Skip to main content
Erschienen in: Journal of Computational Electronics 4/2017

10.10.2017 | S.I.: Computational Electronics of Emerging Memory Elements

\({ SIM}^2{ RRAM}\): a physical model for RRAM devices simulation

verfasst von: Marco A. Villena, Juan B. Roldán, Francisco Jiménez-Molinos, Enrique Miranda, Jordi Suñé, Mario Lanza

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last few years, resistive random access memory (RRAM) has been proposed as one of the most promising candidates to overcome the current Flash technology in the market of non-volatile memories. These devices have the ability to change their resistance state in a reversible and controlled way applying an external voltage. In this way, the resulting high- and low-resistance states allow the electrical representation of the binary states “0” and “1” without storing charge. Many physical models have been developed with the aim of understanding the mechanisms that control the resistive switching. In this work, we have compiled the main theories accepted as well as their corresponding models for the conduction characteristics. In addition, simulation tools play a very important role in the task of checking these theories and understanding these mechanisms. For this reason, the simulation tool called \(\hbox {SIM}^{2}\hbox {RRAM}\) has been presented. This simulator is capable of replicating the global behavior of RRAM cell based on \(\hbox {HfO}_{x}\).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bez, R., Camerlenghi, E., Modelli, A., Visconti, A.: Introduction to flash memory. Proc. IEEE 91(4), 489–502 (2003)CrossRef Bez, R., Camerlenghi, E., Modelli, A., Visconti, A.: Introduction to flash memory. Proc. IEEE 91(4), 489–502 (2003)CrossRef
2.
Zurück zum Zitat Masuoka, F., Asano, M., Iwahashi, H., Komuro, T., Tanaka, S.: A new flash \(\text{E}^{2}\text{ PROM }\) cell using triple polysilicon technology. In: Electron Devices Meeting, 1984 International IEEE, vol. 30, pp. 464–467 (1984) Masuoka, F., Asano, M., Iwahashi, H., Komuro, T., Tanaka, S.: A new flash \(\text{E}^{2}\text{ PROM }\) cell using triple polysilicon technology. In: Electron Devices Meeting, 1984 International IEEE, vol. 30, pp. 464–467 (1984)
3.
Zurück zum Zitat Frohman-Bentchkowsky, D.: Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) structure. Appl. Phys. Lett. 18(8), 332–334 (1971)CrossRef Frohman-Bentchkowsky, D.: Memory behavior in a floating-gate avalanche-injection MOS (FAMOS) structure. Appl. Phys. Lett. 18(8), 332–334 (1971)CrossRef
4.
Zurück zum Zitat Frohman-Bentchkowsky, D.: FAMOS—a new semiconductor charge storage device. Solid-State Electron. 17(6), 517–529 (1974)CrossRef Frohman-Bentchkowsky, D.: FAMOS—a new semiconductor charge storage device. Solid-State Electron. 17(6), 517–529 (1974)CrossRef
5.
Zurück zum Zitat Moore, G.: Moore’s law. Electron. Mag. 38, 114 (1965) Moore, G.: Moore’s law. Electron. Mag. 38, 114 (1965)
6.
Zurück zum Zitat Bayerl, A., Lanza, M., Porti, M., Nafria, M., Aymerich, X., Campabadal, F., Benstetter, G.: Nanoscale and device level gate conduction variability of high-k dielectrics-based metal-oxide-semiconductor structures. IEEE Trans. Device Mater. Reliab. 11(3), 495–501 (2011)CrossRef Bayerl, A., Lanza, M., Porti, M., Nafria, M., Aymerich, X., Campabadal, F., Benstetter, G.: Nanoscale and device level gate conduction variability of high-k dielectrics-based metal-oxide-semiconductor structures. IEEE Trans. Device Mater. Reliab. 11(3), 495–501 (2011)CrossRef
7.
Zurück zum Zitat Lanza, M., Porti, M., Nafría, M., Aymerich, X., Ghidini, G., ebastiani, A.: Trapped charge and stress induced leakage current (SILC) in tunnel \(\text{ SiO }_{2}\) layers of de-processed MOS non-volatile memory devices observed at the nanoscale. Microelectron. Reliab. 49(9), 1188–1191 (2009)CrossRef Lanza, M., Porti, M., Nafría, M., Aymerich, X., Ghidini, G., ebastiani, A.: Trapped charge and stress induced leakage current (SILC) in tunnel \(\text{ SiO }_{2}\) layers of de-processed MOS non-volatile memory devices observed at the nanoscale. Microelectron. Reliab. 49(9), 1188–1191 (2009)CrossRef
8.
Zurück zum Zitat Lanza, M., Porti, M., Nafria, M., Benstetter, G., Frammelsberger, W., Ranzinger, H., Lodermeier, E., Jaschke, G.: Influence of the manufacturing process on the Electrical properties of thin (\(< 4\text{ nm }\)) Hafnium based high-k stacks observed with CAFM. Microelectron. Reliab. 47(9), 1424–1428 (2007)CrossRef Lanza, M., Porti, M., Nafria, M., Benstetter, G., Frammelsberger, W., Ranzinger, H., Lodermeier, E., Jaschke, G.: Influence of the manufacturing process on the Electrical properties of thin (\(< 4\text{ nm }\)) Hafnium based high-k stacks observed with CAFM. Microelectron. Reliab. 47(9), 1424–1428 (2007)CrossRef
9.
Zurück zum Zitat Nafria, M., Rodriguez, R., Porti M., Martin-Martinez, J., Lanza, M., Aymerich, X.: Time-dependent variability of high-k based MOS devices: nanoscale characterization and inclusion in circuit simulators. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 6.3.1–6.3.4 (2011) Nafria, M., Rodriguez, R., Porti M., Martin-Martinez, J., Lanza, M., Aymerich, X.: Time-dependent variability of high-k based MOS devices: nanoscale characterization and inclusion in circuit simulators. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 6.3.1–6.3.4 (2011)
10.
