Skip to main content
Erschienen in: Tribology Letters 2/2022

01.06.2022 | Original Paper

Transient Evolution of Rheological Properties of Dense Granular Inertial Flow Under Plane Shear

verfasst von: Xuejie Zhang, Wei Wang, Xiaojun Liu, Kun Liu

Erschienen in: Tribology Letters | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Exploration of the transient evolution of the rheological properties of dense inertial flow can reveal the equilibrium mechanism of granular materials maintaining their own stability under shear. Here, discrete element method simulations are performed to study the transient flow characteristics of a dense granular system under plane shear in the inertial regime. We quantitatively analyze the changes in the system’s flow state, interfacial friction coefficient, effective friction coefficient, microstructure anisotropy, and internal shear strength. Simulation results show that the evolution of the horizontal flow experiences three typical stages, namely transmission, adjustment, and stabilization. Moreover, the shear dilatancy caused by the vertical movement of particles, gradually weakens the spatial geometric constraint and reduces the system’s tangential load-bearing capacity, thereby decreasing the interfacial friction coefficient \({\mu }^{^{\prime}}\), which represents the boundary driving strength. On the other hand, the shear flow induces variations in the anisotropies of both contact orientation and contact forces, thus improving the system’s internal shear strength \({\mu }^{*}\) and increasing the effective friction coefficient \({\mu }_\text{e}\). By comparison, \({\mu }^{^{\prime}}\) is greater than \({\mu }_\text{e}\) until approximately equal in the steady flow state. Therefore, during the evolution of the flow state, the boundary driving strength is reduced while the system’s shear resistance is enhanced, and eventually a balance between them is achieved. Distinguished from the micromechanical behaviors, the internal shear strength always mainly originates from the anisotropies in contact orientation and in normal contact force. Moreover, the contribution of the anisotropy in contact orientation becomes more predominant with increasing shear velocity.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)CrossRef Forterre, Y., Pouliquen, O.: Flows of dense granular media. Annu. Rev. Fluid Mech. 40, 1–24 (2008)CrossRef
2.
Zurück zum Zitat Andreotti, B., Forterre, Y., Pouliquen, O.: Granular media: between fluid and solid. Cambridge University Press, Cambridge (2013)CrossRef Andreotti, B., Forterre, Y., Pouliquen, O.: Granular media: between fluid and solid. Cambridge University Press, Cambridge (2013)CrossRef
3.
Zurück zum Zitat Zhang, Y., Campbell, C.S.: The interface between fluid-like and solid-like behaviour in two-dimensional granular flows. J. Fluid Mech. 237, 541–568 (1992)CrossRef Zhang, Y., Campbell, C.S.: The interface between fluid-like and solid-like behaviour in two-dimensional granular flows. J. Fluid Mech. 237, 541–568 (1992)CrossRef
4.
Zurück zum Zitat Lherminier, S., Planet, R., dit Vehel, V.L., Simon, G., Vanel, L., Måløy, K.J., et al.: Continuously sheared granular matter reproduces in detail seismicity laws. Phys. Rev. Lett. 122, 218501 (2019)CrossRef Lherminier, S., Planet, R., dit Vehel, V.L., Simon, G., Vanel, L., Måløy, K.J., et al.: Continuously sheared granular matter reproduces in detail seismicity laws. Phys. Rev. Lett. 122, 218501 (2019)CrossRef
5.
Zurück zum Zitat Zhang, H., Liu, S., Xiao, H.: Sliding friction of shale rock on dry quartz sand particles. Friction 7, 307–315 (2019)CrossRef Zhang, H., Liu, S., Xiao, H.: Sliding friction of shale rock on dry quartz sand particles. Friction 7, 307–315 (2019)CrossRef
6.
7.
Zurück zum Zitat Iordanoff, I., Khonsari, M.: Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime. J. Tribol. 126, 137–145 (2004)CrossRef Iordanoff, I., Khonsari, M.: Granular lubrication: toward an understanding of the transition between kinetic and quasi-fluid regime. J. Tribol. 126, 137–145 (2004)CrossRef
8.
