Skip to main content
Erschienen in: Cellulose 12/2020

26.05.2020 | Original Research

Thermodynamic analysis of cellulose complex in NaOH–urea solution using reference interaction site model

verfasst von: Eugene Huh, Ji-Hyun Yang, Chang-Ha Lee, Ik-Sung Ahn, Byung Jin Mhin

Erschienen in: Cellulose | Ausgabe 12/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermodynamic analysis of the empirical data for the solvation of cellulose in aqueous NaOH/urea solution was performed in this study; this was achieved by employing the three-dimensional Reference Interaction Site Model theory coupled with the Kovalenko–Hirata closure approximation. The preferential distributions of Na+, OH, urea, and water that were in a close proximity to the cellulose molecule, enabled the calculation of the solvation energy and the contribution of each solvent species to the solvation energy. By dividing the solvation energy into the solvent potential energy under the consideration of the solvent–solute interaction and the solvent reorganization energy, cellulose solvation in the NaOH/urea solution was observed to be primarily due to reorganization of the water molecules around the cellulose molecule. The solvated structure was suggested to be composed of cellulose as an inclusion in helical clusters of Na+, OH, urea, and water, wherein the clusters comprised a repeated arrangement of OH hydrate, water molecules, urea hydrate, and water molecules. Cellulose is suspected to play the role of a water structure maker in the presence of NaOH and urea, and as a water structure breaker in the absence of NaOH and/or urea.

