 5269–5278 (2003).CrossRef
53.
Zurück zum Zitat B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, D. Shindo, and K. Itagaki, “Low temperature crystal structure of Ni–Mn–Ga alloys,” J. Alloys Compd. 290 (1–2), 137–143 (1999).CrossRef B. Wedel, M. Suzuki, Y. Murakami, C. Wedel, T. Suzuki, D. Shindo, and K. Itagaki, “Low temperature crystal structure of Ni–Mn–Ga alloys,” J. Alloys Compd. 290 (1–2), 137–143 (1999).CrossRef
54.
Zurück zum Zitat P. Jernberg, A. A. Yousif, L. Häggström, and Y. Andersson, “A Mössbauer study of Fe2P1 – xSix (x ≤ 0.35),” J. Solid State Chem. 53 (3), 313–322 (1984).CrossRef P. Jernberg, A. A. Yousif, L. Häggström, and Y. Andersson, “A Mössbauer study of Fe2P1 – xSix (x ≤ 0.35),” J. Solid State Chem. 53 (3), 313–322 (1984).CrossRef
55.
Zurück zum Zitat E. Brück, M. Ilyn, A. M. Tishin, and O. Tegus, “Magnetocaloric effects in MnFeP1 – xAsx-based compounds,” J. Magn. Magn. Mater. 290, 8–13 (2005).CrossRef E. Brück, M. Ilyn, A. M. Tishin, and O. Tegus, “Magnetocaloric effects in MnFeP1 – xAsx-based compounds,” J. Magn. Magn. Mater. 290, 8–13 (2005).CrossRef
56.
Zurück zum Zitat H. Wada and Y. Tanabe, “Giant magnetocaloric effect of MnAs1 – xSbx,” Appl. Phys. Lett. 79 (20), 3302–3304 (2001).CrossRef H. Wada and Y. Tanabe, “Giant magnetocaloric effect of MnAs1 – xSbx,” Appl. Phys. Lett. 79 (20), 3302–3304 (2001).CrossRef
57.
Zurück zum Zitat H. Wada, T. Morikawa, K. Taniguchi, T. Shibata, Y. Yamada, and Y. Akishige, “Giant magnetocaloric effect of MnAs1 – xSbx in the vicinity of first-order magnetic transition,” Phys. B (Amsterdam) 328 (1–2), 114–116 (2003).CrossRef H. Wada, T. Morikawa, K. Taniguchi, T. Shibata, Y. Yamada, and Y. Akishige, “Giant magnetocaloric effect of MnAs1 – xSbx in the vicinity of first-order magnetic transition,” Phys. B (Amsterdam) 328 (1–2), 114–116 (2003).CrossRef
58.
Zurück zum Zitat V. Raghavan, “Fe–La–Si (iron-lanthanum-silicon),” J. Phase Equilib. Diffus. 22 (2), 158–159 (2001).CrossRef V. Raghavan, “Fe–La–Si (iron-lanthanum-silicon),” J. Phase Equilib. Diffus. 22 (2), 158–159 (2001).CrossRef
59.
Zurück zum Zitat A. Fujita, S. Fujieda, K. Fukamichi, H. Mitamura, and T. Goto, “Itinerant-electron metamagnetic transition and large magnetovolume effects in La(FexSi1 – x)13 compounds,” Phys. Rev. B 65 (1), 014410 (2001).CrossRef A. Fujita, S. Fujieda, K. Fukamichi, H. Mitamura, and T. Goto, “Itinerant-electron metamagnetic transition and large magnetovolume effects in La(FexSi1 – x)13 compounds,” Phys. Rev. B 65 (1), 014410 (2001).CrossRef
60.
Zurück zum Zitat A. Fujita and K. Fukamichi, “Giant volume magnetostriction due to the itinerant electron metamagnetic transition in La(Fe–Si)13 compounds,” IEEE Trans. Magn. 35 (5), 3796–3798 (1999).CrossRef A. Fujita and K. Fukamichi, “Giant volume magnetostriction due to the itinerant electron metamagnetic transition in La(Fe–Si)13 compounds,” IEEE Trans. Magn. 35 (5), 3796–3798 (1999).CrossRef
61.
Zurück zum Zitat S. Fujieda, A. Fujita, and K. Fukamichi, “Large magnetocaloric effect in La(FexSi1 – x)13 itinerant-electron metamagnetic compounds,” Appl. Phys. Lett. 81 (7), 1276–1278 (2002).CrossRef S. Fujieda, A. Fujita, and K. Fukamichi, “Large magnetocaloric effect in La(FexSi1 – x)13 itinerant-electron metamagnetic compounds,” Appl. Phys. Lett. 81 (7), 1276–1278 (2002).CrossRef
62.
Zurück zum Zitat A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, “Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1 – x)13 compounds and their hydrides,” Phys. Rev. B 67 (10), 104416 (2003).CrossRef A. Fujita, S. Fujieda, Y. Hasegawa, and K. Fukamichi, “Itinerant-electron metamagnetic transition and large magnetocaloric effects in La(FexSi1 – x)13 compounds and their hydrides,” Phys. Rev. B 67 (10), 104416 (2003).CrossRef
63.
Zurück zum Zitat P. A. Algarabel, M. R. Ibarra, C. Marquina, A. Del Moral, J. Galibert, M. Iqbal, and S. Askenazy, “Giant room-temperature magnetoresistance in the FeRh alloy,” Appl. Phys. Lett. 66 (22), 3061–3063 (1995).CrossRef P. A. Algarabel, M. R. Ibarra, C. Marquina, A. Del Moral, J. Galibert, M. Iqbal, and S. Askenazy, “Giant room-temperature magnetoresistance in the FeRh alloy,” Appl. Phys. Lett. 66 (22), 3061–3063 (1995).CrossRef
64.
Zurück zum Zitat M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, “Alloys of the Fe–Rh system as a new class of working material for magnetic refrigerators,” Cryogenics 32 (10), 867–872 (1992).CrossRef M. P. Annaorazov, K. A. Asatryan, G. Myalikgulyev, S. A. Nikitin, A. M. Tishin, and A. L. Tyurin, “Alloys of the Fe–Rh system as a new class of working material for magnetic refrigerators,” Cryogenics 32 (10), 867–872 (1992).CrossRef
65.
Zurück zum Zitat A. Chirkova, K. P. Skokov, L. Schultz, N. V. Baranov, O. Gutfleisch, and T. G. Woodcock, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016).CrossRef A. Chirkova, K. P. Skokov, L. Schultz, N. V. Baranov, O. Gutfleisch, and T. G. Woodcock, “Giant adiabatic temperature change in FeRh alloys evidenced by direct measurements under cyclic conditions,” Acta Mater. 106, 15–21 (2016).CrossRef
66.
Zurück zum Zitat A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46 (6), 559–588 (2003).CrossRef A. N. Vasil’ev, V. D. Buchel’nikov, T. Takagi, V. V. Khovailo, and E. I. Estrin, “Shape memory ferromagnets,” Phys.-Usp. 46 (6), 559–588 (2003).CrossRef
67.
Zurück zum Zitat V. D. Buchel’nikov, A. N. Vasiliev, V. V. Koledov, S. V. Taskaev, V. V. Khovaylo, and V. G. Shavrov, “Magnetic shape-memory alloys: phase transitions and functional properties,” Phys.-Usp. 49 (8), 871–877 (2006).CrossRef V. D. Buchel’nikov, A. N. Vasiliev, V. V. Koledov, S. V. Taskaev, V. V. Khovaylo, and V. G. Shavrov, “Magnetic shape-memory alloys: phase transitions and functional properties,” Phys.-Usp. 49 (8), 871–877 (2006).CrossRef
68.
Zurück zum Zitat P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modelling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39 (5), 865–889 (2006).CrossRef P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper, and E. F. Wassermann, “Modelling the phase diagram of magnetic shape memory Heusler alloys,” J. Phys. D: Appl. Phys. 39 (5), 865–889 (2006).CrossRef
69.
Zurück zum Zitat P. Entel, V. D. Buchelnikov, M. E. Gruner, A. Hucht, V. V. Khovailo, S. K. Nayak, and A. T. Zayak, “Shape memory alloys: a summary of recent achievements,” Mater. Sci. Forum. 583, 21–41 (2008).CrossRef P. Entel, V. D. Buchelnikov, M. E. Gruner, A. Hucht, V. V. Khovailo, S. K. Nayak, and A. T. Zayak, “Shape memory alloys: a summary of recent achievements,” Mater. Sci. Forum. 583, 21–41 (2008).CrossRef
70.
Zurück zum Zitat P. Entel, M. E. Gruner, A. Dannenberg, M. Siewert, S. K. Nayak, H. C. Herper, and V. D. Buchelnikov, “Fundamental aspects of magnetic shape memory alloys: insights from ab initio and Monte Carlo studies,” Mater. Sci. Forum. 635, 3–12 (2010).CrossRef P. Entel, M. E. Gruner, A. Dannenberg, M. Siewert, S. K. Nayak, H. C. Herper, and V. D. Buchelnikov, “Fundamental aspects of magnetic shape memory alloys: insights from ab initio and Monte Carlo studies,” Mater. Sci. Forum. 635, 3–12 (2010).CrossRef
71.
