Skip to main content
Erschienen in: Journal of Electronic Materials 4/2021

04.02.2021 | Original Research Article

Tunable Luminescence of Ce3+-Doped Calcium Boroaluminate Glasses for Light Emitting Devices

verfasst von: O. C. Silva Neto, T. A. Lodi, J. G. Oliveira Neto, A. S. S. de Camargo, F. Pedrochi, A. Steimacher

Erschienen in: Journal of Electronic Materials | Ausgabe 4/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, the visible luminescence of Ce3+-doped calcium boroaluminate glasses (CaBAl) was studied. Samples of CaBAl glass with composition (30.97-x)CaO-49.90B2O3-10.22Al2O3-8.90CaF2-xCeO2, with values of x varying from 0.25 to 1.25 mol.%, were prepared by the conventional melt-quenching technique, adding carbon as a reducing agent. The samples studied had amorphous nature confirmed by the results of X-ray diffraction (XRD). The Fourier transform infrared (FTIR) results showed that the vitreous network is formed by BO3 and BO4 structures, and the calculated values of the fraction of BO4 groups (N4) revealed that the increment of cerium favored the conversion of BO3 to BO4. The optical absorption spectra presented an intense broad band assigned to a charge transfer of the Ce4+, with a shift of ultraviolet (UV) absorption edge to longer wavelength, and a decrease in the band gap as result of the CeO2 concentration increase. The photoluminescence excitation (PLE) spectra showed that Ce3+-doped CaBAl glasses can be excited in a wide range of the UV spectral region (320-405 nm). The luminescence band of Ce3+ transitions 5d1 → 2F5/2, 2F7/2 was observed with different maximum in the emission bands for different excitation wavelengths, originate from Ce3+ ions placed mainly in two different sites in the glass network, resulting in distinct band positions and symmetries. The International Commission on Illumination (CIE) diagram demonstrated that the emission of samples occurs in the blue region. The lifetime decreased with increasing CeO2 concentration (47 to 34 ns) from 1.25 to 0.25 mol.% of CeO2. The results suggest that the studied glasses have potential for applications in optical devices such as LEDs and phosphors.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, Optical properties of Ce3+ doped fluorophosphates scintillation glasses. Opt. Mater. (Amst). 51, 94 (2016).CrossRef Y. Yao, L. Liu, Y. Zhang, D. Chen, Y. Fang, and G. Zhao, Optical properties of Ce3+ doped fluorophosphates scintillation glasses. Opt. Mater. (Amst). 51, 94 (2016).CrossRef
2.
Zurück zum Zitat Y. Zhang, Z. Zhu, W. Zhang, and Y. Qiao, Photoluminescence properties of Sm3+ ions doped oxyfluoride calcium borosilicate glasses. J. Alloys Compd. 566, 164 (2013).CrossRef Y. Zhang, Z. Zhu, W. Zhang, and Y. Qiao, Photoluminescence properties of Sm3+ ions doped oxyfluoride calcium borosilicate glasses. J. Alloys Compd. 566, 164 (2013).CrossRef
3.
Zurück zum Zitat E. Malchukova and B. Boizot, Tunable luminescence from Ce-doped aluminoborosilicate glasses. J. Rare Earths 32, 217 (2014).CrossRef E. Malchukova and B. Boizot, Tunable luminescence from Ce-doped aluminoborosilicate glasses. J. Rare Earths 32, 217 (2014).CrossRef
4.
Zurück zum Zitat C. Zuo, A. Xiao, Z. Zhou, Y. Chen, X. Zhang, X. Ding, X. Wang, and Q. Ge, Spectroscopic properties of Ce3+–doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses. J. Non. Cryst. Solids 452, 35 (2016).CrossRef C. Zuo, A. Xiao, Z. Zhou, Y. Chen, X. Zhang, X. Ding, X. Wang, and Q. Ge, Spectroscopic properties of Ce3+–doped BaO-Gd2O3-Al2O3-B2O3-SiO2 glasses. J. Non. Cryst. Solids 452, 35 (2016).CrossRef
5.
Zurück zum Zitat H. Masai, K. Shinozaki, G. Okada, N. Kawaguchi, T. Ina, and T. Yanagida, Luminescence of Ce3+ in aluminophosphate glasses prepared in air. J. Lumin. 195, 413 (2018).CrossRef H. Masai, K. Shinozaki, G. Okada, N. Kawaguchi, T. Ina, and T. Yanagida, Luminescence of Ce3+ in aluminophosphate glasses prepared in air. J. Lumin. 195, 413 (2018).CrossRef
6.