Zurück zum Zitat Pirrotta, O., Larcher, L., Lanza, M., Padovani, A., Porti, M., Nafría, M., Bersuker, G.: Leakage current through the poly-crystalline \(\text{ HfO }_{2}\): Trap densities at grains and grain boundaries. J. Appl. Phys. 114(13), 134503 (2013)CrossRef Pirrotta, O., Larcher, L., Lanza, M., Padovani, A., Porti, M., Nafría, M., Bersuker, G.: Leakage current through the poly-crystalline \(\text{ HfO }_{2}\): Trap densities at grains and grain boundaries. J. Appl. Phys. 114(13), 134503 (2013)CrossRef
11.
Zurück zum Zitat Lanza, M., Porti, M., Nafria, M., Aymerich, X., Benstetter, G., Lodermeier, E., Ranzinger, H., Jaschke, G., Teichert, S., Wilde, L., Michalowski, P.: Crystallization and silicon diffusion nanoscale effects on the electrical properties of \(\text{ Al }_{2}\text{ O }_{3}\) based devices. Microelectron. Eng. 86(7), 1921–1924 (2009)CrossRef Lanza, M., Porti, M., Nafria, M., Aymerich, X., Benstetter, G., Lodermeier, E., Ranzinger, H., Jaschke, G., Teichert, S., Wilde, L., Michalowski, P.: Crystallization and silicon diffusion nanoscale effects on the electrical properties of \(\text{ Al }_{2}\text{ O }_{3}\) based devices. Microelectron. Eng. 86(7), 1921–1924 (2009)CrossRef
12.
Zurück zum Zitat Lanza, M., Porti, M., Nafría, M., Aymerich, X., Benstetter, G., Lodermeier, E., Ranzinger, H., Jaschke, G., Teichert, S., Wilde, L., Michalowski, P.: Conductivity and charge trapping after electrical stress in amorphous and polycrystalline \(\text{ Al }_{2}\text{ O }_{3}\)-based devices studied with AFM-related techniques. IEEE Trans. Nanotechnol. 10(2), 344–351 (2011)CrossRef Lanza, M., Porti, M., Nafría, M., Aymerich, X., Benstetter, G., Lodermeier, E., Ranzinger, H., Jaschke, G., Teichert, S., Wilde, L., Michalowski, P.: Conductivity and charge trapping after electrical stress in amorphous and polycrystalline \(\text{ Al }_{2}\text{ O }_{3}\)-based devices studied with AFM-related techniques. IEEE Trans. Nanotechnol. 10(2), 344–351 (2011)CrossRef
14.
Zurück zum Zitat Ielmini, D.: Reliability issues and modeling of flash and post-flash memory. Microelectron. Eng. 86(7), 1870–1875 (2009)CrossRef Ielmini, D.: Reliability issues and modeling of flash and post-flash memory. Microelectron. Eng. 86(7), 1870–1875 (2009)CrossRef
15.
Zurück zum Zitat Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)CrossRef Waser, R., Aono, M.: Nanoionics-based resistive switching memories. Nat. Mater. 6(11), 833–840 (2007)CrossRef
16.
Zurück zum Zitat Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)CrossRef Waser, R., Dittmann, R., Staikov, G., Szot, K.: Redox-based resistive switching memories—nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21(25–26), 2632–2663 (2009)CrossRef
17.
Zurück zum Zitat Chung, A., Deen, J., Lee, J.S., Meyyappan, M.: Nanoscale memory devices. Nanotechnology 21(41), 412001 (2010)CrossRef Chung, A., Deen, J., Lee, J.S., Meyyappan, M.: Nanoscale memory devices. Nanotechnology 21(41), 412001 (2010)CrossRef
18.
Zurück zum Zitat Kim, K.M., Jeong, D.S., Hwang, C.S.: Nanofilamentary resistive switching in binary oxide system; a review on the present statusand outlook. Nanotechnology 22(25), 254002 (2011)CrossRef Kim, K.M., Jeong, D.S., Hwang, C.S.: Nanofilamentary resistive switching in binary oxide system; a review on the present statusand outlook. Nanotechnology 22(25), 254002 (2011)CrossRef
19.
Zurück zum Zitat Ha, S.D., Ramanathan, S.: Adaptive oxide electronics: a review. J. Appl. Phys. 110(7), 14 (2011)CrossRef Ha, S.D., Ramanathan, S.: Adaptive oxide electronics: a review. J. Appl. Phys. 110(7), 14 (2011)CrossRef
20.
Zurück zum Zitat Sacchetto, D., De Micheli, G., Leblebici, Y.: Multiterminal memristive nanowire devices for logic and memory applications: a review. Proc. IEEE 100, 2008–2020 (2012)CrossRef Sacchetto, D., De Micheli, G., Leblebici, Y.: Multiterminal memristive nanowire devices for logic and memory applications: a review. Proc. IEEE 100, 2008–2020 (2012)CrossRef
21.
Zurück zum Zitat Dearnaley, G., Stoneham, A.M., Morgan, D.V.: Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33(3), 1129 (1970)CrossRef Dearnaley, G., Stoneham, A.M., Morgan, D.V.: Electrical phenomena in amorphous oxide films. Rep. Prog. Phys. 33(3), 1129 (1970)CrossRef
22.
Zurück zum Zitat Ahn, C., Jiang, Z., Lee, C.S., Chen, H.Y., Liang, J., Liyanage, L.S., Wong, H.S.P.: 1D selection device using carbon nanotube FETs for high-density cross-point memory arrays. IEEE Trans. Electron Devices 62(7), 2197–2204 (2015)CrossRef Ahn, C., Jiang, Z., Lee, C.S., Chen, H.Y., Liang, J., Liyanage, L.S., Wong, H.S.P.: 1D selection device using carbon nanotube FETs for high-density cross-point memory arrays. IEEE Trans. Electron Devices 62(7), 2197–2204 (2015)CrossRef
23.