Zurück zum Zitat Ciamarra, M.P., Dalton, F., de Arcangelis, L., Godano, C., Lippiello, E., Petri, A.: The role of interstitial impurities in the frictional instability of seismic fault models. Tribol. Lett. 48, 89–94 (2012)CrossRef Ciamarra, M.P., Dalton, F., de Arcangelis, L., Godano, C., Lippiello, E., Petri, A.: The role of interstitial impurities in the frictional instability of seismic fault models. Tribol. Lett. 48, 89–94 (2012)CrossRef
9.
Zurück zum Zitat Wang, W., Liu, X., Xie, T., Liu, K.: Effects of sliding velocity and normal load on tribological characteristics in powder lubrication. Tribol. Lett. 43, 213–219 (2011)CrossRef Wang, W., Liu, X., Xie, T., Liu, K.: Effects of sliding velocity and normal load on tribological characteristics in powder lubrication. Tribol. Lett. 43, 213–219 (2011)CrossRef
10.
Zurück zum Zitat Singla, N., Brunel, J.-F., Mège-Revil, A., Kasem, H., Desplanques, Y.: Experiment to investigate the relationship between the third-body layer and the occurrence of squeals in dry sliding contact. Tribol. Lett. 68, 4 (2020)CrossRef Singla, N., Brunel, J.-F., Mège-Revil, A., Kasem, H., Desplanques, Y.: Experiment to investigate the relationship between the third-body layer and the occurrence of squeals in dry sliding contact. Tribol. Lett. 68, 4 (2020)CrossRef
11.
Zurück zum Zitat Fannon, J.S., Moyles, I.R., Fowler, A.C.: Application of the compressible I-dependent rheology to chute and shear flow instabilities. J. Fluid Mech. 864, 1026–1057 (2019)CrossRef Fannon, J.S., Moyles, I.R., Fowler, A.C.: Application of the compressible I-dependent rheology to chute and shear flow instabilities. J. Fluid Mech. 864, 1026–1057 (2019)CrossRef
12.
Zurück zum Zitat Azéma, E., Radjai, F., Roux, J.-N.: Inertial shear flow of assemblies of frictionless polygons: rheology and microstructure. Eur. Phys. J. E 41, 2 (2018)CrossRef Azéma, E., Radjai, F., Roux, J.-N.: Inertial shear flow of assemblies of frictionless polygons: rheology and microstructure. Eur. Phys. J. E 41, 2 (2018)CrossRef
13.
Zurück zum Zitat Chialvo, S., Sun, J., Sundaresan, S.: Bridging the rheology of granular flows in three regimes. Phys. Rev. E 85, 021305 (2012)CrossRef Chialvo, S., Sun, J., Sundaresan, S.: Bridging the rheology of granular flows in three regimes. Phys. Rev. E 85, 021305 (2012)CrossRef
14.
Zurück zum Zitat MiDi, G.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)CrossRef MiDi, G.: On dense granular flows. Eur. Phys. J. E 14, 341–365 (2004)CrossRef
15.
Zurück zum Zitat Szabó, B., Török, J., Somfai, E., Wegner, S., Stannarius, R., Böse, A., et al.: Evolution of shear zones in granular materials. Phys. Rev. E 90, 032205 (2014)CrossRef Szabó, B., Török, J., Somfai, E., Wegner, S., Stannarius, R., Böse, A., et al.: Evolution of shear zones in granular materials. Phys. Rev. E 90, 032205 (2014)CrossRef
16.
Zurück zum Zitat Massoudi, M., Phuoc, T.X.: The effect of slip boundary condition on the flow of granular materials: a continuum approach. Int. J. Non Linear Mech. 35, 745–761 (2000)CrossRef Massoudi, M., Phuoc, T.X.: The effect of slip boundary condition on the flow of granular materials: a continuum approach. Int. J. Non Linear Mech. 35, 745–761 (2000)CrossRef
17.
Zurück zum Zitat Bagnold, R.A.: The shearing and dilatation of dry sand and the ‘singing’ mechanism. Proc. R Soc. London Ser. A 295, 219–232 (1966)CrossRef Bagnold, R.A.: The shearing and dilatation of dry sand and the ‘singing’ mechanism. Proc. R Soc. London Ser. A 295, 219–232 (1966)CrossRef
18.