Zurück zum Zitat G.K. DasMohapatra, A spectroscopic study of cerium in lithium-alumino-borate glass. Mater. Lett. 35, 120 (1998).CrossRef G.K. DasMohapatra, A spectroscopic study of cerium in lithium-alumino-borate glass. Mater. Lett. 35, 120 (1998).CrossRef
7.
Zurück zum Zitat J.N. Cachia, X. Deschanels, C. Den Auwer, O. Pinet, J. Phalippou, C. Hennig, and A. Scheinost, Enhancing cerium and plutonium solubility by reduction in borosilicate glass. J. Nucl. Mater. 352, 182 (2006).CrossRef J.N. Cachia, X. Deschanels, C. Den Auwer, O. Pinet, J. Phalippou, C. Hennig, and A. Scheinost, Enhancing cerium and plutonium solubility by reduction in borosilicate glass. J. Nucl. Mater. 352, 182 (2006).CrossRef
8.
Zurück zum Zitat A.D. Sontakke, J. Ueda, and S. Tanabe, Effect of synthesis conditions on Ce3+ luminescence in borate glasses. J. Non. Cryst. Solids 431, 150 (2016).CrossRef A.D. Sontakke, J. Ueda, and S. Tanabe, Effect of synthesis conditions on Ce3+ luminescence in borate glasses. J. Non. Cryst. Solids 431, 150 (2016).CrossRef
9.
Zurück zum Zitat X.Y. Sun, P. Gao, Y.Q. Zheng, M. Zhang, H.S. Wu, and Y. Yuan, Enhanced emission intensity of Ce3+ ions in Li2O-B2O3-Gd2O3 scintillating glasses by adding carbon and Si3N4 agents. J. Non. Cryst. Solids 422, 12 (2015).CrossRef X.Y. Sun, P. Gao, Y.Q. Zheng, M. Zhang, H.S. Wu, and Y. Yuan, Enhanced emission intensity of Ce3+ ions in Li2O-B2O3-Gd2O3 scintillating glasses by adding carbon and Si3N4 agents. J. Non. Cryst. Solids 422, 12 (2015).CrossRef
10.
Zurück zum Zitat J.J. Kane, C. Karthik, R. Ubic, W.E. Windes, and D.P. Butt, An oxygen transfer model for high purity graphite oxidation. Carbon N. Y. 59, 49 (2013).CrossRef J.J. Kane, C. Karthik, R. Ubic, W.E. Windes, and D.P. Butt, An oxygen transfer model for high purity graphite oxidation. Carbon N. Y. 59, 49 (2013).CrossRef
11.
Zurück zum Zitat S. Kaur, G.P. Singh, P. Kaur, and D.P. Singh, Cerium luminescence in borate glass and effect of aluminium on blue green emission of cerium ions. J. Lumin. 143, 31 (2013).CrossRef S. Kaur, G.P. Singh, P. Kaur, and D.P. Singh, Cerium luminescence in borate glass and effect of aluminium on blue green emission of cerium ions. J. Lumin. 143, 31 (2013).CrossRef
12.
Zurück zum Zitat S.R. Rejisha, P.S. Anjana, and N. Gopakumar, Effect of cerium(IV) oxide on the optical and dielectric properties of strontium bismuth borate glasses. J. Mater. Sci. Mater. Electron. 27, 5475 (2016).CrossRef S.R. Rejisha, P.S. Anjana, and N. Gopakumar, Effect of cerium(IV) oxide on the optical and dielectric properties of strontium bismuth borate glasses. J. Mater. Sci. Mater. Electron. 27, 5475 (2016).CrossRef
13.
Zurück zum Zitat A.M. Deliormanlı, Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 26, 1 (2015).CrossRef A.M. Deliormanlı, Synthesis and characterization of cerium- and gallium-containing borate bioactive glass scaffolds for bone tissue engineering. J. Mater. Sci. Mater. Med. 26, 1 (2015).CrossRef
14.