Zurück zum Zitat Govoreanu, B., Kar, G.S., Chen, Y.Y., Paraschiv, V., Fantini, A., Radu, I. P., Goux, L., Clima, S., Degraeve, R., Jossart, N.: IEEE International Electron Devices Meeting, p. 31 (2011) Govoreanu, B., Kar, G.S., Chen, Y.Y., Paraschiv, V., Fantini, A., Radu, I. P., Goux, L., Clima, S., Degraeve, R., Jossart, N.: IEEE International Electron Devices Meeting, p. 31 (2011)
24.
Zurück zum Zitat Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, A., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., Oshima, M.: Demonstration of high-density ReRAM ensuring 10-year retention at \(85^{\circ }\text{ C }\) based on a newly developed reliability model. In: IEEE International Electron Devices Meeting, pp. 31.4.1 – 31.4.4 (2008) Wei, Z., Kanzawa, Y., Arita, K., Katoh, Y., Kawai, K., Muraoka, S., Mitani, S., Fujii, S., Katayama, K., Iijima, M., Mikawa, T., Ninomiya, T., Miyanaga, R., Kawashima, Y., Tsuji, K., Himeno, A., Okada, T., Azuma, R., Shimakawa, K., Sugaya, H., Takagi, T., Yasuhara, R., Horiba, K., Kumigashira, H., Oshima, M.: Demonstration of high-density ReRAM ensuring 10-year retention at \(85^{\circ }\text{ C }\) based on a newly developed reliability model. In: IEEE International Electron Devices Meeting, pp. 31.4.1 – 31.4.4 (2008)
27.
Zurück zum Zitat Chiu, F.C., Li, P.W., Chang, W.Y.: Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films. Nanoscale Res. Lett. 7(1), 178 (2012)CrossRef Chiu, F.C., Li, P.W., Chang, W.Y.: Reliability characteristics and conduction mechanisms in resistive switching memory devices using ZnO thin films. Nanoscale Res. Lett. 7(1), 178 (2012)CrossRef
28.
Zurück zum Zitat Long, S., Cagli, C., Ielmini, D., Liu, M., Suñé, J.: Analysis and modeling of resistive switching statistics. J. Appl. Phys. 111(7), 074508 (2012)CrossRef Long, S., Cagli, C., Ielmini, D., Liu, M., Suñé, J.: Analysis and modeling of resistive switching statistics. J. Appl. Phys. 111(7), 074508 (2012)CrossRef
29.
Zurück zum Zitat Raghavan, N.: Performance and reliability trade-offs for high-j RRAM. Microelectron. Reliab. 54(9), 2253–2257 (2014)CrossRef Raghavan, N.: Performance and reliability trade-offs for high-j RRAM. Microelectron. Reliab. 54(9), 2253–2257 (2014)CrossRef
30.
Zurück zum Zitat Liu, X., Biju, K.P., Lee, J., Park, J., Kim, S., Park, S., Shin, J., Sadaf, SMd, Hwang, H.: Parallel memristive filaments model applicable to bipolar and filamentary resistive switching. Appl. Phys. Lett. 99(11), 113518 (2011)CrossRef Liu, X., Biju, K.P., Lee, J., Park, J., Kim, S., Park, S., Shin, J., Sadaf, SMd, Hwang, H.: Parallel memristive filaments model applicable to bipolar and filamentary resistive switching. Appl. Phys. Lett. 99(11), 113518 (2011)CrossRef
31.
Zurück zum Zitat Goux, L., Czarnecki, P., Chen, Y.Y., Pantisano, L., Wang, X.P., Degraeve, R., Govoreanu, B., Jurczak, M., Wouters, D.J., Altimime, L.: Evidences of oxygen-mediated resistive-switching mechanism in \(\text{ TiN }/\text{ HfO }_{2}/\text{ PT }\) cells. Appl. Phys. Lett. 97, 243509 (2010)CrossRef Goux, L., Czarnecki, P., Chen, Y.Y., Pantisano, L., Wang, X.P., Degraeve, R., Govoreanu, B., Jurczak, M., Wouters, D.J., Altimime, L.: Evidences of oxygen-mediated resistive-switching mechanism in \(\text{ TiN }/\text{ HfO }_{2}/\text{ PT }\) cells. Appl. Phys. Lett. 97, 243509 (2010)CrossRef
32.
Zurück zum Zitat Zhang, H., Liu, L., Gao, B., Qiu, Y., Liu, X., Lu, J., Han, R., Kang, J., Yu, B.: Gd-doping effect on performance of HfO\(_2\) based resistive switching memory devices using implantation approach. Appl. Phys. Lett. 98(4), 042105 (2011)CrossRef Zhang, H., Liu, L., Gao, B., Qiu, Y., Liu, X., Lu, J., Han, R., Kang, J., Yu, B.: Gd-doping effect on performance of HfO\(_2\) based resistive switching memory devices using implantation approach. Appl. Phys. Lett. 98(4), 042105 (2011)CrossRef
33.
Zurück zum Zitat Zhu, W., Chen, T.P., Yang, M., Liu, Y., Fung, S.: Resistive switching behavior of partially anodized aluminum thin film at elevated temperatures. IEEE Trans. Electron Devices 59(9), 2363–2367 (2012)CrossRef Zhu, W., Chen, T.P., Yang, M., Liu, Y., Fung, S.: Resistive switching behavior of partially anodized aluminum thin film at elevated temperatures. IEEE Trans. Electron Devices 59(9), 2363–2367 (2012)CrossRef
34.