Zurück zum Zitat Lemaître, A.: Rearrangements and dilatancy for sheared dense materials. Phys. Rev. Lett. 89, 195503 (2002)CrossRef Lemaître, A.: Rearrangements and dilatancy for sheared dense materials. Phys. Rev. Lett. 89, 195503 (2002)CrossRef
19.
Zurück zum Zitat Bandi, M.M., Das, P., Gendelman, O., Hentschel, H.G.E., Procaccia, I.: Universal scaling laws for shear induced dilation in frictional granular media. Granular Matter 21, 40 (2019)CrossRef Bandi, M.M., Das, P., Gendelman, O., Hentschel, H.G.E., Procaccia, I.: Universal scaling laws for shear induced dilation in frictional granular media. Granular Matter 21, 40 (2019)CrossRef
20.
Zurück zum Zitat Thompson, P.A., Grest, G.S.: Granular flow: friction and the dilatancy transition. Phys. Rev. Lett. 67, 1751 (1991)CrossRef Thompson, P.A., Grest, G.S.: Granular flow: friction and the dilatancy transition. Phys. Rev. Lett. 67, 1751 (1991)CrossRef
21.
Zurück zum Zitat Azéma, E., Radjai, F.: Internal structure of inertial granular flows. Phys. Rev. Lett. 112, 078001 (2014)CrossRef Azéma, E., Radjai, F.: Internal structure of inertial granular flows. Phys. Rev. Lett. 112, 078001 (2014)CrossRef
22.
Zurück zum Zitat Jop, P.: Rheological properties of dense granular flows. CR Phys. 16, 62–72 (2015)CrossRef Jop, P.: Rheological properties of dense granular flows. CR Phys. 16, 62–72 (2015)CrossRef
23.
Zurück zum Zitat Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)CrossRef Da Cruz, F., Emam, S., Prochnow, M., Roux, J.-N., Chevoir, F.: Rheophysics of dense granular materials: discrete simulation of plane shear flows. Phys. Rev. E 72, 021309 (2005)CrossRef
24.
Zurück zum Zitat Fall, A., Ovarlez, G., Hautemayou, D., Mézière, C., Roux, J.-N., Chevoir, F.: Dry granular flows: rheological measurements of the μ (I)-rheology. J. Rheol. 59, 1065–1080 (2015)CrossRef Fall, A., Ovarlez, G., Hautemayou, D., Mézière, C., Roux, J.-N., Chevoir, F.: Dry granular flows: rheological measurements of the μ (I)-rheology. J. Rheol. 59, 1065–1080 (2015)CrossRef
25.
Zurück zum Zitat Schaeffer, D., Barker, T., Tsuji, D., Gremaud, P., Shearer, M., Gray, J.: Constitutive relations for compressible granular flow in the inertial regime. J. Fluid Mech. 874, 926–951 (2019)CrossRef Schaeffer, D., Barker, T., Tsuji, D., Gremaud, P., Shearer, M., Gray, J.: Constitutive relations for compressible granular flow in the inertial regime. J. Fluid Mech. 874, 926–951 (2019)CrossRef
26.
Zurück zum Zitat Divoux, T., Géminard, J.-C.: Friction and dilatancy in immersed granular matter. Phys. Rev. Lett. 99, 258301 (2007)CrossRef Divoux, T., Géminard, J.-C.: Friction and dilatancy in immersed granular matter. Phys. Rev. Lett. 99, 258301 (2007)CrossRef
27.
Zurück zum Zitat Chevoir, F., Roux, J.-N., da Cruz, F., Rognon, P.G., Koval, G., Jr.: Friction law in dense granular flows. Powder Technol. 190, 264–268 (2009)CrossRef Chevoir, F., Roux, J.-N., da Cruz, F., Rognon, P.G., Koval, G., Jr.: Friction law in dense granular flows. Powder Technol. 190, 264–268 (2009)CrossRef
28.
Zurück zum Zitat Tang, Z., Brzinski, T.A., Shearer, M., Daniels, K.E.: Nonlocal rheology of dense granular flow in annular shear experiments. Soft Matter 14, 3040–3048 (2018)CrossRef Tang, Z., Brzinski, T.A., Shearer, M., Daniels, K.E.: Nonlocal rheology of dense granular flow in annular shear experiments. Soft Matter 14, 3040–3048 (2018)CrossRef
29.