Zurück zum Zitat Y. Dwivedi, A. Bahadur, and S.B. Rai, Spectroscopic study of Sm: Ce ions co-doped in barium fluoroborate glass. J. Non. Cryst. Solids 356, 1650 (2010).CrossRef Y. Dwivedi, A. Bahadur, and S.B. Rai, Spectroscopic study of Sm: Ce ions co-doped in barium fluoroborate glass. J. Non. Cryst. Solids 356, 1650 (2010).CrossRef
15.
Zurück zum Zitat G.P. Singh, P. Kaur, S. Kaur, and D.P. Singh, Investigation of structural, physical and optical properties of CeO2-Bi2O3-B2O3 glasses. Phys. B Condens. Matter 407, 4168 (2012).CrossRef G.P. Singh, P. Kaur, S. Kaur, and D.P. Singh, Investigation of structural, physical and optical properties of CeO2-Bi2O3-B2O3 glasses. Phys. B Condens. Matter 407, 4168 (2012).CrossRef
16.
Zurück zum Zitat J. Iwanowska, L. Swiderski, T. Szczesniak, P. Sibczynski, M. Moszynski, M. Grodzicka, K. Kamada, K. Tsutsumi, Y. Usuki, T. Yanagida, and A. Yoshikawa, Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectro. Detect. Assoc. Equip. 712, 34 (2013).CrossRef J. Iwanowska, L. Swiderski, T. Szczesniak, P. Sibczynski, M. Moszynski, M. Grodzicka, K. Kamada, K. Tsutsumi, Y. Usuki, T. Yanagida, and A. Yoshikawa, Performance of cerium-doped Gd3Al2Ga3O12 (GAGG:Ce) scintillator in gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectro. Detect. Assoc. Equip. 712, 34 (2013).CrossRef
17.
Zurück zum Zitat P.R. Rani, M. Venkateswarlu, S. Mahamuda, K. Swapna, N. Deopa, A.S. Rao, and G.V. Prakash, Structural, absorption and photoluminescence studies of Sm3+ ions doped barium lead alumino fluoro borate glasses for optoelectronic device applications. Mater. Res. Bull. 110, 159 (2019).CrossRef P.R. Rani, M. Venkateswarlu, S. Mahamuda, K. Swapna, N. Deopa, A.S. Rao, and G.V. Prakash, Structural, absorption and photoluminescence studies of Sm3+ ions doped barium lead alumino fluoro borate glasses for optoelectronic device applications. Mater. Res. Bull. 110, 159 (2019).CrossRef
18.
Zurück zum Zitat M. Vijayakumar and K. Marimuthu, Structural and luminescence properties of Dy3+ doped oxyfluoro-borophosphate glasses for lasing materials and white LEDs. J. Alloy. Compd. 629, 230 (2015).CrossRef M. Vijayakumar and K. Marimuthu, Structural and luminescence properties of Dy3+ doped oxyfluoro-borophosphate glasses for lasing materials and white LEDs. J. Alloy. Compd. 629, 230 (2015).CrossRef
19.
Zurück zum Zitat E.C. Paz, J.D.M. Dias, G.H.A. Melo, T.A. Lodi, J.O. Carvalho, P.F.F. Filho, M.J. Barboza, F. Pedrochi, and A. Steimacher, Physical, thermal and structural properties of calcium borotellurite glass system. Mater. Chem. Phys. 178, 133 (2016).CrossRef E.C. Paz, J.D.M. Dias, G.H.A. Melo, T.A. Lodi, J.O. Carvalho, P.F.F. Filho, M.J. Barboza, F. Pedrochi, and A. Steimacher, Physical, thermal and structural properties of calcium borotellurite glass system. Mater. Chem. Phys. 178, 133 (2016).CrossRef
20.
Zurück zum Zitat I.S. Yahia, K.A. Aly, Y.B. Saddeek, W. Dobrowolski, M. Arciszewska, and L. Kilanski, Optical constants and magnetic susceptibility of XLa2O3-30PbO-(70-X) B2O3 glasses. J. Non. Cryst. Solids 375, 69 (2013).CrossRef I.S. Yahia, K.A. Aly, Y.B. Saddeek, W. Dobrowolski, M. Arciszewska, and L. Kilanski, Optical constants and magnetic susceptibility of XLa2O3-30PbO-(70-X) B2O3 glasses. J. Non. Cryst. Solids 375, 69 (2013).CrossRef
21.
Zurück zum Zitat V. Dimitrov and T. Komatsu, Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J. Non. Cryst. Solids 249, 160 (1999).CrossRef V. Dimitrov and T. Komatsu, Electronic polarizability, optical basicity and non-linear optical properties of oxide glasses. J. Non. Cryst. Solids 249, 160 (1999).CrossRef
22.