Zurück zum Zitat T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39 (1), 1–50 (2011).CrossRef T. Graf, C. Felser, and S. S. P. Parkin, “Simple rules for the understanding of Heusler compounds,” Prog. Solid State Chem. 39 (1), 1–50 (2011).CrossRef
72.
Zurück zum Zitat P. Entel, A. Dannenberg, M. Siewert, H. C. Herper, M. E. Gruner, V. D. Buchelnikov, and V. A. Chernenko, Composition-dependent basics of smart Heusler materials from first-principles calculations,” Mater. Sci. Forum. 684, 1–29 (2011).CrossRef P. Entel, A. Dannenberg, M. Siewert, H. C. Herper, M. E. Gruner, V. D. Buchelnikov, and V. A. Chernenko, Composition-dependent basics of smart Heusler materials from first-principles calculations,” Mater. Sci. Forum. 684, 1–29 (2011).CrossRef
73.
Zurück zum Zitat P. Entel, M. E. Gruner, A. Hucht, A. Dannenberg, M. Siewert, H. C. Herper, T. Kakeshita, T. Fukuda, V. V. Sokolovskiy, and V. D. Buchelnikov, “Phase diagrams of conventional and inverse functional magnetic Heusler alloys: new theoretical and experimental investigations,” in Disorder and Strain-Induced Complexity in Functional Materials (Springer, New York, 2012), pp. 19–47. P. Entel, M. E. Gruner, A. Hucht, A. Dannenberg, M. Siewert, H. C. Herper, T. Kakeshita, T. Fukuda, V. V. Sokolovskiy, and V. D. Buchelnikov, “Phase diagrams of conventional and inverse functional magnetic Heusler alloys: new theoretical and experimental investigations,” in Disorder and Strain-Induced Complexity in Functional Materials (Springer, New York, 2012), pp. 19–47.
74.
Zurück zum Zitat C. Felser, L. Wollmann, S. Chadov, G. H. Fecher, and S. S. P. Parkin, “Basics and prospective of magnetic Heusler compounds,” APL Mater. 3 (4), 041518 (2015).CrossRef C. Felser, L. Wollmann, S. Chadov, G. H. Fecher, and S. S. P. Parkin, “Basics and prospective of magnetic Heusler compounds,” APL Mater. 3 (4), 041518 (2015).CrossRef
75.
Zurück zum Zitat P. Entel, M. E. Gruner, M. Acet, A. Çakır, R. Arróyave, T. Duong, S. Sahoo, S. Fähler, and V. V. Sokolovskiy, “Properties and decomposition of Heusler alloys,” Energy Technol. 6 (8), 1478–1490 (2018).CrossRef P. Entel, M. E. Gruner, M. Acet, A. Çakır, R. Arróyave, T. Duong, S. Sahoo, S. Fähler, and V. V. Sokolovskiy, “Properties and decomposition of Heusler alloys,” Energy Technol. 6 (8), 1478–1490 (2018).CrossRef
76.
Zurück zum Zitat V. A. Chernenko, V. A. L’vov, E. Cesari, and J. M. Barandiaran, “Fundamentals of magnetocaloric effect in magnetic shape memory alloys,” in Handbook of Magnetic Materials (Elsevier, Amsterdam, 2019), Vol. 28, pp. 1–45. V. A. Chernenko, V. A. L’vov, E. Cesari, and J. M. Barandiaran, “Fundamentals of magnetocaloric effect in magnetic shape memory alloys,” in Handbook of Magnetic Materials (Elsevier, Amsterdam, 2019), Vol. 28, pp. 1–45.
77.
Zurück zum Zitat V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, “Phase transitions in Ni2 + xMn1 – xGa with a high Ni excess,” Phys. Rev. B 72 (22), 224408 (2005).CrossRef V. V. Khovaylo, V. D. Buchelnikov, R. Kainuma, V. V. Koledov, M. Ohtsuka, V. G. Shavrov, T. Takagi, S. V. Taskaev, and A. N. Vasiliev, “Phase transitions in Ni2 + xMn1 – xGa with a high Ni excess,” Phys. Rev. B 72 (22), 224408 (2005).CrossRef
78.
Zurück zum Zitat P. J. Brown, A. P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K. U. Neumann, K. Oikawa, B. Ouladdiaf, and K. R. A. Ziebeck, “The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56,” J. Condens. Matter Phys. 18 (7), 2249 (2006).CrossRef P. J. Brown, A. P. Gandy, K. Ishida, R. Kainuma, T. Kanomata, K. U. Neumann, K. Oikawa, B. Ouladdiaf, and K. R. A. Ziebeck, “The magnetic and structural properties of the magnetic shape memory compound Ni2Mn1.44Sn0.56,” J. Condens. Matter Phys. 18 (7), 2249 (2006).CrossRef
79.
Zurück zum Zitat T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys,” Phys. Rev. B 72 (1), 014412 (2005).CrossRef T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Martensitic transitions and the nature of ferromagnetism in the austenitic and martensitic states of Ni–Mn–Sn alloys,” Phys. Rev. B 72 (1), 014412 (2005).CrossRef
80.
Zurück zum Zitat T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys,” Phys. Rev. B 73 (17), 174413 (2006).CrossRef T. Krenke, M. Acet, E. F. Wassermann, X. Moya, L. Mañosa, and A. Planes, “Ferromagnetism in the austenitic and martensitic states of Ni–Mn–In alloys,” Phys. Rev. B 73 (17), 174413 (2006).CrossRef
81.
Zurück zum Zitat M. Khan, N. Ali, and S. Stadler, “Inverse magnetocaloric effect in ferromagnetic Ni50Mn37 + xSb13 – x Heusler alloys,” J. Appl. Phys. 101 (5), 053919 (2007).CrossRef M. Khan, N. Ali, and S. Stadler, “Inverse magnetocaloric effect in ferromagnetic Ni50Mn37 + xSb13 – x Heusler alloys,” J. Appl. Phys. 101 (5), 053919 (2007).CrossRef
82.
Zurück zum Zitat S. Aksoy, M. Acet, P. P. Deen, L. Mañosa, and A. Planes, “Magnetic correlations in martensitic NiMn-based Heusler shape-memory alloys: neutron polarization analysis,” Phys. Rev. B 79, 212401 (2009).CrossRef S. Aksoy, M. Acet, P. P. Deen, L. Mañosa, and A. Planes, “Magnetic correlations in martensitic NiMn-based Heusler shape-memory alloys: neutron polarization analysis,” Phys. Rev. B 79, 212401 (2009).CrossRef
83.
Zurück zum Zitat R. Y. Umetsu, R. Kainuma, Y. Amako, Y. Taniguchi, T. Kanomata, K. Fukushima, A. Fujita, K. Oikawa, and K. Ishida, “Mössbauer study on martensite phase in \({\text{N}}{{{\text{i}}}_{{{\text{50}}}}}{\text{Mn}}_{{{\text{36}}{\text{.5}}}}^{{}}{\text{Fe}}_{{0.5}}^{{57}}{\text{S}}{{{\text{n}}}_{{{\text{13}}}}}\) metamagnetic shape memory alloy,” Appl. Phys. Lett. 93 (4), 042509 (2008).CrossRef R. Y. Umetsu, R. Kainuma, Y. Amako, Y. Taniguchi, T. Kanomata, K. Fukushima, A. Fujita, K. Oikawa, and K. Ishida, “Mössbauer study on martensite phase in \({\text{N}}{{{\text{i}}}_{{{\text{50}}}}}{\text{Mn}}_{{{\text{36}}{\text{.5}}}}^{{}}{\text{Fe}}_{{0.5}}^{{57}}{\text{S}}{{{\text{n}}}_{{{\text{13}}}}}\) metamagnetic shape memory alloy,” Appl. Phys. Lett. 93 (4), 042509 (2008).CrossRef
84.
Zurück zum Zitat V. V. Khovaylo, K. P. Skokov, O. Gutfleisch, H. Miki, T. Takagi, T. Kanomata, V. V. Koledov, V. G. Shavrov, G. Wang, E. Palacios, J. Bartolomé, and R. Burriel, “Peculiarities of the magnetocaloric properties in Ni–Mn–Sn ferromagnetic shape memory alloys,” Phys. Rev. B 81 (21), 214406 (2010).CrossRef V. V. Khovaylo, K. P. Skokov, O. Gutfleisch, H. Miki, T. Takagi, T. Kanomata, V. V. Koledov, V. G. Shavrov, G. Wang, E. Palacios, J. Bartolomé, and R. Burriel, “Peculiarities of the magnetocaloric properties in Ni–Mn–Sn ferromagnetic shape memory alloys,” Phys. Rev. B 81 (21), 214406 (2010).CrossRef
85.