Zurück zum Zitat Xie, C., Nie, B., Zhu, L., Zeng, L.H., Yu, Y.Q., Wang, X.H., Fang, Q.L., Luo, L.B., Wu, Y.C.: High-performance nonvolatile \(\text{ Al }/\text{ AlO }_{{\rm x}}/\text{ CdTe }\): Sb nanowire memory device. Nanotechnology 24(35), 355203 (2013)CrossRef Xie, C., Nie, B., Zhu, L., Zeng, L.H., Yu, Y.Q., Wang, X.H., Fang, Q.L., Luo, L.B., Wu, Y.C.: High-performance nonvolatile \(\text{ Al }/\text{ AlO }_{{\rm x}}/\text{ CdTe }\): Sb nanowire memory device. Nanotechnology 24(35), 355203 (2013)CrossRef
35.
Zurück zum Zitat Lin, C.Y., Wu, C.Y., Wu, C.Y., Hu, C., Tseng, T.Y.: Bistable resistive switching in \(\text{ Al }_{2}\text{ O }_{3}\) memory thin films. J. Electrochem. Soc. 154(9), G189–G192 (2007)CrossRef Lin, C.Y., Wu, C.Y., Wu, C.Y., Hu, C., Tseng, T.Y.: Bistable resistive switching in \(\text{ Al }_{2}\text{ O }_{3}\) memory thin films. J. Electrochem. Soc. 154(9), G189–G192 (2007)CrossRef
36.
Zurück zum Zitat Li, Y., Sinitskii, A., Tour, J.M.: Electronic two-terminal bistable graphitic memories. Nat. Mater. 7(12), 966–971 (2008)CrossRef Li, Y., Sinitskii, A., Tour, J.M.: Electronic two-terminal bistable graphitic memories. Nat. Mater. 7(12), 966–971 (2008)CrossRef
37.
Zurück zum Zitat Syu, Y.-E., Zhang, R., Chang, T.-C., Tsai, T.-M., Chang, K.-C., Lou, J.-C., Young, T.-F., Chen, J.-H., Chen, M.-C., Yang, Y.-L., Shih, C.-C., Chu, T.-J., Chen, J.-Y., Pan, C.-H., Su, Y.-T., Huang, H.-C., Gan, D.-S., Sze, S.M.: Endurance improvement technology with nitrogen implanted in the interface of \(\text{ WSiO }_{{\rm x}}\) resistance switching device. IEEE Electron Dev. Lett. 34(7), 864 (2013)CrossRef Syu, Y.-E., Zhang, R., Chang, T.-C., Tsai, T.-M., Chang, K.-C., Lou, J.-C., Young, T.-F., Chen, J.-H., Chen, M.-C., Yang, Y.-L., Shih, C.-C., Chu, T.-J., Chen, J.-Y., Pan, C.-H., Su, Y.-T., Huang, H.-C., Gan, D.-S., Sze, S.M.: Endurance improvement technology with nitrogen implanted in the interface of \(\text{ WSiO }_{{\rm x}}\) resistance switching device. IEEE Electron Dev. Lett. 34(7), 864 (2013)CrossRef
38.
Zurück zum Zitat Yoshida, C., Tsunoda, K., Noshiro, H., Sugiyama, Y.: High speed resistive switching in \(\text{ Pt }/\text{ TiO }_{2}/\text{ Ti }\) N film for nonvolatile memory application. Appl. Phys. Lett. 91(22), 223510 (2007)CrossRef Yoshida, C., Tsunoda, K., Noshiro, H., Sugiyama, Y.: High speed resistive switching in \(\text{ Pt }/\text{ TiO }_{2}/\text{ Ti }\) N film for nonvolatile memory application. Appl. Phys. Lett. 91(22), 223510 (2007)CrossRef
39.
Zurück zum Zitat Song, S.J., Seok, J.Y., Yoon, J.H., Kim, K.M., Kim, G.H., Lee, M.H., Hwang, C.S.: Real-time identification of the evolution of conducting nano-filaments in \(\text{ TiO }_{2}\) thin film ReRAM. Sci. Rep. 3, 3443 (2013)CrossRef Song, S.J., Seok, J.Y., Yoon, J.H., Kim, K.M., Kim, G.H., Lee, M.H., Hwang, C.S.: Real-time identification of the evolution of conducting nano-filaments in \(\text{ TiO }_{2}\) thin film ReRAM. Sci. Rep. 3, 3443 (2013)CrossRef
40.
Zurück zum Zitat Huang, Y.C., Chen, P.Y., Chin, T.S., Liu, R.S., Huang, C.Y., Lai, C.H.: Improvement of resistive switching in NiO-based nanowires by inserting Pt layers. Appl. Phys. Lett. 101(15), 153106 (2012)CrossRef Huang, Y.C., Chen, P.Y., Chin, T.S., Liu, R.S., Huang, C.Y., Lai, C.H.: Improvement of resistive switching in NiO-based nanowires by inserting Pt layers. Appl. Phys. Lett. 101(15), 153106 (2012)CrossRef
41.
Zurück zum Zitat Lee, M.J., Park, Y., Suh, D.S., Lee, E.H., Seo, S., Kim, D.C., Jung, R., Kang, B.S., Ahn, S.E., Lee, C.B., Seo, D.H., Cha, Y.K., Yoo, I.K., Kim, J.S., Park, B.H.: Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19(22), 3919–3923 (2007)CrossRef Lee, M.J., Park, Y., Suh, D.S., Lee, E.H., Seo, S., Kim, D.C., Jung, R., Kang, B.S., Ahn, S.E., Lee, C.B., Seo, D.H., Cha, Y.K., Yoo, I.K., Kim, J.S., Park, B.H.: Two series oxide resistors applicable to high speed and high density nonvolatile memory. Adv. Mater. 19(22), 3919–3923 (2007)CrossRef
42.
