Skip to main content
Erschienen in: Microsystem Technologies 12/2017

25.02.2017 | Technical Paper

Study on characteristics of the piezoelectric energy-harvesting from the torsional vibration of thin-walled cantilever beams

verfasst von: Shiqiao Gao, Guangyi Zhang, Lei Jin, Ping Li, Haipeng Liu

Erschienen in: Microsystem Technologies | Ausgabe 12/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a piezoelectric energy-harvesting structure based on the torsional vibration in the second mode is presented, which is composed of a thin-walled cantilever beam with PZT piezoelectric material and an eccentric proof mass. It has some advantages, such as small displacement amplitudes, uniform strain, and lower natural frequency. Firstly, based on the torsion theory of thin-walled bar (or beam), the static and dynamic theoretical torsion models of the harvester structure are established and its static and dynamic characteristics are derived. Then based on constitutive equation of piezoelectric materials, some characteristics of piezoelectric output such as open voltage are derived. The advantage of the models we made is that the analytical solutions of output characteristics clearly and concisely show the relationship between the related parameters and the output results. After modeling, we have made relevant theoretical calculations, numerical simulations and experiments by using PZT-5H as the piezoelectric material. The results show that the second modal frequency of the structure is 124.72 Hz. Under this condition, the open circuit voltage can reach 1.82 V when the excitation acceleration is 10 m/s2; the torsion angle can reach 0.341° when the excitation acceleration is 3 m/s2. From the results of mechanical and electrical output obtained by theoretical calculations, numerical simulations and experiments, it is found that they are all in good agreement with each other.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdelkefi A, Najar F, Nayfeh AH et al (2011) An energy harvester using piezoelectric cantilever beams undergoing coupled bending–torsion vibrations. Smart Mater Struct 20(11):115007CrossRef Abdelkefi A, Najar F, Nayfeh AH et al (2011) An energy harvester using piezoelectric cantilever beams undergoing coupled bending–torsion vibrations. Smart Mater Struct 20(11):115007CrossRef
Zurück zum Zitat Abdelkefi A, Nayfeh AH, Hajj MR et al (2012) Energy harvesting from a multifrequency response of a tuned bending–torsion system. Smart Mater Struct 21(7):075029CrossRef Abdelkefi A, Nayfeh AH, Hajj MR et al (2012) Energy harvesting from a multifrequency response of a tuned bending–torsion system. Smart Mater Struct 21(7):075029CrossRef
Zurück zum Zitat Ajitsaria J, Choe SY, Shen D et al (2007) Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater Struct 16(2):447–454CrossRef Ajitsaria J, Choe SY, Shen D et al (2007) Modeling and analysis of a bimorph piezoelectric cantilever beam for voltage generation. Smart Mater Struct 16(2):447–454CrossRef
Zurück zum Zitat Ben Ayed S, Abdelkefi A, Najar F et al (2014) Design and performance of variable-shaped piezoelectric energy harvesters. J Intell Mater Syst Struct 25(2):174–186 Ben Ayed S, Abdelkefi A, Najar F et al (2014) Design and performance of variable-shaped piezoelectric energy harvesters. J Intell Mater Syst Struct 25(2):174–186
Zurück zum Zitat Cha Y, Shen L, Porfiri M (2013) Energy harvesting from underwater torsional vibrations of a patterned ionic polymer metal composite. Smart Mater Struct 22(5):055027CrossRef Cha Y, Shen L, Porfiri M (2013) Energy harvesting from underwater torsional vibrations of a patterned ionic polymer metal composite. Smart Mater Struct 22(5):055027CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, New YorkCrossRef Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, New YorkCrossRef
Zurück zum Zitat Gao S, Zhang G, Jin L, et al (2016) Characteristics of the piezoelectric energy-harvesting from the torsional vibration of thin-walled cantilever beams. In: 12th IEEE/ASME international conference on mechatronic and embedded systems and applications (MESA). IEEE 2016, pp 1–5 Gao S, Zhang G, Jin L, et al (2016) Characteristics of the piezoelectric energy-harvesting from the torsional vibration of thin-walled cantilever beams. In: 12th IEEE/ASME international conference on mechatronic and embedded systems and applications (MESA). IEEE 2016, pp 1–5
Zurück zum Zitat Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng 18(10):104013CrossRef Goldschmidtboeing F, Woias P (2008) Characterization of different beam shapes for piezoelectric energy harvesting. J Micromech Microeng 18(10):104013CrossRef
Zurück zum Zitat Kulkarni V, Ben-Mrad R, Prasad SE (2014a) A torsion based shear mode piezoelectric energy harvester for wireless sensor modules. In: ASME 2014 international mechanical engineering congress and exposition, American Society of Mechanical Engineers 2014, p V04BT04A053 Kulkarni V, Ben-Mrad R, Prasad SE (2014a) A torsion based shear mode piezoelectric energy harvester for wireless sensor modules. In: ASME 2014 international mechanical engineering congress and exposition, American Society of Mechanical Engineers 2014, p V04BT04A053