Zurück zum Zitat Weinhart, T., Hartkamp, R., Thornton, A.R., Luding, S.: Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25, 070605 (2013)CrossRef Weinhart, T., Hartkamp, R., Thornton, A.R., Luding, S.: Coarse-grained local and objective continuum description of three-dimensional granular flows down an inclined surface. Phys. Fluids 25, 070605 (2013)CrossRef
30.
Zurück zum Zitat Campbell, C.S.: Granular shear flows at the elastic limit. J. Fluid Mech. 465, 261–291 (2002)CrossRef Campbell, C.S.: Granular shear flows at the elastic limit. J. Fluid Mech. 465, 261–291 (2002)CrossRef
31.
Zurück zum Zitat Dsouza, P.V., Nott, P.R.: A non-local constitutive model for slow granular flow that incorporates dilatancy. J. Fluid Mech. 888, R3 (2020)CrossRef Dsouza, P.V., Nott, P.R.: A non-local constitutive model for slow granular flow that incorporates dilatancy. J. Fluid Mech. 888, R3 (2020)CrossRef
32.
Zurück zum Zitat Bathurst Richard, J., Rothenburg, L.E.O.: Investigation of micromechanical features of idealized granular assemblies using DEM. Eng. Comput. 9, 199–210 (1992)CrossRef Bathurst Richard, J., Rothenburg, L.E.O.: Investigation of micromechanical features of idealized granular assemblies using DEM. Eng. Comput. 9, 199–210 (1992)CrossRef
33.
Zurück zum Zitat Estrada, N., Azéma, E., Radjai, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E 84, 011306 (2011)CrossRef Estrada, N., Azéma, E., Radjai, F., Taboada, A.: Identification of rolling resistance as a shape parameter in sheared granular media. Phys. Rev. E 84, 011306 (2011)CrossRef
34.
Zurück zum Zitat Binaree, T., Azéma, E., Estrada, N., Renouf, M., Preechawuttipong, I.: Combined effects of contact friction and particle shape on strength properties and microstructure of sheared granular media. Phys. Rev. E 102, 022901 (2020)CrossRef Binaree, T., Azéma, E., Estrada, N., Renouf, M., Preechawuttipong, I.: Combined effects of contact friction and particle shape on strength properties and microstructure of sheared granular media. Phys. Rev. E 102, 022901 (2020)CrossRef
35.
Zurück zum Zitat Koval, G., Chevoir, F., Roux, J.-N., Sulem, J., Corfdir, A.: Interface roughness effect on slow cyclic annular shear of granular materials. Granular Matter 13, 525–540 (2011)CrossRef Koval, G., Chevoir, F., Roux, J.-N., Sulem, J., Corfdir, A.: Interface roughness effect on slow cyclic annular shear of granular materials. Granular Matter 13, 525–540 (2011)CrossRef
36.
Zurück zum Zitat Siavoshi, S., Orpe, A.V., Kudrolli, A.: Friction of a slider on a granular layer: nonmonotonic thickness dependence and effect of boundary conditions. Phys. Rev. E 73, 010301 (2006)CrossRef Siavoshi, S., Orpe, A.V., Kudrolli, A.: Friction of a slider on a granular layer: nonmonotonic thickness dependence and effect of boundary conditions. Phys. Rev. E 73, 010301 (2006)CrossRef
37.
Zurück zum Zitat Trulsson, M., DeGiuli, E., Wyart, M.: Effect of friction on dense suspension flows of hard particles. Phys. Rev. E 95, 012605 (2017)CrossRef Trulsson, M., DeGiuli, E., Wyart, M.: Effect of friction on dense suspension flows of hard particles. Phys. Rev. E 95, 012605 (2017)CrossRef
38.
Zurück zum Zitat Azéma, É., Radjai, F., Roux, J.-N.: Internal friction and absence of dilatancy of packings of frictionless polygons. Phys. Rev. E 91, 010202 (2015)CrossRef Azéma, É., Radjai, F., Roux, J.-N.: Internal friction and absence of dilatancy of packings of frictionless polygons. Phys. Rev. E 91, 010202 (2015)CrossRef
39.