Graphic abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ben-Naim A (1978) Standard thermodynamics of transfer. Uses and misuses. J Phys Chem 82:792–803CrossRef Ben-Naim A (1978) Standard thermodynamics of transfer. Uses and misuses. J Phys Chem 82:792–803CrossRef
Zurück zum Zitat Bialik E, Stenqvist B, Fang Y, Östlund Å, Furó I, Lindman B, Lund M, Bernin D (2016) Ionization of cellobiose in aqueous alkali and the mechanism of cellulose dissolution. J Phys Chem Lett 7:5044–5048CrossRef Bialik E, Stenqvist B, Fang Y, Östlund Å, Furó I, Lindman B, Lund M, Bernin D (2016) Ionization of cellobiose in aqueous alkali and the mechanism of cellulose dissolution. J Phys Chem Lett 7:5044–5048CrossRef
Zurück zum Zitat Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRef Cai J, Zhang L (2005) Rapid dissolution of cellulose in LiOH/urea and NaOH/urea aqueous solutions. Macromol Biosci 5:539–548CrossRef
Zurück zum Zitat Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25:1558–1562CrossRef Cai J, Zhang L, Zhou J, Li H, Chen H, Jin H (2004) Novel fibers prepared from cellulose in NaOH/urea aqueous solution. Macromol Rapid Commun 25:1558–1562CrossRef
Zurück zum Zitat Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Pol Phys 44:3093–3101CrossRef Cai J, Liu Y, Zhang L (2006) Dilute solution properties of cellulose in LiOH/urea aqueous system. J Polym Sci Pol Phys 44:3093–3101CrossRef
Zurück zum Zitat Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579CrossRef Cai J, Zhang L, Chang C, Cheng G, Chen X, Chu B (2007) Hydrogen-bond-induced inclusion complex in aqueous cellulose/LiOH/urea solution at low temperature. ChemPhysChem 8:1572–1579CrossRef
Zurück zum Zitat Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351CrossRef Cai J, Zhang L, Liu S, Liu Y, Xu X, Chen X, Chu B, Guo X, Xu J, Cheng H, Han C, Kuga S (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351CrossRef
Zurück zum Zitat Cai L, Liu Y, Liang H (2012) Impact of hydrogen bonding on inclusion layer of urea to cellulose: study of molecular dynamics simulation. Polymer 53:1124–1130CrossRef Cai L, Liu Y, Liang H (2012) Impact of hydrogen bonding on inclusion layer of urea to cellulose: study of molecular dynamics simulation. Polymer 53:1124–1130CrossRef
Zurück zum Zitat Case DA, Betz R, Cerutti D, Cheatham TE, Darden T, Duke RE (2016) AMBER 16. University of California, San Fransisco Case DA, Betz R, Cerutti D, Cheatham TE, Darden T, Duke RE (2016) AMBER 16. University of California, San Fransisco
Zurück zum Zitat Gomes TC, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33:1338–1346CrossRef Gomes TC, Skaf MS (2012) Cellulose-builder: a toolkit for building crystalline structures of cellulose. J Comput Chem 33:1338–1346CrossRef
Zurück zum Zitat Gusarov S, Pujari BS, Kovalenko A (2012) Efficient treatment of solvation shells in 3D molecular theory of solvation. J Comput Chem 33:1478–1494CrossRef Gusarov S, Pujari BS, Kovalenko A (2012) Efficient treatment of solvation shells in 3D molecular theory of solvation. J Comput Chem 33:1478–1494CrossRef
Zurück zum Zitat Huang W, Blinov N, Kovalenko A (2015) Octanol–water partition coefficient from 3D-RISM-KH molecular theory of solvation with partial molar volume correction. J Phys Chem B 17:5588–5597CrossRef Huang W, Blinov N, Kovalenko A (2015) Octanol–water partition coefficient from 3D-RISM-KH molecular theory of solvation with partial molar volume correction. J Phys Chem B 17:5588–5597CrossRef
Zurück zum Zitat Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr 14:33–38CrossRef Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Gr 14:33–38CrossRef
Zurück zum Zitat Imai T, Ohyama S, Kovalenko A, Hirata F (2007) Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Protein Sci 16(9):1927–1933CrossRef Imai T, Ohyama S, Kovalenko A, Hirata F (2007) Theoretical study of the partial molar volume change associated with the pressure-induced structural transition of ubiquitin. Protein Sci 16(9):1927–1933CrossRef
Zurück zum Zitat Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146CrossRef Jakalian A, Bush BL, Jack DB, Bayly CI (2000) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: I. Method. J Comput Chem 21:132–146CrossRef
Zurück zum Zitat Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641CrossRef Jakalian A, Jack DB, Bayly CI (2002) Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J Comput Chem 23:1623–1641CrossRef