Zurück zum Zitat Kulkarni V, Ben-Mrad R, Prasad SE et al (2014b) A shear-mode energy harvesting device based on torsional stresses. IEEE/ASME Trans Mechatron 19(3):801–807CrossRef Kulkarni V, Ben-Mrad R, Prasad SE et al (2014b) A shear-mode energy harvesting device based on torsional stresses. IEEE/ASME Trans Mechatron 19(3):801–807CrossRef
Zurück zum Zitat Li P, Gao S, Niu S et al (2014a) An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester. Smart Mater Struct 23(6):065016CrossRef Li P, Gao S, Niu S et al (2014a) An analysis of the coupling effect for a hybrid piezoelectric and electromagnetic energy harvester. Smart Mater Struct 23(6):065016CrossRef
Zurück zum Zitat Li P, Gao S, Cai H et al (2014b) Coupling effect analysis for hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Int J Precis Eng Manuf 15(9):1915–1924CrossRef Li P, Gao S, Cai H et al (2014b) Coupling effect analysis for hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Int J Precis Eng Manuf 15(9):1915–1924CrossRef
Zurück zum Zitat Li P, Gao S, Cai H et al (2015a) Design, fabrication and performances of MEMS piezoelectric energy harvester. Int J Appl Electromagn Mech 47(1):125–139 Li P, Gao S, Cai H et al (2015a) Design, fabrication and performances of MEMS piezoelectric energy harvester. Int J Appl Electromagn Mech 47(1):125–139
Zurück zum Zitat Li P, Gao S, Cai H (2015b) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21(2):401–414CrossRef Li P, Gao S, Cai H (2015b) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21(2):401–414CrossRef
Zurück zum Zitat Lu F, Lee HP, Lim SP (2004) Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 13(1):57–63CrossRef Lu F, Lee HP, Lim SP (2004) Modeling and analysis of micro piezoelectric power generators for micro-electromechanical-systems applications. Smart Mater Struct 13(1):57–63CrossRef
Zurück zum Zitat Mateu L, Moll F (2005) Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J Intell Mater Syst Struct 16(10):835–845CrossRef Mateu L, Moll F (2005) Optimum piezoelectric bending beam structures for energy harvesting using shoe inserts. J Intell Mater Syst Struct 16(10):835–845CrossRef
Zurück zum Zitat Meeker TR (1996) Publication and proposed revision of ANSI/IEEE standard 176-1987. IEEE Trans Ultrason Ferroelectr Freq Control 43(5):717–773CrossRef Meeker TR (1996) Publication and proposed revision of ANSI/IEEE standard 176-1987. IEEE Trans Ultrason Ferroelectr Freq Control 43(5):717–773CrossRef
Zurück zum Zitat Mihailovich RE, Zhang ZL, Shaw KA et al (1993) Single-crystal silicon torsional resonators. In: IEEE conference on micro electro mechanical systems 1993, pp 184–188 Mihailovich RE, Zhang ZL, Shaw KA et al (1993) Single-crystal silicon torsional resonators. In: IEEE conference on micro electro mechanical systems 1993, pp 184–188
Zurück zum Zitat Muthalif AGA, Nordin NHD (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Sign Process 54:417–426CrossRef Muthalif AGA, Nordin NHD (2015) Optimal piezoelectric beam shape for single and broadband vibration energy harvesting: modeling, simulation and experimental results. Mech Syst Sign Process 54:417–426CrossRef
Zurück zum Zitat Pillatsch P, Yeatman EM, Holmes AS (2013) A wearable piezoelectric rotational energy harvester. In: IEEE international conference on body sensor networks 2013, pp 1–6 Pillatsch P, Yeatman EM, Holmes AS (2013) A wearable piezoelectric rotational energy harvester. In: IEEE international conference on body sensor networks 2013, pp 1–6
Zurück zum Zitat Shindo Y, Narita F (2014) Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters. Int J Mech Mater Des 10(3):305–311CrossRef Shindo Y, Narita F (2014) Dynamic bending/torsion and output power of S-shaped piezoelectric energy harvesters. Int J Mech Mater Des 10(3):305–311CrossRef
Zurück zum Zitat Wang QM, Cross LE (1998) Performance analysis of piezoelectric cantilever bending actuators. Ferroelectrics 215(1):187–213CrossRef Wang QM, Cross LE (1998) Performance analysis of piezoelectric cantilever bending actuators. Ferroelectrics 215(1):187–213CrossRef
Zurück zum Zitat You LH, Zhang JJ, You XY (2005) Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. Int J Press Vessels Pip 82(5):347–354CrossRef You LH, Zhang JJ, You XY (2005) Elastic analysis of internally pressurized thick-walled spherical pressure vessels of functionally graded materials. Int J Press Vessels Pip 82(5):347–354CrossRef
Zurück zum Zitat Zhang S, Jiang W, Meyer RJ Jr et al (2011) Measurements of face shear properties in relaxor-PbTiO3 single crystals. J Appl Phys 110(6):064106CrossRef Zhang S, Jiang W, Meyer RJ Jr et al (2011) Measurements of face shear properties in relaxor-PbTiO3 single crystals. J Appl Phys 110(6):064106CrossRef
Metadaten
Titel
Study on characteristics of the piezoelectric energy-harvesting from the torsional vibration of thin-walled cantilever beams
verfasst von
Shiqiao Gao
Guangyi Zhang
Lei Jin
Ping Li
Haipeng Liu
Publikationsdatum
25.02.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 12/2017
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-017-3336-6

Weitere Artikel der Ausgabe 12/2017

Microsystem Technologies 12/2017 Zur Ausgabe

Neuer Inhalt