Zurück zum Zitat Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.I.: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 587–590 (2004) Baek, I.G., Lee, M.S., Seo, S., Lee, M.J., Seo, D.H., Suh, D.S., Park, J.C., Park, S.O., Kim, H.S., Yoo, I.K., Chung, U.I.: Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In: Electron Devices Meeting, 2004. IEDM Technical Digest. IEEE International, pp. 587–590 (2004)
43.
Zurück zum Zitat Wong, H.S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, F.T., Tsai, M.J.: Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)CrossRef Wong, H.S.P., Lee, H.Y., Yu, S., Chen, Y.S., Wu, Y., Chen, P.S., Lee, B., Chen, F.T., Tsai, M.J.: Metal-oxide RRAM. Proc. IEEE 100(6), 1951–1970 (2012)CrossRef
44.
Zurück zum Zitat Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 186–192 (2009)CrossRef Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Filament conduction and reset mechanism in NiO-based resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 186–192 (2009)CrossRef
45.
Zurück zum Zitat Zhang, S., Long, S., Guan, W., Liu, Q., Wang, Q., Liu, M.: Resistive switching characteristics of \(\text{ MnO }_{{\rm x}}\)-based ReRAM. J. Phys. D Appl. Phys. 42(5), 055112 (2009)CrossRef Zhang, S., Long, S., Guan, W., Liu, Q., Wang, Q., Liu, M.: Resistive switching characteristics of \(\text{ MnO }_{{\rm x}}\)-based ReRAM. J. Phys. D Appl. Phys. 42(5), 055112 (2009)CrossRef
46.
Zurück zum Zitat Yang, M.K., Park, J.W., Ko, T.K., Lee, J.K.: Bipolar resistive switching behavior in \(\text{ Ti }/\text{ MnO }_{2}/\text{ Pt }\) structure for nonvolatile memory devices. Appl. Phys. Lett. 95(4), 042105 (2009)CrossRef Yang, M.K., Park, J.W., Ko, T.K., Lee, J.K.: Bipolar resistive switching behavior in \(\text{ Ti }/\text{ MnO }_{2}/\text{ Pt }\) structure for nonvolatile memory devices. Appl. Phys. Lett. 95(4), 042105 (2009)CrossRef
47.
Zurück zum Zitat Gao, X., Guo, H., Xia, Y., Yin, J., Liu, Z.: Unipolar resistive switching characteristics in \(\text{ Co }_{3}\text{ O }_{4}\) films. Thin Solid Films 519(1), 450–452 (2010)CrossRef Gao, X., Guo, H., Xia, Y., Yin, J., Liu, Z.: Unipolar resistive switching characteristics in \(\text{ Co }_{3}\text{ O }_{4}\) films. Thin Solid Films 519(1), 450–452 (2010)CrossRef
48.
Zurück zum Zitat Kwak, J.S., Do, Y.H., Bae, Y.C., Im, H., Hong, J.P.: Reproducible unipolar resistive switching behaviors in the metal-deficient \(\text{ CoO }_{{\rm x}}\) thin film. Thin Solid Films 518(22), 6437–6440 (2010)CrossRef Kwak, J.S., Do, Y.H., Bae, Y.C., Im, H., Hong, J.P.: Reproducible unipolar resistive switching behaviors in the metal-deficient \(\text{ CoO }_{{\rm x}}\) thin film. Thin Solid Films 518(22), 6437–6440 (2010)CrossRef
49.
Zurück zum Zitat Shima, H., Takano, F., Muramatsu, H., Akinaga, H., Tamai, Y., Inque, I.H., Takagi, H.: Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode. Appl. Phys. Lett. 93(11), 113504 (2008)CrossRef Shima, H., Takano, F., Muramatsu, H., Akinaga, H., Tamai, Y., Inque, I.H., Takagi, H.: Voltage polarity dependent low-power and high-speed resistance switching in CoO resistance random access memory with Ta electrode. Appl. Phys. Lett. 93(11), 113504 (2008)CrossRef
50.
Zurück zum Zitat Yang, J.B., Chang, T.C., Huang, J.J., Chen, S.C., Yang, P.C., Chen, Y.T., Tseng, H.C., Sze, S.M., Chu, A.K., Tsai, M.J.: Resistive switching characteristics of gallium oxide for nonvolatile memory application. Thin Solid Films 529, 200–204 (2013)CrossRef Yang, J.B., Chang, T.C., Huang, J.J., Chen, S.C., Yang, P.C., Chen, Y.T., Tseng, H.C., Sze, S.M., Chu, A.K., Tsai, M.J.: Resistive switching characteristics of gallium oxide for nonvolatile memory application. Thin Solid Films 529, 200–204 (2013)CrossRef
51.
Zurück zum Zitat Chen, A., Haddad, S., Wu, Y.C., Fang, T.N., Kaza, S., Lan, Z.: Erasing characteristics of \(\text{ Cu }_{2}\text{ O }\) metal-insulator-metal resistive switching memory. Appl. Phys. Lett. 92(1), 013503 (2008)CrossRef Chen, A., Haddad, S., Wu, Y.C., Fang, T.N., Kaza, S., Lan, Z.: Erasing characteristics of \(\text{ Cu }_{2}\text{ O }\) metal-insulator-metal resistive switching memory. Appl. Phys. Lett. 92(1), 013503 (2008)CrossRef
52.
Zurück zum Zitat Yin, M., Zhou, P., Lv, H.B., Tang, T.A., Chen, B.A., Lin, Y.Y., Bao, A., Chi, M.H.: In: Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology, p. 917 (2008) Yin, M., Zhou, P., Lv, H.B., Tang, T.A., Chen, B.A., Lin, Y.Y., Bao, A., Chi, M.H.: In: Proceedings of IEEE International Conference on Solid-State and Integrated Circuit Technology, p. 917 (2008)
53.