Zurück zum Zitat Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L (2014) Intermolecular interactions and 3D structure in cellulose–NaOH–urea aqueous system. J Phys Chem B 118:10250–10257CrossRef Jiang Z, Fang Y, Xiang J, Ma Y, Lu A, Kang H, Huang Y, Guo H, Liu R, Zhang L (2014) Intermolecular interactions and 3D structure in cellulose–NaOH–urea aqueous system. J Phys Chem B 118:10250–10257CrossRef
Zurück zum Zitat Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohyd Res 342:851–858CrossRef Jin H, Zha C, Gu L (2007) Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohyd Res 342:851–858CrossRef
Zurück zum Zitat Kaminski JW, Gusarov S, Wesolowski TA, Kovalenko A (2010) Modeling solvatochromic shifts using the orbital-free embedding potential at statistically mechanically averaged solvent density. J Phys Chem A 114(20):6082–6096CrossRef Kaminski JW, Gusarov S, Wesolowski TA, Kovalenko A (2010) Modeling solvatochromic shifts using the orbital-free embedding potential at statistically mechanically averaged solvent density. J Phys Chem A 114(20):6082–6096CrossRef
Zurück zum Zitat Kovalenko A (2003) Three-dimensional Rism theory for molecular liquids and solid–liquid interfaces. In: Hirata F (ed) Molecular theory of solvation. Springer, Dordrecht, pp 169–275 Kovalenko A (2003) Three-dimensional Rism theory for molecular liquids and solid–liquid interfaces. In: Hirata F (ed) Molecular theory of solvation. Springer, Dordrecht, pp 169–275
Zurück zum Zitat Kovalenko A (2013) Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials. Pure Appl Chem 85(1):159–199CrossRef Kovalenko A (2013) Multiscale modeling of solvation in chemical and biological nanosystems and in nanoporous materials. Pure Appl Chem 85(1):159–199CrossRef
Zurück zum Zitat Kovalenko A (2017) Multiscale modeling of solvation. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer, Heidelberg, pp 95–139CrossRef Kovalenko A (2017) Multiscale modeling of solvation. In: Breitkopf C, Swider-Lyons K (eds) Springer handbook of electrochemical energy. Springer, Heidelberg, pp 95–139CrossRef
Zurück zum Zitat Kovalenko A, Gusarov S (2018) Multiscale methods framework: self-consistent coupling of molecular theory of solvation with quantum chemistry, molecular simulations, and dissipative particle dynamics. Phys Chem Chem Phys 20(5):2947–2969CrossRef Kovalenko A, Gusarov S (2018) Multiscale methods framework: self-consistent coupling of molecular theory of solvation with quantum chemistry, molecular simulations, and dissipative particle dynamics. Phys Chem Chem Phys 20(5):2947–2969CrossRef
Zurück zum Zitat Lazaridis T (2000) Solvent reorganization energy and entropy in hydrophobic hydration. J. Phys Chem B 104:4964–4979CrossRef Lazaridis T (2000) Solvent reorganization energy and entropy in hydrophobic hydration. J. Phys Chem B 104:4964–4979CrossRef
Zurück zum Zitat Liu G, Sun H, Liu G, Zhang H, Yuan S, Zhu Q (2018) A molecular dynamics study of cellulose inclusion complexes in NaOH/urea aqueous solution. Carbohyd Polym 185:12–18CrossRef Liu G, Sun H, Liu G, Zhang H, Yuan S, Zhu Q (2018) A molecular dynamics study of cellulose inclusion complexes in NaOH/urea aqueous solution. Carbohyd Polym 185:12–18CrossRef
Zurück zum Zitat Omelyan I, Kovalenko A (2015) MTS-MD of biomolecules steered with 3D-RISM-KH mean solvation forces accelerated with generalized solvation force extrapolation. J Chem Theory Comput 11(4):1875–1895CrossRef Omelyan I, Kovalenko A (2015) MTS-MD of biomolecules steered with 3D-RISM-KH mean solvation forces accelerated with generalized solvation force extrapolation. J Chem Theory Comput 11(4):1875–1895CrossRef
Zurück zum Zitat Qi H, Yang Q, Zhang L, Liebert T, Heinze T (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18:237–245CrossRef Qi H, Yang Q, Zhang L, Liebert T, Heinze T (2011) The dissolution of cellulose in NaOH-based aqueous system by two-step process. Cellulose 18:237–245CrossRef
Zurück zum Zitat Silveira RL, Stoyanov SR, Gusarov S, Skaf MS, Kovalenko A (2013) Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength. J Am Chem Soc 135(51):19048–19051CrossRef Silveira RL, Stoyanov SR, Gusarov S, Skaf MS, Kovalenko A (2013) Plant biomass recalcitrance: effect of hemicellulose composition on nanoscale forces that control cell wall strength. J Am Chem Soc 135(51):19048–19051CrossRef
Zurück zum Zitat Silveira RL, Stoyanov SR, Gusarov S, Skaf MS, Kovalenko A (2015) Supramolecular interactions in secondary plant cell walls: effect of lignin chemical composition revealed with the molecular theory of solvation. J Phys Chem Lett 6(1):206–211CrossRef Silveira RL, Stoyanov SR, Gusarov S, Skaf MS, Kovalenko A (2015) Supramolecular interactions in secondary plant cell walls: effect of lignin chemical composition revealed with the molecular theory of solvation. J Phys Chem Lett 6(1):206–211CrossRef
