Skip to main content
Erschienen in: Metallurgical and Materials Transactions A 10/2018

02.07.2018

Tensile Failure Modes in Nanograined Metals with Nanotwinned Regions

verfasst von: X. Guo, Y. Liu, G. J. Weng, L. L. Zhu

Erschienen in: Metallurgical and Materials Transactions A | Ausgabe 10/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanotwinned (NT) regions can compensate the lower ductility of nanograined (NG) matrix so that NG metals with NT regions can achieve high strength and modest ductility. Main factors affecting the strength and ductility of the NG metals with NT regions have not been systematically and numerically investigated. Based on the strain gradient plasticity and Johnson–Cook failure criterion, computer simulations are carried out to clarify the effects of twin spacing together with shape and distribution of NT regions on their strength and ductility. Our calculations indicate that these attributes have significant effects on the overall ductility. In particular, it is discovered that a critical twin spacing marks the reversal of the overall ductility, that is, the overall ductility decreases and then increases with the continuous increase of twin spacing. Compared with the circular NT regions, the square and oblique square ones are found to provide higher overall strength and ductility. For the circular and oblique square NT regions, array arrangement tends to perform better in strengthening and toughening, while for the square NT regions, staggered arrangement is advisable. We have also uncovered three distinct failure modes, including fracture of matrix, fracture of NT regions, and interface debonding. Furthermore, fracture of NT regions can enhance the overall ductility and lead to the reversal of the overall ductility. It is believed that this study has provided significant insights into the roles of twin spacing together with shape and distribution of NT regions on the overall strength and ductility of this novel class of metals.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Appl. Phys. Lett., 2001, vol. 79, pp. 611–13.CrossRef D. Jia, Y.M. Wang, K.T. Ramesh, E. Ma, Y.T. Zhu, and R.Z. Valiev: Appl. Phys. Lett., 2001, vol. 79, pp. 611–13.CrossRef
3.
4.
Zurück zum Zitat N.R. Tao and K. Lu: J. Mater. Sci. Technol., 2007, vol. 23, pp. 771–74.CrossRef N.R. Tao and K. Lu: J. Mater. Sci. Technol., 2007, vol. 23, pp. 771–74.CrossRef
5.
Zurück zum Zitat L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.CrossRef L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Science, 2004, vol. 304, pp. 422–26.CrossRef
6.
Zurück zum Zitat Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu: Scripta Mater., 2005, vol. 52, pp. 989–94.CrossRef Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu: Scripta Mater., 2005, vol. 52, pp. 989–94.CrossRef
7.
8.
9.
Zurück zum Zitat IA OvidKo and AG Sheinerman (2016) Rev. Adv. Mater. Sci. 44: 1–25. IA OvidKo and AG Sheinerman (2016) Rev. Adv. Mater. Sci. 44: 1–25.
10.
Zurück zum Zitat D. Zhu, H. Zhang, and D.Y. Li: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4207–17.CrossRef D. Zhu, H. Zhang, and D.Y. Li: Metall. Mater. Trans. A, 2013, vol. 44, pp. 4207–17.CrossRef
11.
Zurück zum Zitat L.G. Sun, X.Q. He, J.B. Wang, and J. Lu: Mat. Sci. Eng. A–Struct., 2014, vol. 606, pp. 334–45.CrossRef L.G. Sun, X.Q. He, J.B. Wang, and J. Lu: Mat. Sci. Eng. A–Struct., 2014, vol. 606, pp. 334–45.CrossRef
12.
Zurück zum Zitat H. Zhang, J. Geng, R.T. Ott, M.F. Besser, and M.J. Kramer: Metall. Mater. Trans. A, 2015, vol. 46, pp.4078–85.CrossRef H. Zhang, J. Geng, R.T. Ott, M.F. Besser, and M.J. Kramer: Metall. Mater. Trans. A, 2015, vol. 46, pp.4078–85.CrossRef
13.
Zurück zum Zitat A.Y. Chen, J.B. Liu, H.T. Wang, J. Lu, and Y.M. Wang: Mat. Sci. Eng. A–Struct., 2016, vol. 667, pp. 179–88.CrossRef A.Y. Chen, J.B. Liu, H.T. Wang, J. Lu, and Y.M. Wang: Mat. Sci. Eng. A–Struct., 2016, vol. 667, pp. 179–88.CrossRef
14.
Zurück zum Zitat H.X. Jin and J.Q. Zhou: J. Mater. Sci., 2017, vol. 52, pp. 4647–57.CrossRef H.X. Jin and J.Q. Zhou: J. Mater. Sci., 2017, vol. 52, pp. 4647–57.CrossRef
15.