Zurück zum Zitat R.S. Gedam and D.D. Ramteke, Influence of CeO2 addition on the electrical and optical properties of lithium borate glasses. J. Phys. Chem. Solids 74, 1399 (2013). R.S. Gedam and D.D. Ramteke, Influence of CeO2 addition on the electrical and optical properties of lithium borate glasses. J. Phys. Chem. Solids 74, 1399 (2013).
23.
Zurück zum Zitat Y. Markandeya, M. Salagram, G. Bhikshamaiah, M. Vithal, D. Saritha, and A.K. Singh, Effect of Bi2O3 on physical, optical and structural studies of ZnO-Bi2O3-B2O3 glasses. J. Non. Cryst. Solids 354, 5573 (2008).CrossRef Y. Markandeya, M. Salagram, G. Bhikshamaiah, M. Vithal, D. Saritha, and A.K. Singh, Effect of Bi2O3 on physical, optical and structural studies of ZnO-Bi2O3-B2O3 glasses. J. Non. Cryst. Solids 354, 5573 (2008).CrossRef
24.
Zurück zum Zitat B. Bhatia, S.L. Meena, V. Parihar, and M. Poonia, Optical basicity and polarizability of Nd < Sup > 3 + </Sup > -doped bismuth borate glasses. New J. Glas. Ceram. 05, 44 (2015).CrossRef B. Bhatia, S.L. Meena, V. Parihar, and M. Poonia, Optical basicity and polarizability of Nd < Sup > 3 + </Sup > -doped bismuth borate glasses. New J. Glas. Ceram. 05, 44 (2015).CrossRef
25.
Zurück zum Zitat V. Dimitrov and T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Technol. Metall. 45, 219 (2010). V. Dimitrov and T. Komatsu, An interpretation of optical properties of oxides and oxide glasses in terms of the electronic ion polarizability and average single bond strength. J. Univ. Chem. Technol. Metall. 45, 219 (2010).
26.
Zurück zum Zitat P. Joshi, S. Shen, A. Jha, P. Joshi, S. Shen, and A. Jha, Er3+-doped boro-tellurite glass for optical amplification in the 1530–1580 Nm. J. Appl. Phys. 511, 083543 (2008). P. Joshi, S. Shen, A. Jha, P. Joshi, S. Shen, and A. Jha, Er3+-doped boro-tellurite glass for optical amplification in the 1530–1580 Nm. J. Appl. Phys. 511, 083543 (2008).
27.
Zurück zum Zitat H. Bürger, W. Vogel, V. Kozhukharov, and M. Marinov, Phase equilibrium, glass-forming, properties and structure of glasses in the TeO2-B2O3 system. J. Mater. Sci. 19, 403 (1984).CrossRef H. Bürger, W. Vogel, V. Kozhukharov, and M. Marinov, Phase equilibrium, glass-forming, properties and structure of glasses in the TeO2-B2O3 system. J. Mater. Sci. 19, 403 (1984).CrossRef
28.
Zurück zum Zitat P. Dorenbos, 5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides. J. Lumin. 99, 283 (2002).CrossRef P. Dorenbos, 5d-level energies of Ce3+ and the crystalline environment. IV. Aluminates and “simple” oxides. J. Lumin. 99, 283 (2002).CrossRef
29.
Zurück zum Zitat A.A. Ali, Y.S. Rammah, R. El-mallawany, and D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72 (2017).CrossRef A.A. Ali, Y.S. Rammah, R. El-mallawany, and D. Souri, FTIR and UV spectra of pentaternary borate glasses. Measurement 105, 72 (2017).CrossRef
30.
Zurück zum Zitat H.A. Othman, H.S. Elkholy, and I.Z. Hager, FTIR of binary lead borate glass: structural investigation. J. Mol. Struct. 1106, 286 (2016).CrossRef H.A. Othman, H.S. Elkholy, and I.Z. Hager, FTIR of binary lead borate glass: structural investigation. J. Mol. Struct. 1106, 286 (2016).CrossRef
31.