Zurück zum Zitat J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nat. Mater. 11 (7), 620–626 (2012).CrossRef J. Liu, T. Gottschall, K. P. Skokov, J. D. Moore, and O. Gutfleisch, “Giant magnetocaloric effect driven by structural transitions,” Nat. Mater. 11 (7), 620–626 (2012).CrossRef
86.
Zurück zum Zitat T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106 (2), 021901 (2015).CrossRef T. Gottschall, K. P. Skokov, B. Frincu, and O. Gutfleisch, “Large reversible magnetocaloric effect in Ni–Mn–In–Co,” Appl. Phys. Lett. 106 (2), 021901 (2015).CrossRef
87.
Zurück zum Zitat K. P. Skokov, A. Yu. Karpenkov, D. Yu. Karpenkov, and O. Gutfleisch, “The maximal cooling power of magnetic and thermoelectric refrigerators with La(FeCoSi)13 alloys,” J. Appl. Phys. 113 (17), 17A945 (2013). K. P. Skokov, A. Yu. Karpenkov, D. Yu. Karpenkov, and O. Gutfleisch, “The maximal cooling power of magnetic and thermoelectric refrigerators with La(FeCoSi)13 alloys,” J. Appl. Phys. 113 (17), 17A945 (2013).
88.
Zurück zum Zitat A. A. Cherechukin, T. Takagi, M. Matsumoto, and V. D. Buchel’nikov, “Magnetocaloric effect in Ni2 + xMn1 – xGa Heusler alloys,” Phys. Lett. A 326 (1–2), 146–151 (2004).CrossRef A. A. Cherechukin, T. Takagi, M. Matsumoto, and V. D. Buchel’nikov, “Magnetocaloric effect in Ni2 + xMn1 – xGa Heusler alloys,” Phys. Lett. A 326 (1–2), 146–151 (2004).CrossRef
89.
Zurück zum Zitat V. V. Khovaylo, K. P. Skokov, S. V. Taskaev, D. Yu. Karpenkov, E. T. Dilmieva, V. V. Koledov, Yu. S. Koshkidko, V. G. Shavrov, V. D. Buchelnikov, V. V. Sokolovskiy, I. Bobrovskij, A. Dyakonov, R. Chatterjee, and A. N. Vasiliev, “Magnetocaloric properties of Ni2 + xMn1 – xGa with coupled magnetostructural phase transition,” J. Appl. Phys. 127 (17), 173903 (2020).CrossRef V. V. Khovaylo, K. P. Skokov, S. V. Taskaev, D. Yu. Karpenkov, E. T. Dilmieva, V. V. Koledov, Yu. S. Koshkidko, V. G. Shavrov, V. D. Buchelnikov, V. V. Sokolovskiy, I. Bobrovskij, A. Dyakonov, R. Chatterjee, and A. N. Vasiliev, “Magnetocaloric properties of Ni2 + xMn1 – xGa with coupled magnetostructural phase transition,” J. Appl. Phys. 127 (17), 173903 (2020).CrossRef
90.
Zurück zum Zitat S. Fabbrici, G. Porcari, F. Cugini, M. Solzi, J. Kamarad, Z. Arnold, R. Cabassi, and F. Albertini, “Co and In doped Ni–Mn–Ga magnetic shape memory alloys: a thorough structural, magnetic and magnetocaloric study,” Entropy 16 (4), 2204–2222 (2014).CrossRef S. Fabbrici, G. Porcari, F. Cugini, M. Solzi, J. Kamarad, Z. Arnold, R. Cabassi, and F. Albertini, “Co and In doped Ni–Mn–Ga magnetic shape memory alloys: a thorough structural, magnetic and magnetocaloric study,” Entropy 16 (4), 2204–2222 (2014).CrossRef
91.
Zurück zum Zitat A. Taubel, T. Gottschall, M. Fries, S. Riegg, C. Soon, K. P. Skokov, and O. Gutfleisch, “A comparative study on the magnetocaloric properties of Ni–Mn–X(–Co) Heusler alloys,” Phys. Status Solidi B. 255 (2), 1700331 (2018).CrossRef A. Taubel, T. Gottschall, M. Fries, S. Riegg, C. Soon, K. P. Skokov, and O. Gutfleisch, “A comparative study on the magnetocaloric properties of Ni–Mn–X(–Co) Heusler alloys,” Phys. Status Solidi B. 255 (2), 1700331 (2018).CrossRef
92.
Zurück zum Zitat R. Barman and D. Kaur, “Improved magnetocaloric effect in magnetron sputtered Ni–Mn–Sb–Al ferromagnetic shape memory alloy thin films,” Vacuum 120, 22–26 (2015).CrossRef R. Barman and D. Kaur, “Improved magnetocaloric effect in magnetron sputtered Ni–Mn–Sb–Al ferromagnetic shape memory alloy thin films,” Vacuum 120, 22–26 (2015).CrossRef
93.
Zurück zum Zitat C. Salazar-Mejía, V. Kumar, C. Felser, Y. Skourski, J. Wosnitza, and A. K. Nayak, “Measurement-protocol dependence of the magnetocaloric effect in Ni–Co–Mn–Sb Heusler alloys,” Phys. Rev. Appl. 11 (5), 054006 (2019).CrossRef C. Salazar-Mejía, V. Kumar, C. Felser, Y. Skourski, J. Wosnitza, and A. K. Nayak, “Measurement-protocol dependence of the magnetocaloric effect in Ni–Co–Mn–Sb Heusler alloys,” Phys. Rev. Appl. 11 (5), 054006 (2019).CrossRef
94.
Zurück zum Zitat P. J. von Ranke, A. De Campos, L. Caron, A. A. Coelho, S. Gama, and N. A. De Oliveira, “Calculation of the giant magnetocaloric effect in the MnFeP0.45As0.55 compound,” Phys. Rev. B 70 (9), 094410 (2004).CrossRef P. J. von Ranke, A. De Campos, L. Caron, A. A. Coelho, S. Gama, and N. A. De Oliveira, “Calculation of the giant magnetocaloric effect in the MnFeP0.45As0.55 compound,” Phys. Rev. B 70 (9), 094410 (2004).CrossRef
95.
Zurück zum Zitat P. J. von Ranke, N. A. De Oliveira, and S. Gama, “Theoretical investigations on giant magnetocaloric effect in MnAs1–xSbx,” Phys. Lett. A. 320 (4), 302–306 (2004).CrossRef P. J. von Ranke, N. A. De Oliveira, and S. Gama, “Theoretical investigations on giant magnetocaloric effect in MnAs1–xSbx,” Phys. Lett. A. 320 (4), 302–306 (2004).CrossRef
96.
Zurück zum Zitat C. P. Bean and D. S. Rodbell, “Magnetic disorder as a first-order phase transformation,” Phys. Rev. 126 (1), 104–115 (1962).CrossRef C. P. Bean and D. S. Rodbell, “Magnetic disorder as a first-order phase transformation,” Phys. Rev. 126 (1), 104–115 (1962).CrossRef
97.
Zurück zum Zitat E. P. Wohlfarth and P. Rhodes, “Collective electron metamagnetism,” Philos. Mag. 7 (83), 1817–1824 (1962).CrossRef E. P. Wohlfarth and P. Rhodes, “Collective electron metamagnetism,” Philos. Mag. 7 (83), 1817–1824 (1962).CrossRef
98.
Zurück zum Zitat R. Z. Levitin and A. S. Markosyan, “Itinerant metamagnetism,” Sov. Phys. Usp. 31 (8), 730–749 (1988).CrossRef R. Z. Levitin and A. S. Markosyan, “Itinerant metamagnetism,” Sov. Phys. Usp. 31 (8), 730–749 (1988).CrossRef
99.
Zurück zum Zitat H. Yamada, K. Fukamichi, and T. Goto, “Itinerant-electron metamagnetism and strong pressure dependence of the Curie temperature,” Phys. Rev. B 65 (2), 024413 (2001).CrossRef H. Yamada, K. Fukamichi, and T. Goto, “Itinerant-electron metamagnetism and strong pressure dependence of the Curie temperature,” Phys. Rev. B 65 (2), 024413 (2001).CrossRef
100.
Zurück zum Zitat H. Yamada and T. Goto, “Itinerant-electron metamagnetism and giant magnetocaloric effect,” Phys. Rev. B 68 (18), 184417 (2003).CrossRef H. Yamada and T. Goto, “Itinerant-electron metamagnetism and giant magnetocaloric effect,” Phys. Rev. B 68 (18), 184417 (2003).CrossRef
101.
Zurück zum Zitat H. Yamada and T. Goto, “Giant magnetocaloric effect in itinerant-electron metamagnets,” Phys. B (Amsterdam) 346, 104–108 (2004).CrossRef H. Yamada and T. Goto, “Giant magnetocaloric effect in itinerant-electron metamagnets,” Phys. B (Amsterdam) 346, 104–108 (2004).CrossRef
102.