Zurück zum Zitat Sindhikara DJ, Yoshida N, Hirata F (2012) Placevent: an algorithm for prediction of explicit solvent atom distribution—application to HIV-1 protease and F-ATP synthase. J Comput Chem 33:1536–1543CrossRef Sindhikara DJ, Yoshida N, Hirata F (2012) Placevent: an algorithm for prediction of explicit solvent atom distribution—application to HIV-1 protease and F-ATP synthase. J Comput Chem 33:1536–1543CrossRef
Zurück zum Zitat Stoyanov SR, Lyubimova O, Gusarov S, Kovalenko A (2014) Computational modeling of the structure relaxation and dispersion thermodynamics of pristine and modified cellulose nanocrystals in solution. Nord Pulp Pap Res J 29(1):144–155CrossRef Stoyanov SR, Lyubimova O, Gusarov S, Kovalenko A (2014) Computational modeling of the structure relaxation and dispersion thermodynamics of pristine and modified cellulose nanocrystals in solution. Nord Pulp Pap Res J 29(1):144–155CrossRef
Zurück zum Zitat Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L (2017a) Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Phys Chem Chem Phys 19:7486–7490CrossRef Wang S, Sun P, Zhang R, Lu A, Liu M, Zhang L (2017a) Cation/macromolecule interaction in alkaline cellulose solution characterized with pulsed field-gradient spin-echo NMR spectroscopy. Phys Chem Chem Phys 19:7486–7490CrossRef
Zurück zum Zitat Wang S, Lyu K, Sun P, Lu A, Liu M, Zhuang L, Zhang L (2017b) Influence of cation on the cellulose dissolution investigated by MD simulation and experiments. Cellulose 24:4641–4651CrossRef Wang S, Lyu K, Sun P, Lu A, Liu M, Zhuang L, Zhang L (2017b) Influence of cation on the cellulose dissolution investigated by MD simulation and experiments. Cellulose 24:4641–4651CrossRef
Zurück zum Zitat Wang S, Sun P, Liu M, Lu A, Zhang L (2017c) Weak interactions and their impact on cellulose dissolution in an alkali/urea aqueous system. Phys Chem Chem Phys 19:17909–17917CrossRef Wang S, Sun P, Liu M, Lu A, Zhang L (2017c) Weak interactions and their impact on cellulose dissolution in an alkali/urea aqueous system. Phys Chem Chem Phys 19:17909–17917CrossRef
Zurück zum Zitat Wernersson E, Stenqvist B, Lund M (2015) The mechanism of cellulose solubilization by urea studied by molecular simulation. Cellulose 22:991–1001CrossRef Wernersson E, Stenqvist B, Lund M (2015) The mechanism of cellulose solubilization by urea studied by molecular simulation. Cellulose 22:991–1001CrossRef
Zurück zum Zitat Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621CrossRef Xiong B, Zhao P, Cai P, Zhang L, Hu K, Cheng G (2013) NMR spectroscopic studies on the mechanism of cellulose dissolution in alkali solutions. Cellulose 20:613–621CrossRef
Zurück zum Zitat Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192CrossRef Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21:1183–1192CrossRef
Zurück zum Zitat Yang Q, Qi H, Lue A, Hu K, Cheng G, Zhang L (2011) Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohyd Polym 83:1185–1191CrossRef Yang Q, Qi H, Lue A, Hu K, Cheng G, Zhang L (2011) Role of sodium zincate on cellulose dissolution in NaOH/urea aqueous solution at low temperature. Carbohyd Polym 83:1185–1191CrossRef
Zurück zum Zitat Yoshida K, Yamaguchi T, Kovalenko A, Hirata F (2002) Structure of tert-butyl alcohol − water mixtures studied by the RISM theory. J Phys Chem B 106(19):5042–5049CrossRef Yoshida K, Yamaguchi T, Kovalenko A, Hirata F (2002) Structure of tert-butyl alcohol − water mixtures studied by the RISM theory. J Phys Chem B 106(19):5042–5049CrossRef
Zurück zum Zitat Yoshida N, Imai T, Phongphanphanee S, Kovalenko A, Hirata F (2009) Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids. J Phys Chem B 113(4):873–886CrossRef Yoshida N, Imai T, Phongphanphanee S, Kovalenko A, Hirata F (2009) Molecular recognition in biomolecules studied by statistical-mechanical integral-equation theory of liquids. J Phys Chem B 113(4):873–886CrossRef
Metadaten
Titel
Thermodynamic analysis of cellulose complex in NaOH–urea solution using reference interaction site model
verfasst von
Eugene Huh
Ji-Hyun Yang
Chang-Ha Lee
Ik-Sung Ahn
Byung Jin Mhin
Publikationsdatum
26.05.2020
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 12/2020
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-020-03202-w

Weitere Artikel der Ausgabe 12/2020

Cellulose 12/2020 Zur Ausgabe