Skip to main content
Erschienen in: Journal of Applied Mathematics and Computing 1-2/2019

31.03.2018 | Original Research

Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order

verfasst von: Leilei Wei, Lijie Liu, Huixia Sun

Erschienen in: Journal of Applied Mathematics and Computing | Ausgabe 1-2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a numerical method is proposed for solving distributed order diffusion equation, which arises in the mathematical modeling of ultra-slow diffusion processes observed in some physical problems, whose solution decays logarithmically as the time t tends to infinity. Based on local discontinuous Galerkin method in space, we develop a fully discrete scheme and prove that the scheme is unconditionally stable and convergent with the order \(O(h^{k+1}+\Delta t+\Delta \alpha ^2)\), where \(h, \Delta t\),\(\Delta \alpha \) and k are the step size in space, time, distributed order and the degree of piecewise polynomials, respectively. Extensive numerical examples are carried out to illustrate the effectiveness of the numerical schemes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc. A. 465, 1869–1891 (2009). Atanackovic, T.M., Pilipovic, S., Zorica, D.: Time distributed-order diffusion-wave equation. I. Volterra-type equation. Proc. R. Soc. A. 465, 1869–1891 (2009).
2.
Zurück zum Zitat Aghili, A., Ansari, A.: Newmethod for solving system of P.F.D.E. and fractional evolution disturbance equation of distributed order. J Interdiscip. Math. 13, 167–183 (2010)MathSciNetCrossRefMATH Aghili, A., Ansari, A.: Newmethod for solving system of P.F.D.E. and fractional evolution disturbance equation of distributed order. J Interdiscip. Math. 13, 167–183 (2010)MathSciNetCrossRefMATH
3.
Zurück zum Zitat Alikhanov, A.A.: Numerical methods of solutions of boundary value problems for the multi-term variabledistributed order diffusion equation. Appl. Math. Comput. 268, 12–22 (2015)MathSciNetMATH Alikhanov, A.A.: Numerical methods of solutions of boundary value problems for the multi-term variabledistributed order diffusion equation. Appl. Math. Comput. 268, 12–22 (2015)MathSciNetMATH
4.
Zurück zum Zitat Bu, W., Xiao, A., Zeng, W.: Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 72, 422–441 (2017)MathSciNetCrossRefMATH Bu, W., Xiao, A., Zeng, W.: Finite difference/finite element methods for distributed-order time fractional diffusion equations. J. Sci. Comput. 72, 422–441 (2017)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6, 259–279 (2003)MathSciNetMATH Chechkin, A.V., Gorenflo, R., Sokolov, I.M., Gonchar, V.Y.: Distributed order time fractional diffusion equation. Fract. Calc. Appl. Anal. 6, 259–279 (2003)MathSciNetMATH
6.
Zurück zum Zitat Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)CrossRef Chechkin, A.V., Gorenflo, R., Sokolov, I.M.: Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. Phys. Rev. E 66, 046129 (2002)CrossRef
7.
Zurück zum Zitat Chen, H., Lü, S., Chen, W.: Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain. J. Comput. Phys. 315, 84–97 (2016)MathSciNetCrossRefMATH Chen, H., Lü, S., Chen, W.: Finite difference/spectral approximations for the distributed order time fractional reaction-diffusion equation on an unbounded domain. J. Comput. Phys. 315, 84–97 (2016)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)MathSciNetCrossRefMATH Diethelm, K., Ford, N.J.: Numerical analysis for distributed-order differential equations. J. Comput. Appl. Math. 225, 96–104 (2009)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)MathSciNetCrossRefMATH Gao, G.H., Sun, H.W., Sun, Z.Z.: Some high-order difference schemes for the distributed-order differential equations. J. Comput. Phys. 298, 337–359 (2015)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Gao, G.H., Sun, Z.Z.: Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differ. Eq. 32, 591–615 (2016)MathSciNetCrossRefMATH Gao, G.H., Sun, Z.Z.: Two unconditionally stable and convergent difference schemes with the extrapolation method for the one-dimensional distributed-order differential equations. Numer. Methods Partial Differ. Eq. 32, 591–615 (2016)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Hartley, T.T., Lorenzo, C.F.: Fractional-order system identification based on continuous order-distributions. Signal Process. 83, 2287–2300 (2003)CrossRefMATH Hartley, T.T., Lorenzo, C.F.: Fractional-order system identification based on continuous order-distributions. Signal Process. 83, 2287–2300 (2003)CrossRefMATH
12.
Zurück zum Zitat Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)MathSciNetCrossRefMATH Katsikadelis, J.T.: Numerical solution of distributed order fractional differential equations. J. Comput. Phys. 259, 11–22 (2014)MathSciNetCrossRefMATH
13.
14.
15.
Zurück zum Zitat Li, X.Y., Wu, B.Y.: A numerical method for solving distributed order diffusion equations. Appl. Math. Lett. 53, 92–99 (2016)MathSciNetCrossRefMATH Li, X.Y., Wu, B.Y.: A numerical method for solving distributed order diffusion equations. Appl. Math. Lett. 53, 92–99 (2016)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, 409–422 (2009)MathSciNetMATH Luchko, Y.: Boundary value problems for the generalized time-fractional diffusion equation of distributed order. Fract. Calc. Appl. Anal. 12, 409–422 (2009)MathSciNetMATH