Zurück zum Zitat S. V. Taskaev, V. D. Buchelnikov, and V. V. Sokolovsky, “Theoretical description of magnetocaloric effect in La–Fe–Si alloys,” in Proceedings of the 2nd International Conf. on Magnetic Refrigeration at Room Temperature (Institut International du Froid, Paris, 2007), pp. 89–97. S. V. Taskaev, V. D. Buchelnikov, and V. V. Sokolovsky, “Theoretical description of magnetocaloric effect in La–Fe–Si alloys,” in Proceedings of the 2nd International Conf. on Magnetic Refrigeration at Room Temperature (Institut International du Froid, Paris, 2007), pp. 89–97.
103.
Zurück zum Zitat E. Z. Valiev and V. A. Kazantsev, “Magnetocaloric effect in La(FexSi1–x)13 ferromagnets,” J. Exp. Theor. Phys. 113 (6), 1000–1005 (2011).CrossRef E. Z. Valiev and V. A. Kazantsev, “Magnetocaloric effect in La(FexSi1–x)13 ferromagnets,” J. Exp. Theor. Phys. 113 (6), 1000–1005 (2011).CrossRef
104.
Zurück zum Zitat P. J. von Ranke, N. A. De Oliveira, C. Mello, A. Carvalho, G. Magnus, and S. Gama, “Analytical model to understand the colossal magnetocaloric effect,” Phys. Rev. B 71 (5), 054410 (2005).CrossRef P. J. von Ranke, N. A. De Oliveira, C. Mello, A. Carvalho, G. Magnus, and S. Gama, “Analytical model to understand the colossal magnetocaloric effect,” Phys. Rev. B 71 (5), 054410 (2005).CrossRef
105.
Zurück zum Zitat E. Valiev, R. Gimaev, V. Zverev, K. Kamilov, A. Pyatakov, B. Kovalev, and A. Tishin, “Application of the exchange-striction model for the calculation of the FeRh alloys magnetic properties,” Intermetallics 108, 81–86 (2019).CrossRef E. Valiev, R. Gimaev, V. Zverev, K. Kamilov, A. Pyatakov, B. Kovalev, and A. Tishin, “Application of the exchange-striction model for the calculation of the FeRh alloys magnetic properties,” Intermetallics 108, 81–86 (2019).CrossRef
106.
Zurück zum Zitat N. P. Grazhdankina, “Magnetic first order phase transitions,” Sov. Phys.-Usp. 11 (5), 727–745 (1969).CrossRef N. P. Grazhdankina, “Magnetic first order phase transitions,” Sov. Phys.-Usp. 11 (5), 727–745 (1969).CrossRef
107.
Zurück zum Zitat L. H. Lewis, C. H. Marrows, and S. Langridge, “Coupled magnetic, structural, and electronic phase transitions in FeRh,” J. Phys. D: Appl. Phys. 49 (32), 323002–18 (2016).CrossRef L. H. Lewis, C. H. Marrows, and S. Langridge, “Coupled magnetic, structural, and electronic phase transitions in FeRh,” J. Phys. D: Appl. Phys. 49 (32), 323002–18 (2016).CrossRef
108.
Zurück zum Zitat A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskii, “Magnetic and magnetoelastic properties of a metamagnetic iron–rhodium alloy,” Sov. J. Exp. Theor. Phys. 19, 1348–1353 (1964). A. I. Zakharov, A. M. Kadomtseva, R. Z. Levitin, and E. G. Ponyatovskii, “Magnetic and magnetoelastic properties of a metamagnetic iron–rhodium alloy,” Sov. J. Exp. Theor. Phys. 19, 1348–1353 (1964).
109.
Zurück zum Zitat S. A. Nikitin, A. M. Tishin, S. F. Savchenkova, Yu. I. Spichkin, O. D. Chistykov, S. V. Red’ko, and Yu. A. Nesterov, “Magnetic part of specific heat in high-purity Dy single crystal,” J. Magn. Magn. Mater. 96 (1–3), 26–28 (1991).CrossRef S. A. Nikitin, A. M. Tishin, S. F. Savchenkova, Yu. I. Spichkin, O. D. Chistykov, S. V. Red’ko, and Yu. A. Nesterov, “Magnetic part of specific heat in high-purity Dy single crystal,” J. Magn. Magn. Mater. 96 (1–3), 26–28 (1991).CrossRef
110.
Zurück zum Zitat V. D. Buchelnikov and S. I. Bosko, “The kinetics of phase transformations in ferromagnetic shape memory alloys Ni–Mn–Ga,” J. Magn. Magn. Mater. 258, 497–499 (2003).CrossRef V. D. Buchelnikov and S. I. Bosko, “The kinetics of phase transformations in ferromagnetic shape memory alloys Ni–Mn–Ga,” J. Magn. Magn. Mater. 258, 497–499 (2003).CrossRef
111.
Zurück zum Zitat V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, A. B. Batdalov, A. M. Gamzatov, A. V. Korolyov, N. I. Kourov, V. G. Pushin, V. V. Koledov, V. V. Khovailo, V. G. Shavrov, and R. M. Grechishkin, “Magnetocaloric effect in Ni2.19Mn0.81Ga Heusler alloys,” Int. J. Appl. Electromagn. 23 (1–2), 65–69 (2006). V. D. Buchelnikov, S. V. Taskaev, A. M. Aliev, A. B. Batdalov, A. M. Gamzatov, A. V. Korolyov, N. I. Kourov, V. G. Pushin, V. V. Koledov, V. V. Khovailo, V. G. Shavrov, and R. M. Grechishkin, “Magnetocaloric effect in Ni2.19Mn0.81Ga Heusler alloys,” Int. J. Appl. Electromagn. 23 (1–2), 65–69 (2006).
112.
Zurück zum Zitat O. N. Miroshkina, V. V. Sokolovskiy, M. A. Zagrebin, S. V. Taskaev, and V. D. Buchelnikov, “Theoretical approach to investigation of the magnetic and magnetocaloric properties of Heusler Ni–Mn–Ga alloys,” Solid State Phys. 62, 785–792 (2020).CrossRef O. N. Miroshkina, V. V. Sokolovskiy, M. A. Zagrebin, S. V. Taskaev, and V. D. Buchelnikov, “Theoretical approach to investigation of the magnetic and magnetocaloric properties of Heusler Ni–Mn–Ga alloys,” Solid State Phys. 62, 785–792 (2020).CrossRef
113.
Zurück zum Zitat O. N. Miroshkina, V. V. Sokolovskiy, D. R. Baigutlin, M. A. Zagrebin, S. V. Taskaev, and V. D. Buchelnikov, “Statistical model for the martensitic transformation simulation in Heusler alloys,” Phys. B (Amsterdam) 578, 411874–5 (2020).CrossRef O. N. Miroshkina, V. V. Sokolovskiy, D. R. Baigutlin, M. A. Zagrebin, S. V. Taskaev, and V. D. Buchelnikov, “Statistical model for the martensitic transformation simulation in Heusler alloys,” Phys. B (Amsterdam) 578, 411874–5 (2020).CrossRef
114.
Zurück zum Zitat V. A. L’vov, A. Kosogor, J. M. Barandiaran, and V. A. Chernenko, “Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior,” J. Appl. Phys. 119 (1), 013902 (2016).CrossRef V. A. L’vov, A. Kosogor, J. M. Barandiaran, and V. A. Chernenko, “Theoretical description of magnetocaloric effect in the shape memory alloy exhibiting metamagnetic behavior,” J. Appl. Phys. 119 (1), 013902 (2016).CrossRef
115.
Zurück zum Zitat A. Kosogor, J. M. Barandiaran, V. A. L’vov, J. R. Fernandez, and V. A. Chernenko, “Magnetic and nonmagnetic contributions to the heat capacity of metamagnetic shape memory alloy,” J. Appl. Phys. 121 (18), 183901 (2017).CrossRef A. Kosogor, J. M. Barandiaran, V. A. L’vov, J. R. Fernandez, and V. A. Chernenko, “Magnetic and nonmagnetic contributions to the heat capacity of metamagnetic shape memory alloy,” J. Appl. Phys. 121 (18), 183901 (2017).CrossRef
116.
Zurück zum Zitat G. A. Malygin, “Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect,” Phys.-Usp. 44 (2), 173–197 (2001).CrossRef G. A. Malygin, “Diffuse martensitic transitions and the plasticity of crystals with a shape memory effect,” Phys.-Usp. 44 (2), 173–197 (2001).CrossRef
117.
Zurück zum Zitat R. Abeyaratne, K. Sang-Joo, and J. K. Knowles, “A onedimensional continuum model for shape-memory alloys,” Int. J. Solids Struct. 31 (16), 2229–2249 (1994).CrossRef R. Abeyaratne, K. Sang-Joo, and J. K. Knowles, “A onedimensional continuum model for shape-memory alloys,” Int. J. Solids Struct. 31 (16), 2229–2249 (1994).CrossRef
118.