Zurück zum Zitat Y.S. Li, N.R. Tao, and K. Lu: Acta Mater., 2008, vol. 56, pp. 230–41.CrossRef Y.S. Li, N.R. Tao, and K. Lu: Acta Mater., 2008, vol. 56, pp. 230–41.CrossRef
16.
Zurück zum Zitat G.H. Xiao, N.R. Tao, and K. Lu: Mat. Sci. Eng. A–Struct., 2009, vol. 513, pp. 13–21.CrossRef G.H. Xiao, N.R. Tao, and K. Lu: Mat. Sci. Eng. A–Struct., 2009, vol. 513, pp. 13–21.CrossRef
17.
Zurück zum Zitat B.Y.C. Wu, P.J. Ferreira, and C.A. Schuh: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1927–36.CrossRef B.Y.C. Wu, P.J. Ferreira, and C.A. Schuh: Metall. Mater. Trans. A, 2005, vol. 36, pp. 1927–36.CrossRef
18.
Zurück zum Zitat Z.S. You, L. Lu, and K. Lu: Acta Mater., 2011, vol. 59, pp. 6927–37.CrossRef Z.S. You, L. Lu, and K. Lu: Acta Mater., 2011, vol. 59, pp. 6927–37.CrossRef
19.
Zurück zum Zitat L. Lu, X. Chen, X. Huang, and K. Lu: Science, 2009, vol. 323, pp. 607–10.CrossRef L. Lu, X. Chen, X. Huang, and K. Lu: Science, 2009, vol. 323, pp. 607–10.CrossRef
20.
Zurück zum Zitat D.C. Bufford, Y.M. Wang, Y. Liu, and L. Lu: MRS Bull., 2016, vol. 41, pp. 286–91.CrossRef D.C. Bufford, Y.M. Wang, Y. Liu, and L. Lu: MRS Bull., 2016, vol. 41, pp. 286–91.CrossRef
21.
22.
Zurück zum Zitat X. Zhang, H. Wang, X.H. Chen, R.G. Hoagland, A. Misra: Appl. Phys. Lett., 2006, vol. 88, p. 173116.CrossRef X. Zhang, H. Wang, X.H. Chen, R.G. Hoagland, A. Misra: Appl. Phys. Lett., 2006, vol. 88, p. 173116.CrossRef
23.
Zurück zum Zitat Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2949–53.CrossRef Y.H. Zhao, J.F. Bingert, X.Z. Liao, B.Z. Cui, K. Han, A.V. Sergueeva, A.K. Mukherjee, R.Z. Valiev, T.G. Langdon, and Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2949–53.CrossRef
24.
Zurück zum Zitat C. Ye, S. Suslov, D. Lin, Y.L. Liao, and G.J. Cheng: J. Appl. Phys., 2014, vol. 115, p. 213519.CrossRef C. Ye, S. Suslov, D. Lin, Y.L. Liao, and G.J. Cheng: J. Appl. Phys., 2014, vol. 115, p. 213519.CrossRef
25.
26.
27.
Zurück zum Zitat A. Jerusalem, M. Dao, S. Suresh, and R. Radovitzky: Acta Mater., 2008, vol. 56, pp. 4647–57.CrossRef A. Jerusalem, M. Dao, S. Suresh, and R. Radovitzky: Acta Mater., 2008, vol. 56, pp. 4647–57.CrossRef
28.
Zurück zum Zitat X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Appl. Phys. Lett., 2004, vol. 84, pp. 1096–98.CrossRef X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Appl. Phys. Lett., 2004, vol. 84, pp. 1096–98.CrossRef
29.
Zurück zum Zitat Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter: Scripta Mater., 2006, vol. 54, pp. 1163–68.CrossRef Z.H. Jin, P. Gumbsch, E. Ma, K. Albe, K. Lu, H. Hahn, and H. Gleiter: Scripta Mater., 2006, vol. 54, pp. 1163–68.CrossRef
30.
Zurück zum Zitat Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn: Acta Mater., 2008, vol. 56, pp. 1126–35.CrossRef Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn: Acta Mater., 2008, vol. 56, pp. 1126–35.CrossRef
31.
Zurück zum Zitat A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh: Acta Mater., 2011, vol. 59, pp. 2437–46.CrossRef A. Singh, L. Tang, M. Dao, L. Lu, and S. Suresh: Acta Mater., 2011, vol. 59, pp. 2437–46.CrossRef
32.
Zurück zum Zitat L. Lu, Z.S. You, and K. Lu: Scripta Mater., 2012, vol. 66, pp. 837–42.CrossRef L. Lu, Z.S. You, and K. Lu: Scripta Mater., 2012, vol. 66, pp. 837–42.CrossRef
33.