17.
Zurück zum Zitat Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14, 1267–1290 (2008)MathSciNetCrossRefMATH Mainardi, F., Mura, A., Pagnini, G., Gorenflo, R.: Time-fractional diffusion of distributed order. J. Vib. Control 14, 1267–1290 (2008)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)MathSciNetCrossRefMATH Morgado, M.L., Rebelo, M.: Numerical approximation of distributed order reaction-diffusion equations. J. Comput. Appl. Math. 275, 216–227 (2015)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)MathSciNetCrossRefMATH Meerschaert, M.M., Nane, E., Vellaisamy, P.: Distributed-order fractional diffusions on bounded domains. J. Math. Anal. Appl. 379, 216–228 (2011)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Podlubny, I., Skovranek, T., Jara, B.M.V., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 371, 1–15 (2013)MathSciNetCrossRefMATH Podlubny, I., Skovranek, T., Jara, B.M.V., Petras, I., Verbitsky, V., Chen, Y.: Matrix approach to discrete fractional calculus III: non-equidistant grids, variable step length and distributed orders. Philos. Trans. R. Soc., Math. Phys. Eng. Sci. 371, 1–15 (2013)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)MATH
23.
Zurück zum Zitat Xia, Y., Xu, Y., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Commun. Comput. Phys. 5, 821–835 (2009)MathSciNetMATH Xia, Y., Xu, Y., Shu, C.-W.: Application of the local discontinuous Galerkin method for the Allen-Cahn/Cahn-Hilliard system. Commun. Comput. Phys. 5, 821–835 (2009)MathSciNetMATH
24.
Zurück zum Zitat Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)MathSciNetCrossRefMATH Xu, Y., Shu, C.-W.: Local discontinuous Galerkin method for the Camassa-Holm equation. SIAM J. Numer. Anal. 46, 1998–2021 (2008)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Ye, H., Liu, F., Anh, V.: Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652–660 (2015)MathSciNetCrossRefMATH Ye, H., Liu, F., Anh, V.: Compact difference scheme for distributed-order time-fractional diffusion-wave equation on bounded domains. J. Comput. Phys. 298, 652–660 (2015)MathSciNetCrossRefMATH
26.
Zurück zum Zitat Zhang, M., Shu, C.-W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13, 395–413 (2003)MathSciNetCrossRefMATH Zhang, M., Shu, C.-W.: An analysis of three different formulations of the discontinuous Galerkin method for diffusion equations. Math. Models Methods Appl. Sci. 13, 395–413 (2003)MathSciNetCrossRefMATH
27.
Zurück zum Zitat Zhang, M., Yan, J.: Fourier type error analysis of the direct discontinuous Galerkin method and its variations for diffusion equations. J. Sci. Comput. 52, 638–655 (2012)MathSciNetCrossRefMATH Zhang, M., Yan, J.: Fourier type error analysis of the direct discontinuous Galerkin method and its variations for diffusion equations. J. Sci. Comput. 52, 638–655 (2012)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Zhang, Q., Shu, C.-W.: Error estimate for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation with discontinuous initial solution. Numer. Math. 126, 703–740 (2014)MathSciNetCrossRefMATH Zhang, Q., Shu, C.-W.: Error estimate for the third order explicit Runge-Kutta discontinuous Galerkin method for a linear hyperbolic equation with discontinuous initial solution. Numer. Math. 126, 703–740 (2014)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Zhang, Q., Gao, F.-Z.: Explicit Runge-Kutta local discontinuous Galerkin method for convection dominated Sobolev equation. J. Sci. Comput. 51, 107–134 (2012)MathSciNetCrossRefMATH Zhang, Q., Gao, F.-Z.: Explicit Runge-Kutta local discontinuous Galerkin method for convection dominated Sobolev equation. J. Sci. Comput. 51, 107–134 (2012)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation. J. Comput. Phys. 269, 138–155 (2014)MathSciNetCrossRefMATH Zhai, S., Feng, X., He, Y.: An unconditionally stable compact ADI method for three-dimensional time-fractional convection–diffusion equation. J. Comput. Phys. 269, 138–155 (2014)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Zhu, H., Qiu, J., Qiu, J.-M.: An h-adaptive RKDG method for the Vlasov–Poisson system. J. Sci. Comput. 69, 1346–1365 (2016)MathSciNetCrossRefMATH Zhu, H., Qiu, J., Qiu, J.-M.: An h-adaptive RKDG method for the Vlasov–Poisson system. J. Sci. Comput. 69, 1346–1365 (2016)MathSciNetCrossRefMATH
Metadaten
Titel
Stability and convergence of a local discontinuous Galerkin method for the fractional diffusion equation with distributed order
verfasst von
Leilei Wei
Lijie Liu
Huixia Sun
Publikationsdatum
31.03.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Journal of Applied Mathematics and Computing / Ausgabe 1-2/2019
Print ISSN: 1598-5865
Elektronische ISSN: 1865-2085
DOI
https://doi.org/10.1007/s12190-018-1182-z

Weitere Artikel der Ausgabe 1-2/2019

Journal of Applied Mathematics and Computing 1-2/2019 Zur Ausgabe