Zurück zum Zitat T. Kanomata, Y. Kitsunai, K. Sano, Y. Furutani, H. Nishihara, R. Y. Umetsu, R. Kainuma, Y. Miura, and M. Shirai, “Magnetic properties of quaternary Heusler alloys Ni2 – xCoxMnGa,” Phys. Rev. B 80 (21), 214402 (2009).CrossRef T. Kanomata, Y. Kitsunai, K. Sano, Y. Furutani, H. Nishihara, R. Y. Umetsu, R. Kainuma, Y. Miura, and M. Shirai, “Magnetic properties of quaternary Heusler alloys Ni2 – xCoxMnGa,” Phys. Rev. B 80 (21), 214402 (2009).CrossRef
119.
Zurück zum Zitat P. J. von Ranke, V. K. Pecharsky, and K. A. Gschneidner, “Influence of the crystalline electrical field on the magnetocaloric effect of DyAl2, ErAl2, and DyNi2,” Phys. Rev. B 58 (18), 12110–12116 (1998).CrossRef P. J. von Ranke, V. K. Pecharsky, and K. A. Gschneidner, “Influence of the crystalline electrical field on the magnetocaloric effect of DyAl2, ErAl2, and DyNi2,” Phys. Rev. B 58 (18), 12110–12116 (1998).CrossRef
120.
Zurück zum Zitat P. J. von Ranke, V. K. Pecharsky, K. A. Gschneidner, Jr., and B. J. Korte, “Anomalous behavior of the magnetic entropy in PrNi5,” Phys. Rev. B 58 (21), 14436–14441 (1998).CrossRef P. J. von Ranke, V. K. Pecharsky, K. A. Gschneidner, Jr., and B. J. Korte, “Anomalous behavior of the magnetic entropy in PrNi5,” Phys. Rev. B 58 (21), 14436–14441 (1998).CrossRef
121.
Zurück zum Zitat P. J. von Ranke, I. G. De Oliveira, A. P. Guimaraes, and X. A. da Silva, “Anomaly in the magnetocaloric effect in the intermetallic compound DyAl2,” Phys. Rev. B 61 (1), 447–450 (2000).CrossRef P. J. von Ranke, I. G. De Oliveira, A. P. Guimaraes, and X. A. da Silva, “Anomaly in the magnetocaloric effect in the intermetallic compound DyAl2,” Phys. Rev. B 61 (1), 447–450 (2000).CrossRef
122.
Zurück zum Zitat P. J. von Ranke, N. A. De Oliveira, M. V. T. Costa, E. P. Nóbrega, A. Caldas, and I. G. De Oliveira, “The influence of crystalline electric field on the magnetocaloric effect in the series RAl2 (R = Pr, Nd, Tb, Dy, Ho, Er, and Tm),” J. Magn. Magn. Mater. 226, 970–972 (2001).CrossRef P. J. von Ranke, N. A. De Oliveira, M. V. T. Costa, E. P. Nóbrega, A. Caldas, and I. G. De Oliveira, “The influence of crystalline electric field on the magnetocaloric effect in the series RAl2 (R = Pr, Nd, Tb, Dy, Ho, Er, and Tm),” J. Magn. Magn. Mater. 226, 970–972 (2001).CrossRef
123.
Zurück zum Zitat P. J. von Ranke, E. P. N’obrega, I. G. De Oliveira, A. M. Gomes, and R. S. Sarthour, “Influence of the crystalline electrical field on the magnetocaloric effect in the series RNi2 (R = Pr, Nd, Gd, Tb, Ho, Er),” Phys. Rev. B 63 (18), 184406 (2001).CrossRef P. J. von Ranke, E. P. N’obrega, I. G. De Oliveira, A. M. Gomes, and R. S. Sarthour, “Influence of the crystalline electrical field on the magnetocaloric effect in the series RNi2 (R = Pr, Nd, Gd, Tb, Ho, Er),” Phys. Rev. B 63 (18), 184406 (2001).CrossRef
124.
Zurück zum Zitat N. A. De Oliveira, P. J. von Ranke, M. V. T. Costa, and A. Troper, “Magnetocaloric effect in the intermetallic compounds RCo2 (R = Dy, Ho, Er),” Phys. Rev. B 66 (9), 094402–6 (2002).CrossRef N. A. De Oliveira, P. J. von Ranke, M. V. T. Costa, and A. Troper, “Magnetocaloric effect in the intermetallic compounds RCo2 (R = Dy, Ho, Er),” Phys. Rev. B 66 (9), 094402–6 (2002).CrossRef
125.
Zurück zum Zitat N. A. De Oliveira and P. J. von Ranke, “Magnetocaloric effect in the Laves phase pseudobinary (Er1 ‒ cDyc)Co2,” J. Magn. Magn. Mater. 264 (1), 55–61 (2003).CrossRef N. A. De Oliveira and P. J. von Ranke, “Magnetocaloric effect in the Laves phase pseudobinary (Er1 ‒ cDyc)Co2,” J. Magn. Magn. Mater. 264 (1), 55–61 (2003).CrossRef
126.
Zurück zum Zitat E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in Gd5(SixGe1–x)4 compounds,” Phys. Rev. B 72 (13), 134426 (2005).CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in Gd5(SixGe1–x)4 compounds,” Phys. Rev. B 72 (13), 134426 (2005).CrossRef
127.
Zurück zum Zitat E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric effect in rare-earth-based compounds: a Monte Carlo study,” Phys. B (Amsterdam) 378, 716–717 (2006).CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric effect in rare-earth-based compounds: a Monte Carlo study,” Phys. B (Amsterdam) 378, 716–717 (2006).CrossRef
128.
Zurück zum Zitat E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric effect in (GdxTb1 – x)5Si4 by Monte Carlo simulations,” Phys. Rev. B 74 (14), 144429–6 (2006).CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Magnetocaloric effect in (GdxTb1 – x)5Si4 by Monte Carlo simulations,” Phys. Rev. B 74 (14), 144429–6 (2006).CrossRef
129.
Zurück zum Zitat E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in (Gd0.6Tb0.4)5Si4,” J. Magn. Magn. Mater. 310 (2), 2805–2807 (2007).CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in (Gd0.6Tb0.4)5Si4,” J. Magn. Magn. Mater. 310 (2), 2805–2807 (2007).CrossRef
130.
Zurück zum Zitat E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “The magnetocaloric effect in R 5Si4 (R = Gd, Tb): a Monte Carlo calculation,” J. Condens. Matter Phys. 18 (4), 1275–1283 (2006).CrossRef E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “The magnetocaloric effect in R 5Si4 (R = Gd, Tb): a Monte Carlo calculation,” J. Condens. Matter Phys. 18 (4), 1275–1283 (2006).CrossRef
131.
Zurück zum Zitat E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in RAl2 (R = Dy, Er),” J. Appl. Phys. 99 (8), 08Q103 (2006). E. P. Nóbrega, N. A. De Oliveira, P. J. von Ranke, and A. Troper, “Monte Carlo calculations of the magnetocaloric effect in RAl2 (R = Dy, Er),” J. Appl. Phys. 99 (8), 08Q103 (2006).
132.
Zurück zum Zitat M. E. Gruner, E. Hoffmann, and P. Entel, “Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α-FeRh,” Phys. Rev. B 67 (6), 064415 (2003).CrossRef M. E. Gruner, E. Hoffmann, and P. Entel, “Instability of the rhodium magnetic moment as the origin of the metamagnetic phase transition in α-FeRh,” Phys. Rev. B 67 (6), 064415 (2003).CrossRef
133.
Zurück zum Zitat L. M. Sandratskii and P. Mavropoulos, “Magnetic excitations and femtomagnetism of FeRh: a first-principles study,” Phys. Rev. B 83 (17), 174408–13 (2011).CrossRef L. M. Sandratskii and P. Mavropoulos, “Magnetic excitations and femtomagnetism of FeRh: a first-principles study,” Phys. Rev. B 83 (17), 174408–13 (2011).CrossRef
134.
Zurück zum Zitat P. M. Derlet, “Landau–Heisenberg Hamiltonian model for FeRh,” Phys. Rev. B 85 (17), 174431 (2012).CrossRef P. M. Derlet, “Landau–Heisenberg Hamiltonian model for FeRh,” Phys. Rev. B 85 (17), 174431 (2012).CrossRef
135.
Zurück zum Zitat J. Kudrnovský, V. Drchal, and I. Turek, “Physical properties of FeRh alloys: the antiferromagnetic to ferromagnetic transition,” Phys. Rev. B 91 (1), 014435 (2015).CrossRef J. Kudrnovský, V. Drchal, and I. Turek, “Physical properties of FeRh alloys: the antiferromagnetic to ferromagnetic transition,” Phys. Rev. B 91 (1), 014435 (2015).CrossRef
136.
Zurück zum Zitat S. Polesya, S. Mankovsky, D. Ködderitzsch, J. Minár, and H. Ebert, “Finite-temperature magnetism of FeRh compounds,” Phys. Rev. B 93 (2), 024423 (2016).CrossRef S. Polesya, S. Mankovsky, D. Ködderitzsch, J. Minár, and H. Ebert, “Finite-temperature magnetism of FeRh compounds,” Phys. Rev. B 93 (2), 024423 (2016).CrossRef
137.