Zurück zum Zitat P. Kaur, S. Kaur, G.P. Singh, and D.P. Singh, Cerium and samarium codoped lithium aluminoborate glasses for white light emitting devices. J. Alloys Compd. 588, 394 (2014).CrossRef P. Kaur, S. Kaur, G.P. Singh, and D.P. Singh, Cerium and samarium codoped lithium aluminoborate glasses for white light emitting devices. J. Alloys Compd. 588, 394 (2014).CrossRef
32.
Zurück zum Zitat P. Pascuta, G. Borodi, and E. Culea, Structural investigation of bismuth borate glass ceramics containing gadolinium ions by x-ray diffraction and FTIR spectroscopy. J. Mater. Sci. Mater. Electron. 20, 360 (2009).CrossRef P. Pascuta, G. Borodi, and E. Culea, Structural investigation of bismuth borate glass ceramics containing gadolinium ions by x-ray diffraction and FTIR spectroscopy. J. Mater. Sci. Mater. Electron. 20, 360 (2009).CrossRef
33.
Zurück zum Zitat E.I. Kamitsos, M.A. Karakassides, and G.D. Chryssikos, Vibrational spectra of magnesium-sodium-borate glasses. 2. raman and mid-infrared investigation of the network structure. J. Phys. Chem. 91, 1073 (1987).CrossRef E.I. Kamitsos, M.A. Karakassides, and G.D. Chryssikos, Vibrational spectra of magnesium-sodium-borate glasses. 2. raman and mid-infrared investigation of the network structure. J. Phys. Chem. 91, 1073 (1987).CrossRef
34.
Zurück zum Zitat E.I. Kamitsos and G.D. Chryssikos, Borate glass structure by Raman and infrared spectroscopies. J. Mol. Struct. 247, 1 (1991).CrossRef E.I. Kamitsos and G.D. Chryssikos, Borate glass structure by Raman and infrared spectroscopies. J. Mol. Struct. 247, 1 (1991).CrossRef
35.
Zurück zum Zitat S. Wang, G. Chen, S. Baccaro, A. Cecilia, Y. Du, J. Nie, and Y. Zhang, Radiation hardness of Ce3+-doped heavy germanate glasses. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 201, 475 (2003).CrossRef S. Wang, G. Chen, S. Baccaro, A. Cecilia, Y. Du, J. Nie, and Y. Zhang, Radiation hardness of Ce3+-doped heavy germanate glasses. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms. 201, 475 (2003).CrossRef
36.
Zurück zum Zitat P. Muralimanohar, R. Parasuraman, J.R. Gandhi, and M. Rathnakumari, Optik photoluminescence in cerium doped barium aluminium borate difluoride BaAlBO3F2 glass ceramics. Opt. Int. J. Light Electron Opt. 127, 8956 (2016).CrossRef P. Muralimanohar, R. Parasuraman, J.R. Gandhi, and M. Rathnakumari, Optik photoluminescence in cerium doped barium aluminium borate difluoride BaAlBO3F2 glass ceramics. Opt. Int. J. Light Electron Opt. 127, 8956 (2016).CrossRef
37.
Zurück zum Zitat Y. Wang, S. Dai, F. Chen, T. Xu, and Q. Nie, Physical properties and optical band gap of new tellurite glasses within the TeO2-Nb2O5-Bi2O3 system. Mater. Chem. Phys. 113, 407 (2009).CrossRef Y. Wang, S. Dai, F. Chen, T. Xu, and Q. Nie, Physical properties and optical band gap of new tellurite glasses within the TeO2-Nb2O5-Bi2O3 system. Mater. Chem. Phys. 113, 407 (2009).CrossRef
38.
Zurück zum Zitat K. Subrahmanyam and M. Salagram, Optical band gap studies on (55−x)Na2O-XPbO-45P2O5 (SLP) glass system. Opt. Mater. (Amst). 15, 181 (2000).CrossRef K. Subrahmanyam and M. Salagram, Optical band gap studies on (55−x)Na2O-XPbO-45P2O5 (SLP) glass system. Opt. Mater. (Amst). 15, 181 (2000).CrossRef
39.
Zurück zum Zitat A. Agarwal, V.P. Seth, S. Sanghi, P. Gahlot, and S. Khasa, Mixed alkali effect in optical properties of lithium potassium bismuth borate glass system. J. Non. Cryst. Solids 58, 694 (2004). A. Agarwal, V.P. Seth, S. Sanghi, P. Gahlot, and S. Khasa, Mixed alkali effect in optical properties of lithium potassium bismuth borate glass system. J. Non. Cryst. Solids 58, 694 (2004).
