Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 11/2024

01.04.2024 | Review

Structure, principle and performance of flexible conductive polymer strain sensors: a review

verfasst von: Peng Han, Shihong Liang, Hui Zou, Xiangfu Wang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 11/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This review delves into the sensing principles and structural innovations of conductive polymer strain sensors, and looks forward to their application potential in multiple fields and future research directions. Strain sensors that can convert physical deformation into electrical signals are of increasing importance amid the wider fever of the edge-cutting fields including soft robotics, human-machine interface, and wearable electronics. Yet, these more and more complex application scenarios call for a revolution of current strain sensing technologies. On top of their stretchability, more iodegradable and customizable, conductive polymer strain sensors enter the scene, showing promising prospects as next-generation strain sensors. Briefly, the sensing principles discussed include strain sensing controlled by tunneling effect, separation mechanism and crack propagation. Additionally, we explore three types of polymer strain sensor structures: filled (fiber-filled, carbon black-filled, nano-filled, and microporous-filled), sandwich (single-layer and multi-layer), and adsorption-type sensors. These sensors show great potential for applications in structural health monitoring, mechanical vibration detection, medical diagnosis, and environmental pollution monitoring. We also discuss the challenges faced by conductive polymer strain sensors and propose future research directions to address these issues. This review aims to provide a comprehensive understanding of conductive polymer strain sensors and inspire further development in this promising research area.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
24.
39.
Zurück zum Zitat V.H. Nguyen, U. Gottlieb, A. Valla et al., Electron tunneling through grain boundaries in transparent conductive oxides and implications for electrical conductivity: the case of ZnO:Al thin films. Mater. Horiz. 5(4), 715–726 (2018). https://doi.org/10.1039/C8MH00402ACrossRef V.H. Nguyen, U. Gottlieb, A. Valla et al., Electron tunneling through grain boundaries in transparent conductive oxides and implications for electrical conductivity: the case of ZnO:Al thin films. Mater. Horiz. 5(4), 715–726 (2018). https://​doi.​org/​10.​1039/​C8MH00402ACrossRef
48.
Zurück zum Zitat P. Zhang, Y. Bin, R. Zhang, M. Matsuo, Average gap distance between adjacent conductive fillers in polyimide matrix calculated using impedance extrapolated to zero frequency in terms of a thermal fluctuation-induced tunneling effect. Polym. J. 49, 839–850 (2017). https://doi.org/10.1038/pj.2017.71CrossRef P. Zhang, Y. Bin, R. Zhang, M. Matsuo, Average gap distance between adjacent conductive fillers in polyimide matrix calculated using impedance extrapolated to zero frequency in terms of a thermal fluctuation-induced tunneling effect. Polym. J. 49, 839–850 (2017). https://​doi.​org/​10.​1038/​pj.​2017.​71CrossRef
106.
Zurück zum Zitat L. Lu, X. Wei, Y. Zhang et al., A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. J. Mater. Chem. C 28(5), 7035–7042 (2017). https://doi.org/10.1039/C7TC02429KCrossRef L. Lu, X. Wei, Y. Zhang et al., A flexible and self-formed sandwich structure strain sensor based on AgNW decorated electrospun fibrous mats with excellent sensing capability and good oxidation inhibition properties. J. Mater. Chem. C 28(5), 7035–7042 (2017). https://​doi.​org/​10.​1039/​C7TC02429KCrossRef
Metadaten
Titel
Structure, principle and performance of flexible conductive polymer strain sensors: a review
verfasst von
Peng Han
Shihong Liang
Hui Zou
Xiangfu Wang
Publikationsdatum
01.04.2024
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 11/2024
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-024-12474-y

Weitere Artikel der Ausgabe 11/2024

Journal of Materials Science: Materials in Electronics 11/2024 Zur Ausgabe

Neuer Inhalt