Zurück zum Zitat M. Blume, “Theory of the first-order magnetic phase change in UO2,” Phys. Rev. 141 (2), 517–524 (1966).CrossRef M. Blume, “Theory of the first-order magnetic phase change in UO2,” Phys. Rev. 141 (2), 517–524 (1966).CrossRef
138.
Zurück zum Zitat H. W. Capel, “On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting,” Physica 32 (5), 966–988 (1966).CrossRef H. W. Capel, “On the possibility of first-order phase transitions in Ising systems of triplet ions with zero-field splitting,” Physica 32 (5), 966–988 (1966).CrossRef
139.
Zurück zum Zitat M. E. Gruner, R. Meyer, and P. Entel, “Monte Carlo simulations of high-moment–low-moment transitions in Invar alloys,” Eur. Phys. J. B 2 (1), 107–119 (1998).CrossRef M. E. Gruner, R. Meyer, and P. Entel, “Monte Carlo simulations of high-moment–low-moment transitions in Invar alloys,” Eur. Phys. J. B 2 (1), 107–119 (1998).CrossRef
140.
Zurück zum Zitat B. K. Ponomarev, “Investigation of the antiferroferromagnetism transition in an FeRh alloy in a pulsed magnetic field up to 300 kOe,” Sov. J. Exp. Theor. Phys. 36, 105–107 (1973). B. K. Ponomarev, “Investigation of the antiferroferromagnetism transition in an FeRh alloy in a pulsed magnetic field up to 300 kOe,” Sov. J. Exp. Theor. Phys. 36, 105–107 (1973).
141.
Zurück zum Zitat V. V. Sokolovskiy, V. D. Buchelnikov, and P. Entel, “Optimization of the magnetocaloric effect in Ni–Mn–In alloys: a theoretical study,” J. Exp. Theor. Phys. 115 (4), 662–665 (2012).CrossRef V. V. Sokolovskiy, V. D. Buchelnikov, and P. Entel, “Optimization of the magnetocaloric effect in Ni–Mn–In alloys: a theoretical study,” J. Exp. Theor. Phys. 115 (4), 662–665 (2012).CrossRef
142.
Zurück zum Zitat V. V. Sokolovskiy, V. D. Buchelnikov, V. V. Khovaylo, S. V. Taskaev, and P. Entel, “Tuning magnetic exchange interactions to enhance magnetocaloric effect in Ni50Mn34In16 Heusler alloy: Monte Carlo and ab initio studies,” Int. J. Refrig. 37, 273–280 (2014).CrossRef V. V. Sokolovskiy, V. D. Buchelnikov, V. V. Khovaylo, S. V. Taskaev, and P. Entel, “Tuning magnetic exchange interactions to enhance magnetocaloric effect in Ni50Mn34In16 Heusler alloy: Monte Carlo and ab initio studies,” Int. J. Refrig. 37, 273–280 (2014).CrossRef
143.
Zurück zum Zitat V. V. Sokolovskiy, V. D. Buchelnikov, S. V. Taskaev, V. V. Khovaylo, M. Ogura, and P. Entel, “Quaternary Ni–Mn–In–Y Heusler alloys: a way to achieve materials with better magnetocaloric properties?” J. Phys. D: Appl. Phys. 46 (30), 305003 (2013).CrossRef V. V. Sokolovskiy, V. D. Buchelnikov, S. V. Taskaev, V. V. Khovaylo, M. Ogura, and P. Entel, “Quaternary Ni–Mn–In–Y Heusler alloys: a way to achieve materials with better magnetocaloric properties?” J. Phys. D: Appl. Phys. 46 (30), 305003 (2013).CrossRef
144.
Zurück zum Zitat V. V. Sokolovskiy, R. R. Fayzullin, V. D. Buchelnikov, M. O. Drobosyuk, S. V. Taskaev, and V. V. Khovaylo, “Theoretical treatment and direct measurements of magnetocaloric effect in Ni2.19 – xFexMn0.81Ga Heusler alloys,” J. Magn. Magn. Mater. 343, 6–12 (2013).CrossRef V. V. Sokolovskiy, R. R. Fayzullin, V. D. Buchelnikov, M. O. Drobosyuk, S. V. Taskaev, and V. V. Khovaylo, “Theoretical treatment and direct measurements of magnetocaloric effect in Ni2.19 – xFexMn0.81Ga Heusler alloys,” J. Magn. Magn. Mater. 343, 6–12 (2013).CrossRef
145.
Zurück zum Zitat V. Sokolovskiy, V. Buchelnikov, K. Skokov, O. Gutfleisch, D. Karpenkov, Yu. Koshkid’ko, H. Miki, I. Dubenko, N. Ali, S. Stadler, and V. Khovaylo, “Magnetocaloric and magnetic properties of Ni2Mn1 – xCuxGa Heusler alloys: an insight from the direct measurements and ab initio and Monte Carlo calculations,” J. Appl. Phys. 114 (18), 183913 (2013).CrossRef V. Sokolovskiy, V. Buchelnikov, K. Skokov, O. Gutfleisch, D. Karpenkov, Yu. Koshkid’ko, H. Miki, I. Dubenko, N. Ali, S. Stadler, and V. Khovaylo, “Magnetocaloric and magnetic properties of Ni2Mn1 – xCuxGa Heusler alloys: an insight from the direct measurements and ab initio and Monte Carlo calculations,” J. Appl. Phys. 114 (18), 183913 (2013).CrossRef
146.
Zurück zum Zitat N. Singh and R. Arróyave, “Magnetocaloric effects in Ni–Mn–Ga–Fe alloys using Monte Carlo simulations,” J. Appl. Phys. 113 (18), 183904 (2013).CrossRef N. Singh and R. Arróyave, “Magnetocaloric effects in Ni–Mn–Ga–Fe alloys using Monte Carlo simulations,” J. Appl. Phys. 113 (18), 183904 (2013).CrossRef
147.
Zurück zum Zitat S. Ghosh and S. Ghosh, “Giant magnetocaloric effect driven by first-order magnetostructural transition in cosubstituted Ni–Mn–Sb Heusler compounds: predictions from ab initio and Monte Carlo calculations,” Phys. Rev. B 103 (5), 054101 (2021).CrossRef S. Ghosh and S. Ghosh, “Giant magnetocaloric effect driven by first-order magnetostructural transition in cosubstituted Ni–Mn–Sb Heusler compounds: predictions from ab initio and Monte Carlo calculations,” Phys. Rev. B 103 (5), 054101 (2021).CrossRef
148.
Zurück zum Zitat R. Masrour, A. Jabar, and E. K. Hlil, “Modeling of the magnetocaloric effect in Heusler Ni2MnGa alloy: Ab initio calculations and Monte Carlo simulations,” Intermetallics 91, 120–123 (2017).CrossRef R. Masrour, A. Jabar, and E. K. Hlil, “Modeling of the magnetocaloric effect in Heusler Ni2MnGa alloy: Ab initio calculations and Monte Carlo simulations,” Intermetallics 91, 120–123 (2017).CrossRef
149.
Zurück zum Zitat T. Castán, E. Vives, and P.-A. Lindgård, “Modeling premartensitic effects in Ni2MnGa: a mean-field and Monte Carlo simulation study,” Phys. Rev. B 60 (10), 7071–7084 (1999).CrossRef T. Castán, E. Vives, and P.-A. Lindgård, “Modeling premartensitic effects in Ni2MnGa: a mean-field and Monte Carlo simulation study,” Phys. Rev. B 60 (10), 7071–7084 (1999).CrossRef
150.
Zurück zum Zitat V. D. Buchelnikov, V. V. Sokolovskiy, H. C. Herper, H. Ebert, M. E. Gruner, S. V. Taskaev, V. V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, and P. Entel, “First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2+xMn1–xGa,” Phys. Rev. B 81 (9), 094411 (2010).CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, H. C. Herper, H. Ebert, M. E. Gruner, S. V. Taskaev, V. V. Khovaylo, A. Hucht, A. Dannenberg, M. Ogura, H. Akai, M. Acet, and P. Entel, “First-principles and Monte Carlo study of magnetostructural transition and magnetocaloric properties of Ni2+xMn1–xGa,” Phys. Rev. B 81 (9), 094411 (2010).CrossRef
151.
Zurück zum Zitat V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, V. V. Khovaylo, A. A. Aliev, L. N. Khanov, A. B. Batdalov, P. Entel, H. Miki, and T. Takagi, “Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys,” J. Phys. D: Appl. Phys. 44 (6), 064012 (2011).CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, S. V. Taskaev, V. V. Khovaylo, A. A. Aliev, L. N. Khanov, A. B. Batdalov, P. Entel, H. Miki, and T. Takagi, “Monte Carlo simulations of the magnetocaloric effect in magnetic Ni–Mn–X (X = Ga, In) Heusler alloys,” J. Phys. D: Appl. Phys. 44 (6), 064012 (2011).CrossRef
152.