Zurück zum Zitat E.W. Qin, L. Lu, N.R. Tao, J. Tan, and K. Lu: Acta Mater., 2009, vol. 57, pp. 6215–25.CrossRef E.W. Qin, L. Lu, N.R. Tao, J. Tan, and K. Lu: Acta Mater., 2009, vol. 57, pp. 6215–25.CrossRef
34.
Zurück zum Zitat M. Dao, L. Lu, Y.F. Shen, and S. Suresh: Acta Mater., 2006, vol. 54, pp. 5421–32.CrossRef M. Dao, L. Lu, Y.F. Shen, and S. Suresh: Acta Mater., 2006, vol. 54, pp. 5421–32.CrossRef
35.
Zurück zum Zitat L.L. Zhu, H.H. Ruan, X.Y. Li, M. Dao, H.J. Gao, and J. Lu: Acta Mater., 2011, vol. 59, pp. 5544–57.CrossRef L.L. Zhu, H.H. Ruan, X.Y. Li, M. Dao, H.J. Gao, and J. Lu: Acta Mater., 2011, vol. 59, pp. 5544–57.CrossRef
36.
Zurück zum Zitat F.P. Yuan, L. Chen, P. Jiang, and X.L. Wu: J. Appl. Phys., 2014, vol. 115, p. 063509.CrossRef F.P. Yuan, L. Chen, P. Jiang, and X.L. Wu: J. Appl. Phys., 2014, vol. 115, p. 063509.CrossRef
37.
38.
Zurück zum Zitat X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao: Nature, 2010, vol. 464, pp. 877–80.CrossRef X.Y. Li, Y.J. Wei, L. Lu, K. Lu, and H.J. Gao: Nature, 2010, vol. 464, pp. 877–80.CrossRef
39.
Zurück zum Zitat X.Y. Li, M. Dao, C. Eberl, A.M. Hodge, and H.J. Gao: MRS Bull., 2016, vol. 41, pp. 298–304.CrossRef X.Y. Li, M. Dao, C. Eberl, A.M. Hodge, and H.J. Gao: MRS Bull., 2016, vol. 41, pp. 298–304.CrossRef
40.
Zurück zum Zitat H.F. Zhou, S.X. Qu, and W. Yang: Model. Simul. Mater. Sc., 2010, vol. 18, p. 065002.CrossRef H.F. Zhou, S.X. Qu, and W. Yang: Model. Simul. Mater. Sc., 2010, vol. 18, p. 065002.CrossRef
41.
Zurück zum Zitat Z. Zeng, X.Y. Li, L. Lu, and T. Zhu: Acta Mater., 2015, vol. 98, pp. 313–17.CrossRef Z. Zeng, X.Y. Li, L. Lu, and T. Zhu: Acta Mater., 2015, vol. 98, pp. 313–17.CrossRef
42.
Zurück zum Zitat S.W. Kim, X.Y. Li, H.J. Gao, and S. Kumar: Acta Mater., 2012, vol. 60, pp. 2959–72.CrossRef S.W. Kim, X.Y. Li, H.J. Gao, and S. Kumar: Acta Mater., 2012, vol. 60, pp. 2959–72.CrossRef
43.
Zurück zum Zitat J.J. Li, Y. Ni, A.K. Soh, and X.L. Wu: Mater. Res. Lett., 2015, vol. 3, pp. 190–96.CrossRef J.J. Li, Y. Ni, A.K. Soh, and X.L. Wu: Mater. Res. Lett., 2015, vol. 3, pp. 190–96.CrossRef
44.
Zurück zum Zitat J.L. Ning and D. Wang: J. Alloy. Compd., 2012, vol. 514, pp. 214–19.CrossRef J.L. Ning and D. Wang: J. Alloy. Compd., 2012, vol. 514, pp. 214–19.CrossRef
45.
Zurück zum Zitat H.T. Wang, N.R. Tao, and K. Lu: Acta Mater., 2012, vol. 60, pp. 4027–40.CrossRef H.T. Wang, N.R. Tao, and K. Lu: Acta Mater., 2012, vol. 60, pp. 4027–40.CrossRef
46.
Zurück zum Zitat X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Model. Simul. Mater. Sc., 2014, vol. 22, p. 075014.CrossRef X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Model. Simul. Mater. Sc., 2014, vol. 22, p. 075014.CrossRef
47.
Zurück zum Zitat Y. Zhang, N.R. Tao, and K. Lu: Acta Mater., 2008, vol. 56, pp. 2429–40.CrossRef Y. Zhang, N.R. Tao, and K. Lu: Acta Mater., 2008, vol. 56, pp. 2429–40.CrossRef
48.