40.
Zurück zum Zitat P. Kaur, G.P. Singh, S. Kaur, and D.P. Singh, Modifier role of cerium in lithium aluminium borate glasses. J. Mol. Struct. 1020, 83 (2012).CrossRef P. Kaur, G.P. Singh, S. Kaur, and D.P. Singh, Modifier role of cerium in lithium aluminium borate glasses. J. Mol. Struct. 1020, 83 (2012).CrossRef
41.
Zurück zum Zitat Y. Sohn, Contour mapping 2D and 3D-photoluminescence of Au-doped one-dimensional Eu(III) and Tb(III) hydroxide and oxide nanostructures. Ceram. Int. 39, 9157 (2013).CrossRef Y. Sohn, Contour mapping 2D and 3D-photoluminescence of Au-doped one-dimensional Eu(III) and Tb(III) hydroxide and oxide nanostructures. Ceram. Int. 39, 9157 (2013).CrossRef
42.
Zurück zum Zitat A. Torimoto, H. Masai, G. Okada, and T. Yanagida, Emission properties of cerium-doped barium borate glasses for scintillator applications. Radiat. Meas. 106, 46 (2017).CrossRef A. Torimoto, H. Masai, G. Okada, and T. Yanagida, Emission properties of cerium-doped barium borate glasses for scintillator applications. Radiat. Meas. 106, 46 (2017).CrossRef
43.
Zurück zum Zitat H. Ebendorff-Heidepriem and D. Ehrt, Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses. Opt. Mater. (Amst). 15, 7 (2000).CrossRef H. Ebendorff-Heidepriem and D. Ehrt, Formation and UV absorption of cerium, europium and terbium ions in different valencies in glasses. Opt. Mater. (Amst). 15, 7 (2000).CrossRef
44.
Zurück zum Zitat C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, X. Ding, and Q. Ge, Spectroscopic properties of Ce3+-doped borosilicate glasses under UV excitation. Mater. Res. Bull. 83, 155 (2016).CrossRef C. Zuo, Z. Zhou, L. Zhu, A. Xiao, Y. Chen, X. Zhang, X. Ding, and Q. Ge, Spectroscopic properties of Ce3+-doped borosilicate glasses under UV excitation. Mater. Res. Bull. 83, 155 (2016).CrossRef
45.
Zurück zum Zitat F. Zaman, G. Rooh, N. Srisittipokakun, H.J. Kim, E. Kaewnuam, P. Meejitpaisan, and J. Kaewkhao, Scintillation and luminescence characteristics of Ce3+ doped in Li2O-Gd2O3-BaO-B2O3 scintillating glasses. Radiat. Phys. Chem. 130, 158 (2017).CrossRef F. Zaman, G. Rooh, N. Srisittipokakun, H.J. Kim, E. Kaewnuam, P. Meejitpaisan, and J. Kaewkhao, Scintillation and luminescence characteristics of Ce3+ doped in Li2O-Gd2O3-BaO-B2O3 scintillating glasses. Radiat. Phys. Chem. 130, 158 (2017).CrossRef
46.
Zurück zum Zitat K. Annapurna, R.N. Dwivedi, P. Kundu, and S. Buddhudu, Blue emission spectrum of Ce3 + :ZnO-B2O 3-SiO2 Optical Glass. Mater. Lett. 58, 787 (2004).CrossRef K. Annapurna, R.N. Dwivedi, P. Kundu, and S. Buddhudu, Blue emission spectrum of Ce3 + :ZnO-B2O 3-SiO2 Optical Glass. Mater. Lett. 58, 787 (2004).CrossRef
47.
Zurück zum Zitat S.E. Paje, M.A. Garc, M.A. Villegas, and J. Llopis, Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties. Opt. Mater. 17, 459 (2001).CrossRef S.E. Paje, M.A. Garc, M.A. Villegas, and J. Llopis, Cerium doped soda-lime-silicate glasses: effects of silver ion-exchange on optical properties. Opt. Mater. 17, 459 (2001).CrossRef
48.
Zurück zum Zitat H. Lin, H. Liang, B. Han, J. Zhong, and Q. Su, Luminescence and site occupancy of Ce3+ in Ba2Ca(BO3)2. Phys. Rev. B 76, 35117 (2007).CrossRef H. Lin, H. Liang, B. Han, J. Zhong, and Q. Su, Luminescence and site occupancy of Ce3+ in Ba2Ca(BO3)2. Phys. Rev. B 76, 35117 (2007).CrossRef
49.