Zurück zum Zitat Meng, F., Liu, H., Hua, S., Pang, M.: Experimental research on sliding friction of dense dry particles lubricated between parallel plates. Tribol. Lett. 69, 33 (2021)CrossRef Meng, F., Liu, H., Hua, S., Pang, M.: Experimental research on sliding friction of dense dry particles lubricated between parallel plates. Tribol. Lett. 69, 33 (2021)CrossRef
41.
Zurück zum Zitat Kuwano, O., Ando, R., Hatano, T.: Crossover from negative to positive shear rate dependence in granular friction. Geophys. Res. Lett. 40, 1295–1299 (2013)CrossRef Kuwano, O., Ando, R., Hatano, T.: Crossover from negative to positive shear rate dependence in granular friction. Geophys. Res. Lett. 40, 1295–1299 (2013)CrossRef
42.
Zurück zum Zitat Degiuli, E., Mcelwaine, J.N., Wyart, M.: Phase diagram for inertial granular flows. Phys. Rev. E 94, 012904 (2016)CrossRef Degiuli, E., Mcelwaine, J.N., Wyart, M.: Phase diagram for inertial granular flows. Phys. Rev. E 94, 012904 (2016)CrossRef
43.
Zurück zum Zitat Hatano, T.: Power-law friction in closely packed granular materials. Phys. Rev. E 75, 060301 (2007)CrossRef Hatano, T.: Power-law friction in closely packed granular materials. Phys. Rev. E 75, 060301 (2007)CrossRef
44.
Zurück zum Zitat Boyer, F., Guazzelli, É., Pouliquen, O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301 (2011)CrossRef Boyer, F., Guazzelli, É., Pouliquen, O.: Unifying suspension and granular rheology. Phys. Rev. Lett. 107, 188301 (2011)CrossRef
45.
Zurück zum Zitat Berger, N., Azéma, E., Douce, J.-F., Radjai, F.: Scaling behaviour of cohesive granular flows. EPL 112, 64004 (2016)CrossRef Berger, N., Azéma, E., Douce, J.-F., Radjai, F.: Scaling behaviour of cohesive granular flows. EPL 112, 64004 (2016)CrossRef
46.
Zurück zum Zitat Wu, W., Ma, G., Zhou, W., Wang, D., Chang, X.: Force transmission and anisotropic characteristics of sheared granular materials with rolling resistance. Granular Matter 21, 88 (2019)CrossRef Wu, W., Ma, G., Zhou, W., Wang, D., Chang, X.: Force transmission and anisotropic characteristics of sheared granular materials with rolling resistance. Granular Matter 21, 88 (2019)CrossRef
47.
Zurück zum Zitat Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)CrossRef Majmudar, T.S., Behringer, R.P.: Contact force measurements and stress-induced anisotropy in granular materials. Nature 435, 1079–1082 (2005)CrossRef
48.
Zurück zum Zitat Sufian, A., Russell, A., Whittle, A.: Anisotropy of contact networks in granular media and its influence on mobilised internal friction. Geotechnique 67, 1067–1080 (2017) Sufian, A., Russell, A., Whittle, A.: Anisotropy of contact networks in granular media and its influence on mobilised internal friction. Geotechnique 67, 1067–1080 (2017)
49.
Zurück zum Zitat Zhang, J., Majmudar, T., Tordesillas, A., Behringer, R.: Statistical properties of a 2D granular material subjected to cyclic shear. Granular Matter 12, 159–172 (2010)CrossRef Zhang, J., Majmudar, T., Tordesillas, A., Behringer, R.: Statistical properties of a 2D granular material subjected to cyclic shear. Granular Matter 12, 159–172 (2010)CrossRef
50.
Zurück zum Zitat Mollon, G.: Solid flow regimes within dry sliding contacts. Tribol Lett 67, 120 (2019)CrossRef Mollon, G.: Solid flow regimes within dry sliding contacts. Tribol Lett 67, 120 (2019)CrossRef
51.
Zurück zum Zitat Voivret, C., Radjai, F., Delenne, J.-Y., El Youssoufi, M.S.: Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102, 178001 (2009)CrossRef Voivret, C., Radjai, F., Delenne, J.-Y., El Youssoufi, M.S.: Multiscale force networks in highly polydisperse granular media. Phys. Rev. Lett. 102, 178001 (2009)CrossRef
52.