Zurück zum Zitat Dassault Providence RI: ABAQUS Example Problems Manual, Theory Manual, and User’s Manual, version 6.10, 2013. Dassault Providence RI: ABAQUS Example Problems Manual, Theory Manual, and User’s Manual, version 6.10, 2013.
49.
Zurück zum Zitat L.L. Zhu and J. Lu: Int. J. Plasticity, 2012, vol. 30–31, pp. 166–84.CrossRef L.L. Zhu and J. Lu: Int. J. Plasticity, 2012, vol. 30–31, pp. 166–84.CrossRef
50.
Zurück zum Zitat Y. Huang, S. Qu, K.C. Hwang, M. Li, and H.J. Gao: Int. J. Plasticity, 2004, vol. 20, pp. 753–82.CrossRef Y. Huang, S. Qu, K.C. Hwang, M. Li, and H.J. Gao: Int. J. Plasticity, 2004, vol. 20, pp. 753–82.CrossRef
51.
Zurück zum Zitat G.R. Johnson and W.H. Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: Proceedings of the 7th Int. Symposium on Ballistics, 1983, The Hague, The Netherlands. G.R. Johnson and W.H. Cook: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures, In: Proceedings of the 7th Int. Symposium on Ballistics, 1983, The Hague, The Netherlands.
52.
Zurück zum Zitat G.R. Johnson and W.H. Cook: Eng. Fract. Mech., 1985, vol. 21, pp. 31–48.CrossRef G.R. Johnson and W.H. Cook: Eng. Fract. Mech., 1985, vol. 21, pp. 31–48.CrossRef
53.
Zurück zum Zitat X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Mat. Sci. Eng. A, 2014, vol. 618, pp. 479–89.CrossRef X. Guo, R. Ji, G.J. Weng, L.L. Zhu, and J. Lu: Mat. Sci. Eng. A, 2014, vol. 618, pp. 479–89.CrossRef
54.
Zurück zum Zitat Q.D. Ouyang, X. Guo, X.Q. Feng: Mat. Sci. Eng. A–Struct., 2016, vol. 677, pp. 76–88.CrossRef Q.D. Ouyang, X. Guo, X.Q. Feng: Mat. Sci. Eng. A–Struct., 2016, vol. 677, pp. 76–88.CrossRef
55.
Zurück zum Zitat G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: ASME 2017 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2017, p. V014T11A004. G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: ASME 2017 International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers, 2017, p. V014T11A004.
56.
Zurück zum Zitat G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: Int. J. Comput. Meth. Eng. Sci. Mech., 2018, vol. 19, pp. 1–10.CrossRef G. He, Y.Q. Dou, X. Guo, and Y.C. Liu: Int. J. Comput. Meth. Eng. Sci. Mech., 2018, vol. 19, pp. 1–10.CrossRef
57.
Zurück zum Zitat X. Guo, Q.D. Ouyang, G.J. Weng, and L.L. Zhu: Mat. Sci. Eng. A-Struct., 2016, vol. 657, pp. 234–43.CrossRef X. Guo, Q.D. Ouyang, G.J. Weng, and L.L. Zhu: Mat. Sci. Eng. A-Struct., 2016, vol. 657, pp. 234–43.CrossRef
58.
Zurück zum Zitat R.K. Guduru, K.L. Murty, K.M. Youssef, R.O. Scattergood, and C.C. Koch: Mat. Sci. Eng. A–Struct., 2007, vol. 463, pp. 14–21.CrossRef R.K. Guduru, K.L. Murty, K.M. Youssef, R.O. Scattergood, and C.C. Koch: Mat. Sci. Eng. A–Struct., 2007, vol. 463, pp. 14–21.CrossRef
59.
Zurück zum Zitat Y.P. Jiang, K. Qiu, L.G. Sun, and Q.Q. Wu: Metall. Mater. Trans. A, 2018, vol. 49, pp. 417–24.CrossRef Y.P. Jiang, K. Qiu, L.G. Sun, and Q.Q. Wu: Metall. Mater. Trans. A, 2018, vol. 49, pp. 417–24.CrossRef
Metadaten
Titel
Tensile Failure Modes in Nanograined Metals with Nanotwinned Regions
verfasst von
X. Guo
Y. Liu
G. J. Weng
L. L. Zhu
Publikationsdatum
02.07.2018
Verlag
Springer US
Erschienen in
Metallurgical and Materials Transactions A / Ausgabe 10/2018
Print ISSN: 1073-5623
Elektronische ISSN: 1543-1940
DOI
https://doi.org/10.1007/s11661-018-4773-2

Weitere Artikel der Ausgabe 10/2018

Metallurgical and Materials Transactions A 10/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.