Zurück zum Zitat A. Bahadur, Y. Dwivedi, and S.B. Rai, Optical properties of cerium doped oxyfluoroborate glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 110, 400 (2013).CrossRef A. Bahadur, Y. Dwivedi, and S.B. Rai, Optical properties of cerium doped oxyfluoroborate glass. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 110, 400 (2013).CrossRef
50.
Zurück zum Zitat L.H.C. Andrade, S.M. Lima, M.L. Baesso, A. Novatski, J.H. Rohling, Y. Guyot, and G. Boulon, Tunable light emission and similarities with garnet structure of Ce-doped LSCAS glass for white-light devices. J. Alloys Compd. 510, 54 (2011).CrossRef L.H.C. Andrade, S.M. Lima, M.L. Baesso, A. Novatski, J.H. Rohling, Y. Guyot, and G. Boulon, Tunable light emission and similarities with garnet structure of Ce-doped LSCAS glass for white-light devices. J. Alloys Compd. 510, 54 (2011).CrossRef
51.
Zurück zum Zitat C. Shen, Q. Yan, Y. Xu, G. Yang, W. Shufen, X. Zhongwen, and G. Chen, Luminescence behaviors of Ce3+ ions in chalcohalide glasses. J. Am. Ceram. Soc. 93, 614 (2010).CrossRef C. Shen, Q. Yan, Y. Xu, G. Yang, W. Shufen, X. Zhongwen, and G. Chen, Luminescence behaviors of Ce3+ ions in chalcohalide glasses. J. Am. Ceram. Soc. 93, 614 (2010).CrossRef
52.
Zurück zum Zitat A. Herrmann, H.A. Othman, A.A. Assadi, M. Tiegel, S. Kuhn, and C. Rüssel, Spectroscopic properties of cerium-doped aluminosilicate glasses. Opt. Mater. Express 5, 720 (2015).CrossRef A. Herrmann, H.A. Othman, A.A. Assadi, M. Tiegel, S. Kuhn, and C. Rüssel, Spectroscopic properties of cerium-doped aluminosilicate glasses. Opt. Mater. Express 5, 720 (2015).CrossRef
53.
Zurück zum Zitat J. Cui, H. Wen, S. Xie, W. Song, M. Sun, L. Yu, and Z. Hao, Synthesis and characterization of aluminophosphate glasses with unique blue emission. Mater. Res. Bull. 103, 70 (2018).CrossRef J. Cui, H. Wen, S. Xie, W. Song, M. Sun, L. Yu, and Z. Hao, Synthesis and characterization of aluminophosphate glasses with unique blue emission. Mater. Res. Bull. 103, 70 (2018).CrossRef
54.
Zurück zum Zitat S. Pimputkar, J.S. Speck, S.P. Denbaars, and S. Nakamura, Prospects for LED lighting. Nat. Phot. 3, 2 (2009).CrossRef S. Pimputkar, J.S. Speck, S.P. Denbaars, and S. Nakamura, Prospects for LED lighting. Nat. Phot. 3, 2 (2009).CrossRef
55.
Zurück zum Zitat N. Komuro, M. Mikami, Y. Shimomura, E.G. Bithell, and A.K. Cheetham, Synthesis, structure and optical properties of cerium-doped calcium barium phosphate—a novel blue-green phosphor for solid-state lighting. J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 204 (2014).CrossRef N. Komuro, M. Mikami, Y. Shimomura, E.G. Bithell, and A.K. Cheetham, Synthesis, structure and optical properties of cerium-doped calcium barium phosphate—a novel blue-green phosphor for solid-state lighting. J. Mater. Chem. C Mater. Opt. Electron. Devices 3, 204 (2014).CrossRef
56.
Zurück zum Zitat B.H. Babu and V.V.R. Kanth, White light generation in Ce 3β-Tb 3β-Sm 3β-codoped oxy Fl uoroborate glasses. J. Lumin. 154, 334 (2014).CrossRef B.H. Babu and V.V.R. Kanth, White light generation in Ce 3β-Tb 3β-Sm 3β-codoped oxy Fl uoroborate glasses. J. Lumin. 154, 334 (2014).CrossRef
57.