Zurück zum Zitat Hu, P., Li, X.Y., Lu, J.Q., Yang, M., Lv, Q.B., Li, S.W.: Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films. Phys. Lett. A 375(18), 1898–1902 (2011)CrossRef Hu, P., Li, X.Y., Lu, J.Q., Yang, M., Lv, Q.B., Li, S.W.: Oxygen deficiency effect on resistive switching characteristics of copper oxide thin films. Phys. Lett. A 375(18), 1898–1902 (2011)CrossRef
54.
Zurück zum Zitat Chen, Y.S., Chen, B., Gao, B., Zhang, F.F., Qiu, Y.J., Lian, G.J., Liu, L.F., Han, R.Q., Kang, J.F.: Anticrosstalk characteristics correlated with the set process for \({\rm \alpha }-\text{ Fe }_{2}\text{ O }_{3}/\text{ Nb }-\text{ SrTiO }_{3}\) stack-based resistive switching device. Appl. Phys. Lett. 97(26), 262112 (2010)CrossRef Chen, Y.S., Chen, B., Gao, B., Zhang, F.F., Qiu, Y.J., Lian, G.J., Liu, L.F., Han, R.Q., Kang, J.F.: Anticrosstalk characteristics correlated with the set process for \({\rm \alpha }-\text{ Fe }_{2}\text{ O }_{3}/\text{ Nb }-\text{ SrTiO }_{3}\) stack-based resistive switching device. Appl. Phys. Lett. 97(26), 262112 (2010)CrossRef
55.
Zurück zum Zitat Muraoka, S., Osano, K., Kanzawa, Y., Mitani, S., Fujii, S., Katayama, K., Katoh, Y., Wei, Z., Mikawa, T., Arita, K., Kawashima, Y., Azuma, R., Kawai, K., Shimakawa, K., Odagawa, A., Takagi, T.: Fast switching and long retention Fe-O ReRAM and its switching mechanism. In: Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 779–782 (2007) Muraoka, S., Osano, K., Kanzawa, Y., Mitani, S., Fujii, S., Katayama, K., Katoh, Y., Wei, Z., Mikawa, T., Arita, K., Kawashima, Y., Azuma, R., Kawai, K., Shimakawa, K., Odagawa, A., Takagi, T.: Fast switching and long retention Fe-O ReRAM and its switching mechanism. In: Electron Devices Meeting, 2007. IEDM 2007. IEEE International, pp. 779–782 (2007)
56.
Zurück zum Zitat Wang, Z.Q., Xu, H.Y., Li, X.H., Zhang, X.T., Liu, Y.X., Liu, Y.C.: Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance. IEEE Electron Device Lett. 32(10), 1442–1444 (2011)CrossRef Wang, Z.Q., Xu, H.Y., Li, X.H., Zhang, X.T., Liu, Y.X., Liu, Y.C.: Flexible resistive switching memory device based on amorphous InGaZnO film with excellent mechanical endurance. IEEE Electron Device Lett. 32(10), 1442–1444 (2011)CrossRef
57.
Zurück zum Zitat Yang, Y.C., Pan, F., Liu, Q., Liu, M., Zeng, F.: Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9(4), 1636–1643 (2009)CrossRef Yang, Y.C., Pan, F., Liu, Q., Liu, M., Zeng, F.: Fully room-temperature-fabricated nonvolatile resistive memory for ultrafast and high-density memory application. Nano Lett. 9(4), 1636–1643 (2009)CrossRef
58.
Zurück zum Zitat Tappertzhofen, S., Valov, I., Tsuruoka, T., Hasegawa, T., Waser, R., Aono, M.: Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 7(7), 6396–6402 (2013)CrossRef Tappertzhofen, S., Valov, I., Tsuruoka, T., Hasegawa, T., Waser, R., Aono, M.: Generic relevance of counter charges for cation-based nanoscale resistive switching memories. ACS Nano 7(7), 6396–6402 (2013)CrossRef
59.
Zurück zum Zitat Menzel, S., Kaupmann, P., Waser, R.: Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations. Nanoscale 7(29), 12673–12681 (2015)CrossRef Menzel, S., Kaupmann, P., Waser, R.: Understanding filamentary growth in electrochemical metallization memory cells using kinetic Monte Carlo simulations. Nanoscale 7(29), 12673–12681 (2015)CrossRef
60.
Zurück zum Zitat Cao, X., Li, X., Gao, X., Yu, W., Liu, X., Zhang, Y., Chen, L., Cheng, X.: Forming-free colossal resistive switching effect in rare-earth-oxide \(\text{ Gd }_{2}\text{ O }_{3}\) films for memristor applications. J. Appl. Phys. 106(7), 073023-1–073023-5 (2009)CrossRef Cao, X., Li, X., Gao, X., Yu, W., Liu, X., Zhang, Y., Chen, L., Cheng, X.: Forming-free colossal resistive switching effect in rare-earth-oxide \(\text{ Gd }_{2}\text{ O }_{3}\) films for memristor applications. J. Appl. Phys. 106(7), 073023-1–073023-5 (2009)CrossRef
61.
Zurück zum Zitat Liu, K.C., Tzeng, W.H., Chang, K.M., Chan, Y.C., Kuo, C.C., Cheng, C.W.: The resistive switching characteristics of a \(\text{ Ti }/\text{ Gd }_{2}\text{ O }_{3}/\text{ Pt }\) RRAM device. Microelectron. Reliab. 50(5), 670–673 (2010)CrossRef Liu, K.C., Tzeng, W.H., Chang, K.M., Chan, Y.C., Kuo, C.C., Cheng, C.W.: The resistive switching characteristics of a \(\text{ Ti }/\text{ Gd }_{2}\text{ O }_{3}/\text{ Pt }\) RRAM device. Microelectron. Reliab. 50(5), 670–673 (2010)CrossRef
62.