Zurück zum Zitat Azéma, E., Linero, S., Estrada, N., Lizcano, A.: Shear strength and microstructure of polydisperse packings: the effect of size span and shape of particle size distribution. Phys. Rev. E 96, 022902 (2017)CrossRef Azéma, E., Linero, S., Estrada, N., Lizcano, A.: Shear strength and microstructure of polydisperse packings: the effect of size span and shape of particle size distribution. Phys. Rev. E 96, 022902 (2017)CrossRef
53.
Zurück zum Zitat Cantor, D., Azéma, E., Sornay, P., Radjai, F.: Rheology and structure of polydisperse three-dimensional packings of spheres. Phys. Rev. E 98, 052910 (2018)CrossRef Cantor, D., Azéma, E., Sornay, P., Radjai, F.: Rheology and structure of polydisperse three-dimensional packings of spheres. Phys. Rev. E 98, 052910 (2018)CrossRef
54.
Zurück zum Zitat Pena, A., Garcia-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granular Matter 9, 279–291 (2007)CrossRef Pena, A., Garcia-Rojo, R., Herrmann, H.J.: Influence of particle shape on sheared dense granular media. Granular Matter 9, 279–291 (2007)CrossRef
55.
Zurück zum Zitat Azéma, E., Estrada, N., Radjai, F.: Nonlinear effects of particle shape angularity in sheared granular media. Phys. Rev. E 86, 041301 (2012)CrossRef Azéma, E., Estrada, N., Radjai, F.: Nonlinear effects of particle shape angularity in sheared granular media. Phys. Rev. E 86, 041301 (2012)CrossRef
56.
Zurück zum Zitat Azéma, E., Radjai, F., Dubois, F.: Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E 87, 062203 (2013)CrossRef Azéma, E., Radjai, F., Dubois, F.: Packings of irregular polyhedral particles: strength, structure, and effects of angularity. Phys. Rev. E 87, 062203 (2013)CrossRef
57.
Zurück zum Zitat Boton, M., Azéma, E., Estrada, N., Radjai, F., Lizcano, A.: Quasistatic rheology and microstructural description of sheared granular materials composed of platy particles. Phys. Rev. E 87, 032206 (2013)CrossRef Boton, M., Azéma, E., Estrada, N., Radjai, F., Lizcano, A.: Quasistatic rheology and microstructural description of sheared granular materials composed of platy particles. Phys. Rev. E 87, 032206 (2013)CrossRef
58.
Zurück zum Zitat Boton, M., Estrada, N., Azéma, E., Radjai, F.: Particle alignment and clustering in sheared granular materials composed of platy particles. Eur. Phys. J. E 37, 116 (2014)CrossRef Boton, M., Estrada, N., Azéma, E., Radjai, F.: Particle alignment and clustering in sheared granular materials composed of platy particles. Eur. Phys. J. E 37, 116 (2014)CrossRef
59.
Zurück zum Zitat Vo, T.-T.: Rheology and granular texture of viscoinertial simple shear flows. J. Rheol. 64, 1133–1145 (2020)CrossRef Vo, T.-T.: Rheology and granular texture of viscoinertial simple shear flows. J. Rheol. 64, 1133–1145 (2020)CrossRef
60.
Zurück zum Zitat Chèvremont, W., Chareyre, B., Bodiguel, H.: Quantitative study of the rheology of frictional suspensions: influence of friction coefficient in a large range of viscous numbers. Phys. Rev. Fluids 4, 064302 (2019)CrossRef Chèvremont, W., Chareyre, B., Bodiguel, H.: Quantitative study of the rheology of frictional suspensions: influence of friction coefficient in a large range of viscous numbers. Phys. Rev. Fluids 4, 064302 (2019)CrossRef
61.
Zurück zum Zitat Macaulay, M., Rognon, P.: Viscosity of cohesive granular flows. Soft Matter 17, 165–173 (2021)CrossRef Macaulay, M., Rognon, P.: Viscosity of cohesive granular flows. Soft Matter 17, 165–173 (2021)CrossRef
62.