Zurück zum Zitat V. D. Buchelnikov, P. Entel, S. V. Taskaev, V. V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M. E. Gruner, and S. K. Nayak, “Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni–Mn–X alloys (X = In, Sn, Sb),” Phys. Rev. B 78 (18), 184427 (2008).CrossRef V. D. Buchelnikov, P. Entel, S. V. Taskaev, V. V. Sokolovskiy, A. Hucht, M. Ogura, H. Akai, M. E. Gruner, and S. K. Nayak, “Monte Carlo study of the influence of antiferromagnetic exchange interactions on the phase transitions of ferromagnetic Ni–Mn–X alloys (X = In, Sn, Sb),” Phys. Rev. B 78 (18), 184427 (2008).CrossRef
153.
Zurück zum Zitat X. Moya, L. Mañosa, A. Planes, S. Aksoy, M. Acet, E. F. Wassermann, and T. Krenke, “Cooling and heating by adiabatic magnetization in the Ni50Mn34In16 magnetic shape-memory alloy,” Phys. Rev. B 75 (18), 184412 (2007).CrossRef X. Moya, L. Mañosa, A. Planes, S. Aksoy, M. Acet, E. F. Wassermann, and T. Krenke, “Cooling and heating by adiabatic magnetization in the Ni50Mn34In16 magnetic shape-memory alloy,” Phys. Rev. B 75 (18), 184412 (2007).CrossRef
154.
Zurück zum Zitat M. Kaya, S. Yildirim, E. Yüzüak, I. Dincer, R. Ellialtioglu, and Y. Elerman, “The effect of the substitution of Cu for Mn on magnetic and magnetocaloric properties of Ni50Mn34In16,” J. Magn. Magn. Mater. 368, 191–197 (2014).CrossRef M. Kaya, S. Yildirim, E. Yüzüak, I. Dincer, R. Ellialtioglu, and Y. Elerman, “The effect of the substitution of Cu for Mn on magnetic and magnetocaloric properties of Ni50Mn34In16,” J. Magn. Magn. Mater. 368, 191–197 (2014).CrossRef
155.
Zurück zum Zitat D. E. Soto-Parra, X. Moya, L. Mañosa, A. Planes, H. Flores-Zúñiga, F. Alvarado-Hernández, R. A. Ochoa-Gamboa, J. A. Matutes-Aquino, and D. Ríos-Jara, “Fe and Co selective substitution in Ni2MnGa: effect of magnetism on relative phase stability,” Philos. Mag. Lett. 90 (20), 2771–2792 (2010).CrossRef D. E. Soto-Parra, X. Moya, L. Mañosa, A. Planes, H. Flores-Zúñiga, F. Alvarado-Hernández, R. A. Ochoa-Gamboa, J. A. Matutes-Aquino, and D. Ríos-Jara, “Fe and Co selective substitution in Ni2MnGa: effect of magnetism on relative phase stability,” Philos. Mag. Lett. 90 (20), 2771–2792 (2010).CrossRef
156.
Zurück zum Zitat D. E. Soto-Parra, E. Vives, D. González-Alonso, L. Mañosa, A. Planes, R. Romero, J. A. Matutes-Aquino, R. A. Ochoa-Gamboa, and H. Flores-Zúñiga, “Stress- and magnetic field-induced entropy changes in Fe-doped Ni–Mn–Ga shape memory alloys,” Appl. Phys. Lett. 96 (7), 071912 (2010).CrossRef D. E. Soto-Parra, E. Vives, D. González-Alonso, L. Mañosa, A. Planes, R. Romero, J. A. Matutes-Aquino, R. A. Ochoa-Gamboa, and H. Flores-Zúñiga, “Stress- and magnetic field-induced entropy changes in Fe-doped Ni–Mn–Ga shape memory alloys,” Appl. Phys. Lett. 96 (7), 071912 (2010).CrossRef
157.
Zurück zum Zitat A. K. Nayak, K. G. Suresh, and A. K. Nigam, “Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys,” J. Phys. D: Appl. Phys. 42 (3), 035009 (2009).CrossRef A. K. Nayak, K. G. Suresh, and A. K. Nigam, “Giant inverse magnetocaloric effect near room temperature in Co substituted NiMnSb Heusler alloys,” J. Phys. D: Appl. Phys. 42 (3), 035009 (2009).CrossRef
158.
Zurück zum Zitat V. V. Sokolovskiy, O. Pavlukhina, V. D. Buchelnikov, and P. Entel, “Monte Carlo and first-principles approaches for single crystal and polycrystalline Ni2MnGa Heusler alloys,” J. Phys. D: Appl. Phys. 47 (42), 4250023 (2014).CrossRef V. V. Sokolovskiy, O. Pavlukhina, V. D. Buchelnikov, and P. Entel, “Monte Carlo and first-principles approaches for single crystal and polycrystalline Ni2MnGa Heusler alloys,” J. Phys. D: Appl. Phys. 47 (42), 4250023 (2014).CrossRef
159.
Zurück zum Zitat D. Comtesse, M. E. Gruner, M. Ogura, V. V. Sokolov-skiy, V. D. Buchelnikov, A. Grünebohm, R. Arróyave, N. Singh, T. Gottschall, O. Gutfleisch, V. A. Chernenko, F. Albertini, S. Fähler, and P. Entel, “First-principles calculation of the instability leading to giant inverse magnetocaloric effects,” Phys. Rev. B 89 (18), 184403 (2014).CrossRef D. Comtesse, M. E. Gruner, M. Ogura, V. V. Sokolov-skiy, V. D. Buchelnikov, A. Grünebohm, R. Arróyave, N. Singh, T. Gottschall, O. Gutfleisch, V. A. Chernenko, F. Albertini, S. Fähler, and P. Entel, “First-principles calculation of the instability leading to giant inverse magnetocaloric effects,” Phys. Rev. B 89 (18), 184403 (2014).CrossRef
160.
Zurück zum Zitat V. D. Buchelnikov, V. V. Sokolovskiy, M. A. Zagrebin, M. A. Tufatullina, and P. Entel, “First principles investigation of structural and magnetic properties of Ni–Co–Mn–In Heusler alloys,” J. Phys. D: Appl. Phys. 48 (16), 164005 (2015).CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, M. A. Zagrebin, M. A. Tufatullina, and P. Entel, “First principles investigation of structural and magnetic properties of Ni–Co–Mn–In Heusler alloys,” J. Phys. D: Appl. Phys. 48 (16), 164005 (2015).CrossRef
161.
Zurück zum Zitat P. Entel, V. V. Sokolovskiy, V. D. Buchelnikov, M. Ogura, M. E. Gruner, A. Grünebohm, D. Comtesse, and H. Akai, “The metamagnetic behavior and giant inverse magnetocaloric effect in Ni–Co–Mn–(Ga, In, Sn) Heusler alloys,” J. Magn. Magn. Mater. 385, 193–197 (2015).CrossRef P. Entel, V. V. Sokolovskiy, V. D. Buchelnikov, M. Ogura, M. E. Gruner, A. Grünebohm, D. Comtesse, and H. Akai, “The metamagnetic behavior and giant inverse magnetocaloric effect in Ni–Co–Mn–(Ga, In, Sn) Heusler alloys,” J. Magn. Magn. Mater. 385, 193–197 (2015).CrossRef
162.
Zurück zum Zitat V. D. Buchelnikov, V. V. Sokolovskiy, M. A. Zagrebin, M. A. Klyuchnikova, and P. Entel, “First-principles study of the structural and magnetic properties of the Ni45Co5Mn39Sn11 Heusler alloy,” J. Magn. Magn. Mater. 383, 180–185 (2015).CrossRef V. D. Buchelnikov, V. V. Sokolovskiy, M. A. Zagrebin, M. A. Klyuchnikova, and P. Entel, “First-principles study of the structural and magnetic properties of the Ni45Co5Mn39Sn11 Heusler alloy,” J. Magn. Magn. Mater. 383, 180–185 (2015).CrossRef
163.
Zurück zum Zitat V. Sokolovskiy, A. Gru¨nebohm, V. Buchelnikov, and P. Entel, “Ab initio and Monte Carlo approaches for the magnetocaloric effect in Co- and In-doped Ni–Mn–Ga Heusler alloys,” Entropy 16 (9), 4992–5019 (2014).CrossRef V. Sokolovskiy, A. Gru¨nebohm, V. Buchelnikov, and P. Entel, “Ab initio and Monte Carlo approaches for the magnetocaloric effect in Co- and In-doped Ni–Mn–Ga Heusler alloys,” Entropy 16 (9), 4992–5019 (2014).CrossRef
164.
Zurück zum Zitat V. V. Sokolovskiy, P. Entel, V. D. Buchelnikov, and M. E. Gruner, “Achieving large magnetocaloric effects in Co-and Cr-substituted Heusler alloys: predictions from first-principles and Monte Carlo studies,” Phys. Rev. B 91 (22), 220409 (2015).CrossRef V. V. Sokolovskiy, P. Entel, V. D. Buchelnikov, and M. E. Gruner, “Achieving large magnetocaloric effects in Co-and Cr-substituted Heusler alloys: predictions from first-principles and Monte Carlo studies,” Phys. Rev. B 91 (22), 220409 (2015).CrossRef
165.