Zurück zum Zitat Zhao, H., Tu, H., Wei, F., Xiong, Y., Zhang, X., Du, J.: Characteristics and mechanism of nano-polycrystalline \(\text{ La }_{2}\text{ O }_{3}\) thin-film resistance switching memory. Phys. Status Solidi RRL 7(11), 1005–1008 (2013)CrossRef Zhao, H., Tu, H., Wei, F., Xiong, Y., Zhang, X., Du, J.: Characteristics and mechanism of nano-polycrystalline \(\text{ La }_{2}\text{ O }_{3}\) thin-film resistance switching memory. Phys. Status Solidi RRL 7(11), 1005–1008 (2013)CrossRef
63.
Zurück zum Zitat Lin, C.Y., Lee, D.Y., Wang, S.Y., Lin, C.C., Tseng, T.Y.: Reproducible resistive switching behavior in sputtered \(\text{ CeO }_{2}\) polycrystalline films. Surf. Coat. Technol. 203(5), 480–483 (2009) Lin, C.Y., Lee, D.Y., Wang, S.Y., Lin, C.C., Tseng, T.Y.: Reproducible resistive switching behavior in sputtered \(\text{ CeO }_{2}\) polycrystalline films. Surf. Coat. Technol. 203(5), 480–483 (2009)
64.
Zurück zum Zitat Mondal, S., Chen, H.Y., Her, J.L., Ko, F.H., Pan, T.M.: Effect of Ti doping concentration on resistive switching behaviors of \(\text{ Yb }_{2}\text{ O }_{3}\) memory cell. Appl. Phys. Lett. 101(8), 083506 (2012)CrossRef Mondal, S., Chen, H.Y., Her, J.L., Ko, F.H., Pan, T.M.: Effect of Ti doping concentration on resistive switching behaviors of \(\text{ Yb }_{2}\text{ O }_{3}\) memory cell. Appl. Phys. Lett. 101(8), 083506 (2012)CrossRef
65.
Zurück zum Zitat Huang, S.Y., Chang, T.C., Chen, M.C., Chen, S.C., Lo, H.P., Huang, H.C., Gan, D.S., Sze, S.M., Tsai, M.J.: Resistive switching characteristics of \(\text{ Sm }_{2}\text{ O }_{3}\) thin films for nonvolatile memory applications. Solid State Electron. 63(1), 189–191 (2011)CrossRef Huang, S.Y., Chang, T.C., Chen, M.C., Chen, S.C., Lo, H.P., Huang, H.C., Gan, D.S., Sze, S.M., Tsai, M.J.: Resistive switching characteristics of \(\text{ Sm }_{2}\text{ O }_{3}\) thin films for nonvolatile memory applications. Solid State Electron. 63(1), 189–191 (2011)CrossRef
66.
Zurück zum Zitat Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.: Colossal electro-resistance memory effect at \(\text{ metal }/\text{ La }_{2}\text{ CuO }_{4}\) interfaces. Jpn. J. Appl. Phys. 44(9L), L1241 (2005)CrossRef Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.: Colossal electro-resistance memory effect at \(\text{ metal }/\text{ La }_{2}\text{ CuO }_{4}\) interfaces. Jpn. J. Appl. Phys. 44(9L), L1241 (2005)CrossRef
67.
Zurück zum Zitat Liu, K.C., Tzeng, W.H., Chang, K.M., Huang, J.J., Lee, Y.J., Yeh, P.H., Chen, P.S., Lee, H.Y., Chen, F., Tsai, M.J.: Investigation of the effect of different oxygen partial pressure to \(\text{ LaAlO }_{3}\) thin film properties and resistive switching characteristics. Thin Solid Films 520(4), 1246–1250 (2011)CrossRef Liu, K.C., Tzeng, W.H., Chang, K.M., Huang, J.J., Lee, Y.J., Yeh, P.H., Chen, P.S., Lee, H.Y., Chen, F., Tsai, M.J.: Investigation of the effect of different oxygen partial pressure to \(\text{ LaAlO }_{3}\) thin film properties and resistive switching characteristics. Thin Solid Films 520(4), 1246–1250 (2011)CrossRef
68.
Zurück zum Zitat Tian, H.F., Zhao, Y.G., Jiang, X.L., Shi, J.P., Zhang, H.J., Sun, J.R.: Resistance switching effect in \(\text{ LaAlO }_{3}\)/Nb-doped \(\text{ SrTiO }_{3}\) heterostructure. Appl. Phys. A Mater. Sci. Process. 102(4), 939–942 (2011)CrossRef Tian, H.F., Zhao, Y.G., Jiang, X.L., Shi, J.P., Zhang, H.J., Sun, J.R.: Resistance switching effect in \(\text{ LaAlO }_{3}\)/Nb-doped \(\text{ SrTiO }_{3}\) heterostructure. Appl. Phys. A Mater. Sci. Process. 102(4), 939–942 (2011)CrossRef
69.
Zurück zum Zitat Liu, L., Zhang, S., Luo, Y., Yuan, G., Liu, J., Yin, J., Liu, Z.: Coexistence of unipolar and bipolar resistive switching in \(\text{ BiFeO }_{3}\) and \(\text{ Bi }_{0.8}\text{ Ca }_{0.2}\text{ FeO }_{3}\) films. J. Appl. Phys. 111(10), 104103 (2012)CrossRef Liu, L., Zhang, S., Luo, Y., Yuan, G., Liu, J., Yin, J., Liu, Z.: Coexistence of unipolar and bipolar resistive switching in \(\text{ BiFeO }_{3}\) and \(\text{ Bi }_{0.8}\text{ Ca }_{0.2}\text{ FeO }_{3}\) films. J. Appl. Phys. 111(10), 104103 (2012)CrossRef
70.