Zurück zum Zitat S. Kaur, P. Kaur, G.P. Singh, D. Arora, S. Kumar, and D.P. Singh, White light emission of Ce3+ sensitized Sm3+ doped lead alumino borate glasses. J. Lumin. 180, 190 (2016).CrossRef S. Kaur, P. Kaur, G.P. Singh, D. Arora, S. Kumar, and D.P. Singh, White light emission of Ce3+ sensitized Sm3+ doped lead alumino borate glasses. J. Lumin. 180, 190 (2016).CrossRef
58.
Zurück zum Zitat M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M.S.R. Rao, Color tuning of Y3Al5O12: Ce phosphor and their blend for white LEDs. Mater. Res. Bull. 43, 1657 (2008).CrossRef M. Kottaisamy, P. Thiyagarajan, J. Mishra, and M.S.R. Rao, Color tuning of Y3Al5O12: Ce phosphor and their blend for white LEDs. Mater. Res. Bull. 43, 1657 (2008).CrossRef
59.
Zurück zum Zitat H. Yang, D.K. Lee, and Y.S. Kim, Spectral variations of nano-sized Y3Al5O12: Ce phosphors via codoping/substitution and their white LED characteristics. Mater. Chem. Phys. 114, 665 (2009).CrossRef H. Yang, D.K. Lee, and Y.S. Kim, Spectral variations of nano-sized Y3Al5O12: Ce phosphors via codoping/substitution and their white LED characteristics. Mater. Chem. Phys. 114, 665 (2009).CrossRef
60.
Zurück zum Zitat U. Kaufmann, M. Kunzer, K. Köhler, H. Obloh, W. Pletschen, P. Schlotter, J. Wagner, A. Ellens, W. Rossner, and M. Kobusch, Single chip white LEDs. Phys. Status Solidi 253, 246 (2002).CrossRef U. Kaufmann, M. Kunzer, K. Köhler, H. Obloh, W. Pletschen, P. Schlotter, J. Wagner, A. Ellens, W. Rossner, and M. Kobusch, Single chip white LEDs. Phys. Status Solidi 253, 246 (2002).CrossRef
61.
Zurück zum Zitat Y. Luo, Z. Xia, H. Liu, and Y. He, Synthesis and luminescence properties of blue-emitting phosphor K2Ca2Si2O7:Ce3+. Opt. Mater. 36, 723 (2014).CrossRef Y. Luo, Z. Xia, H. Liu, and Y. He, Synthesis and luminescence properties of blue-emitting phosphor K2Ca2Si2O7:Ce3+. Opt. Mater. 36, 723 (2014).CrossRef
62.
Zurück zum Zitat G. Lakshminarayana, E.M. Weis, B.L. Bennett, A. Labouriau, D.J. Williams, J.G. Duque, M. Sheik-Bahae, and M.P. Hehlen, Structural, thermal, and luminescence properties of cerium-fluoride-rich oxyfluoride glasses. Opt. Mater. (Amst). 35, 117 (2012).CrossRef G. Lakshminarayana, E.M. Weis, B.L. Bennett, A. Labouriau, D.J. Williams, J.G. Duque, M. Sheik-Bahae, and M.P. Hehlen, Structural, thermal, and luminescence properties of cerium-fluoride-rich oxyfluoride glasses. Opt. Mater. (Amst). 35, 117 (2012).CrossRef
63.
Zurück zum Zitat A. Torimoto, H. Masai, G. Okada, and T. Yanagida, Emission properties of cerium-doped barium borate glasses for scintillator applications. Radiat. Meas. 73, 517 (2016). A. Torimoto, H. Masai, G. Okada, and T. Yanagida, Emission properties of cerium-doped barium borate glasses for scintillator applications. Radiat. Meas. 73, 517 (2016).
Metadaten
Titel
Tunable Luminescence of Ce3+-Doped Calcium Boroaluminate Glasses for Light Emitting Devices
verfasst von
O. C. Silva Neto
T. A. Lodi
J. G. Oliveira Neto
A. S. S. de Camargo
F. Pedrochi
A. Steimacher
Publikationsdatum
04.02.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 4/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08730-6

Weitere Artikel der Ausgabe 4/2021

Journal of Electronic Materials 4/2021 Zur Ausgabe

Asian Consortium ACCMS–International Conference ICMG 2020

Understanding Na-Ion Transport in NaxV4O10 Electrode Material for Sodium-Ion Batteries

Neuer Inhalt