Zurück zum Zitat V. V. Sokolovskiy, V. D. Buchelnikov, M. A. Zagrebin, A. Grünebohm, and P. Entel, “Predictions of a large magnetocaloric effect in Co- and Cr-substituted Heusler alloys using first-principles and Monte Carlo approaches,” Phys. Procedia 75, 1381–1388 (2015).CrossRef V. V. Sokolovskiy, V. D. Buchelnikov, M. A. Zagrebin, A. Grünebohm, and P. Entel, “Predictions of a large magnetocaloric effect in Co- and Cr-substituted Heusler alloys using first-principles and Monte Carlo approaches,” Phys. Procedia 75, 1381–1388 (2015).CrossRef
166.
Zurück zum Zitat V. Sokolovskiy, O. Miroshkina, M. Zagrebin, and V. Buchelnikov, “Prediction of giant magnetocaloric effect in Ni40Co10Mn36Al14 Heusler alloys: an insight from ab initio and Monte Carlo calculations,” J. Appl. Phys. 127 (16), 163901 (2020).CrossRef V. Sokolovskiy, O. Miroshkina, M. Zagrebin, and V. Buchelnikov, “Prediction of giant magnetocaloric effect in Ni40Co10Mn36Al14 Heusler alloys: an insight from ab initio and Monte Carlo calculations,” J. Appl. Phys. 127 (16), 163901 (2020).CrossRef
167.
Zurück zum Zitat V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, “Magnetocaloric effect in Ni–Co–Mn–(Sn, Al) Heusler alloys: theoretical study,” J. Magn. Magn. Mater. 459, 295–300 (2018).CrossRef V. Sokolovskiy, M. A. Zagrebin, and V. D. Buchelnikov, “Magnetocaloric effect in Ni–Co–Mn–(Sn, Al) Heusler alloys: theoretical study,” J. Magn. Magn. Mater. 459, 295–300 (2018).CrossRef
168.
Zurück zum Zitat L. Chen, F. X. Hu, J. Wang, J. L. Zhao, J. R. Sun, B. G. Shen, J. H. Yin, and L. Q. Pan, “Tuning martensitic transformation and magnetoresistance effect by low temperature annealing in Ni45Co5Mn36.6In13.4 alloys,” J. Phys. D: Appl. Phys. 44 (8), 085002 (2011).CrossRef L. Chen, F. X. Hu, J. Wang, J. L. Zhao, J. R. Sun, B. G. Shen, J. H. Yin, and L. Q. Pan, “Tuning martensitic transformation and magnetoresistance effect by low temperature annealing in Ni45Co5Mn36.6In13.4 alloys,” J. Phys. D: Appl. Phys. 44 (8), 085002 (2011).CrossRef
169.
Zurück zum Zitat E. Şaşıoğlu, L. M. Sandratskii, and P. Bruno, “First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2MnX (X = Ga, In, Sn, Sb),” Phys. Rev. B 70 (2), 024427 (2004).CrossRef E. Şaşıoğlu, L. M. Sandratskii, and P. Bruno, “First-principles calculation of the intersublattice exchange interactions and Curie temperatures of the full Heusler alloys Ni2MnX (X = Ga, In, Sn, Sb),” Phys. Rev. B 70 (2), 024427 (2004).CrossRef
170.
Zurück zum Zitat I. Galanakis and E. Şaşıoğlu, “Variation of the magnetic properties of Ni2MnGa Heusler alloy upon tetragonalization: a first-principles study,” J. Phys. D: Appl. Phys. 44 (23), 235001 (2011).CrossRef I. Galanakis and E. Şaşıoğlu, “Variation of the magnetic properties of Ni2MnGa Heusler alloy upon tetragonalization: a first-principles study,” J. Phys. D: Appl. Phys. 44 (23), 235001 (2011).CrossRef
171.
Zurück zum Zitat F. Albertini, L. Morellon, P. A. Algarabel, M. R. Ibarra, L. Pareti, Z. Arnold, and G. Calestani, “Magnetoelastic effects and magnetic anisotropy in Ni2MnGa polycrystals,” J. Appl. Phys. 89 (10), 5614–5617 (2001).CrossRef F. Albertini, L. Morellon, P. A. Algarabel, M. R. Ibarra, L. Pareti, Z. Arnold, and G. Calestani, “Magnetoelastic effects and magnetic anisotropy in Ni2MnGa polycrystals,” J. Appl. Phys. 89 (10), 5614–5617 (2001).CrossRef
172.
Zurück zum Zitat F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra, and L. Righi, “Composition and temperature dependence of the magnetocrystalline anisotropy in Ni2 + xMn1 + yGa1 + z (x + y + z = 0) Heusler alloys,” Appl. Phys. Lett. 81 (21), 4032–4034 (2002).CrossRef F. Albertini, L. Pareti, A. Paoluzi, L. Morellon, P. A. Algarabel, M. R. Ibarra, and L. Righi, “Composition and temperature dependence of the magnetocrystalline anisotropy in Ni2 + xMn1 + yGa1 + z (x + y + z = 0) Heusler alloys,” Appl. Phys. Lett. 81 (21), 4032–4034 (2002).CrossRef
173.
Zurück zum Zitat J. Enkovaara, A. Ayuela, L. Nordström, and R. M. Nieminen, “Magnetic anisotropy in Ni2MnGa,” Phys. Rev. B: Condens. Matter Mater. Phys. 65 (13), 134422 (2002).CrossRef J. Enkovaara, A. Ayuela, L. Nordström, and R. M. Nieminen, “Magnetic anisotropy in Ni2MnGa,” Phys. Rev. B: Condens. Matter Mater. Phys. 65 (13), 134422 (2002).CrossRef
174.
Zurück zum Zitat J. Enkovaara, A. Ayuela, A.T. Zayak, P. Entel, L. Nordström, M. Dube, J. Jalkanen, J. Impola, and R. M. Nieminen, “Magnetically driven shape memory alloys,” Mater. Sci. Eng., A 378 (1–2), 52–60 (2004).CrossRef J. Enkovaara, A. Ayuela, A.T. Zayak, P. Entel, L. Nordström, M. Dube, J. Jalkanen, J. Impola, and R. M. Nieminen, “Magnetically driven shape memory alloys,” Mater. Sci. Eng., A 378 (1–2), 52–60 (2004).CrossRef
175.
Zurück zum Zitat V. Sokolovskiy, M. A. Zagrebin, V. Buchelnikov, and P. Entel, “Monte Carlo simulations of thermal hysteresis in Ni–Mn-based Heusler alloys,” Phys. Status Solidi B 255 (2), 1700265 (2018).CrossRef V. Sokolovskiy, M. A. Zagrebin, V. Buchelnikov, and P. Entel, “Monte Carlo simulations of thermal hysteresis in Ni–Mn-based Heusler alloys,” Phys. Status Solidi B 255 (2), 1700265 (2018).CrossRef
176.
Zurück zum Zitat V. Sokolovskiy, M. Zagrebin, and V. Buchelnikov, “Monte Carlo simulations of hysteresis effects at the martensitic transformation,” Phys. B (Amsterdam) 575, 411692 (2019).CrossRef V. Sokolovskiy, M. Zagrebin, and V. Buchelnikov, “Monte Carlo simulations of hysteresis effects at the martensitic transformation,” Phys. B (Amsterdam) 575, 411692 (2019).CrossRef
177.
Zurück zum Zitat R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439 (7079), 957–960 (2006).CrossRef R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, and K. Ishida, “Magnetic-field-induced shape recovery by reverse phase transformation,” Nature 439 (7079), 957–960 (2006).CrossRef
178.
Zurück zum Zitat D. Y. Cong, S. Roth, and L. Schultz, “Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys,” Acta Mater. 60 (13–14), 5335–5351 (2012).CrossRef D. Y. Cong, S. Roth, and L. Schultz, “Magnetic properties and structural transformations in Ni–Co–Mn–Sn multifunctional alloys,” Acta Mater. 60 (13–14), 5335–5351 (2012).CrossRef
179.
Zurück zum Zitat D. Y. Cong, L. Huang, V. Hardy, D. Bourgault, X. M. Sun, Z. H. Nie, M. G. Wang, Y. Ren, P. Entel, and Y. D. Wang, “Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy,” Acta Mater. 146, 142–151 (2018).CrossRef D. Y. Cong, L. Huang, V. Hardy, D. Bourgault, X. M. Sun, Z. H. Nie, M. G. Wang, Y. Ren, P. Entel, and Y. D. Wang, “Low-field-actuated giant magnetocaloric effect and excellent mechanical properties in a NiMn-based multiferroic alloy,” Acta Mater. 146, 142–151 (2018).CrossRef
Metadaten
Titel
Review of Modern Theoretical Approaches for Study of Magnetocaloric Materials
verfasst von
V. V. Sokolovskiy
O. N. Miroshkina
V. D. Buchelnikov
Publikationsdatum
01.04.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 4/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22040111

Weitere Artikel der Ausgabe 4/2022

Physics of Metals and Metallography 4/2022 Zur Ausgabe