Zurück zum Zitat Shojaaee, Z., Roux, J.-N., Chevoir, F., Wolf, D.E.: Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region. Phys. Rev. E 86, 011301 (2012)CrossRef Shojaaee, Z., Roux, J.-N., Chevoir, F., Wolf, D.E.: Shear flow of dense granular materials near smooth walls. I. Shear localization and constitutive laws in the boundary region. Phys. Rev. E 86, 011301 (2012)CrossRef
63.
Zurück zum Zitat Macaulay, M., Rognon, P.: Inertial force transmission in dense granular flows. Phys. Rev. Lett. 126, 118002 (2021)CrossRef Macaulay, M., Rognon, P.: Inertial force transmission in dense granular flows. Phys. Rev. Lett. 126, 118002 (2021)CrossRef
64.
Zurück zum Zitat Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRef Cundall, P.A., Strack, O.D.: A discrete numerical model for granular assemblies. Geotechnique 29, 47–65 (1979)CrossRef
65.
Zurück zum Zitat Fillot, N., Iordanoff, I., Berthier, Y.: Modelling third body flows with a discrete element method—a tool for understanding wear with adhesive particles. Tribol. Int. 40, 973–981 (2007)CrossRef Fillot, N., Iordanoff, I., Berthier, Y.: Modelling third body flows with a discrete element method—a tool for understanding wear with adhesive particles. Tribol. Int. 40, 973–981 (2007)CrossRef
66.
Zurück zum Zitat Roux, J.-N., Combe, G.: Quasistatic rheology and the origins of strain. CR Phys. 3, 131–140 (2002)CrossRef Roux, J.-N., Combe, G.: Quasistatic rheology and the origins of strain. CR Phys. 3, 131–140 (2002)CrossRef
67.
Zurück zum Zitat Luding, S.: Constitutive relations for the shear band evolution in granular matter under large strain. Particuology 6, 501–505 (2008)CrossRef Luding, S.: Constitutive relations for the shear band evolution in granular matter under large strain. Particuology 6, 501–505 (2008)CrossRef
68.
Zurück zum Zitat Singh, A., Magnanimo, V., Saitoh, K., Luding, S.: The role of gravity or pressure and contact stiffness in granular rheology. New J. Phys. 17, 043028 (2015)CrossRef Singh, A., Magnanimo, V., Saitoh, K., Luding, S.: The role of gravity or pressure and contact stiffness in granular rheology. New J. Phys. 17, 043028 (2015)CrossRef
69.
Zurück zum Zitat Lätzel, M., Luding, S., Herrmann, H.J.: Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granular Matter 2, 123–135 (2000)CrossRef Lätzel, M., Luding, S., Herrmann, H.J.: Macroscopic material properties from quasi-static, microscopic simulations of a two-dimensional shear-cell. Granular Matter 2, 123–135 (2000)CrossRef
70.
Zurück zum Zitat Luding, S.: Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. Eur. J. Environ. Civ. Eng. 12, 785–826 (2008)CrossRef Luding, S.: Introduction to discrete element methods: basic of contact force models and how to perform the micro-macro transition to continuum theory. Eur. J. Environ. Civ. Eng. 12, 785–826 (2008)CrossRef
71.
Zurück zum Zitat Volfson, D., Tsimring, L.S., Aranson, I.S.: Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations. Phys. Rev. E 68, 021301 (2003)CrossRef Volfson, D., Tsimring, L.S., Aranson, I.S.: Partially fluidized shear granular flows: continuum theory and molecular dynamics simulations. Phys. Rev. E 68, 021301 (2003)CrossRef
72.
Zurück zum Zitat Rothenburg, L., Bathurst, R.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39, 601–614 (1989)CrossRef Rothenburg, L., Bathurst, R.: Analytical study of induced anisotropy in idealized granular materials. Geotechnique 39, 601–614 (1989)CrossRef
Metadaten
Titel
Transient Evolution of Rheological Properties of Dense Granular Inertial Flow Under Plane Shear
verfasst von
Xuejie Zhang
Wei Wang
Xiaojun Liu
Kun Liu
Publikationsdatum
01.06.2022
Verlag
Springer US
Erschienen in
Tribology Letters / Ausgabe 2/2022
Print ISSN: 1023-8883
Elektronische ISSN: 1573-2711
DOI
https://doi.org/10.1007/s11249-022-01578-3

Weitere Artikel der Ausgabe 2/2022

Tribology Letters 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.