Zurück zum Zitat Shirolkar, M.M., Hao, C., Dong, X., Guo, T., Zhang, L., Li, M., Wang, H.: Tunable multiferroic and bistable/complementary resistive switching properties of dilutely Li-doped \(\text{ BiFeO }_{3}\) nanoparticles: an effect of aliovalent substitution. Nanoscale 6(9), 4735–4744 (2014)CrossRef Shirolkar, M.M., Hao, C., Dong, X., Guo, T., Zhang, L., Li, M., Wang, H.: Tunable multiferroic and bistable/complementary resistive switching properties of dilutely Li-doped \(\text{ BiFeO }_{3}\) nanoparticles: an effect of aliovalent substitution. Nanoscale 6(9), 4735–4744 (2014)CrossRef
71.
Zurück zum Zitat Zhang, X.T., Yu, Q.X., Yao, Y.P., Li, X.G.: Ultrafast resistive switching in \(\text{ SrTiO }_{3}\): Nb single crystal. Appl. Phys. Lett. 97(22), 222117 (2010)CrossRef Zhang, X.T., Yu, Q.X., Yao, Y.P., Li, X.G.: Ultrafast resistive switching in \(\text{ SrTiO }_{3}\): Nb single crystal. Appl. Phys. Lett. 97(22), 222117 (2010)CrossRef
72.
Zurück zum Zitat Seong, D.J., Jo, M., Lee, D., Hwang, H.: HPHA effect on reversible resistive switching of Pt/Nb-Doped SrTiO3 schottky junction for nonvolatile memory application. Electrochem. Solid-State Lett. 10(6), H168–H170 (2007)CrossRef Seong, D.J., Jo, M., Lee, D., Hwang, H.: HPHA effect on reversible resistive switching of Pt/Nb-Doped SrTiO3 schottky junction for nonvolatile memory application. Electrochem. Solid-State Lett. 10(6), H168–H170 (2007)CrossRef
73.
Zurück zum Zitat Makarov, A., Sverdlov, V., Selberherr, S.: Stochastic model of the resistive switching mechanism in bipolar resistive random access memory: Monte Carlo simulations. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29(1), 01AD03 (2011) Makarov, A., Sverdlov, V., Selberherr, S.: Stochastic model of the resistive switching mechanism in bipolar resistive random access memory: Monte Carlo simulations. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 29(1), 01AD03 (2011)
74.
Zurück zum Zitat Lin, C.C., Lin, C.Y., Lin, M.H., Lin, C.H., Tseng, T.Y.: Voltage-polarity-independent and high-speed resistive switching properties of V-doped \(\text{ SrZrO }_{3}\) thin films. IEEE Trans. Electron Devices 54(12), 3146–3151 (2007)CrossRef Lin, C.C., Lin, C.Y., Lin, M.H., Lin, C.H., Tseng, T.Y.: Voltage-polarity-independent and high-speed resistive switching properties of V-doped \(\text{ SrZrO }_{3}\) thin films. IEEE Trans. Electron Devices 54(12), 3146–3151 (2007)CrossRef
75.
Zurück zum Zitat Chang, W.Z., Chu, J.P., Wang, S.F.: Resistive switching behavior of a thin amorphous rare-earth scandate: effects of oxygen content. Appl. Phys. Lett. 101(1), 012102-1–012102-4 (2012)CrossRef Chang, W.Z., Chu, J.P., Wang, S.F.: Resistive switching behavior of a thin amorphous rare-earth scandate: effects of oxygen content. Appl. Phys. Lett. 101(1), 012102-1–012102-4 (2012)CrossRef
76.
Zurück zum Zitat Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.: Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073–4075 (2004)CrossRef Sawa, A., Fujii, T., Kawasaki, M., Tokura, Y.: Hysteretic current–voltage characteristics and resistance switching at a rectifying Ti/Pr0.7Ca0.3MnO3 interface. Appl. Phys. Lett. 85(18), 4073–4075 (2004)CrossRef
77.
Zurück zum Zitat Sakamoto, T., Sunamura, H., Kawaura, H., Hasegawa, T., Nakayama, T., Aono, M.: Nanometer-scale switches using copper sulfide. Appl. Phys. Lett. 82(18), 3032–3034 (2003)CrossRef Sakamoto, T., Sunamura, H., Kawaura, H., Hasegawa, T., Nakayama, T., Aono, M.: Nanometer-scale switches using copper sulfide. Appl. Phys. Lett. 82(18), 3032–3034 (2003)CrossRef
78.
Zurück zum Zitat Rozenberg, M.J., Inoue, I.H., Sanchez, M.J.: Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92(17), 178302 (2004)CrossRef Rozenberg, M.J., Inoue, I.H., Sanchez, M.J.: Nonvolatile memory with multilevel switching: a basic model. Phys. Rev. Lett. 92(17), 178302 (2004)CrossRef
79.
Zurück zum Zitat Symanczyk, R., Dittrich, R., Keller, J., Kund, M., Muller, G., Ruf, B., Albarede, P. H., Bournat, S., Bouteille, L., Duch, A.: In: Proceedings of Non-Volatile Memory Technology Symposium, p. 71 (2007) Symanczyk, R., Dittrich, R., Keller, J., Kund, M., Muller, G., Ruf, B., Albarede, P. H., Bournat, S., Bouteille, L., Duch, A.: In: Proceedings of Non-Volatile Memory Technology Symposium, p. 71 (2007)
80.
Zurück zum Zitat d’Acapito, F., Souchier, E., Noé, P., Blaise, P., Bernard, M., Jousseaume, V.: Role of Sb dopant in Ag: \(\text{ GeS }_{{\rm x}}\)-based conducting bridge random access memories. Phys. Status Solidi (a) 213(2), 311–315 (2016)CrossRef d’Acapito, F., Souchier, E., Noé, P., Blaise, P., Bernard, M., Jousseaume, V.: Role of Sb dopant in Ag: \(\text{ GeS }_{{\rm x}}\)-based conducting bridge random access memories. Phys. Status Solidi (a) 213(2), 311–315 (2016)CrossRef
81.
Zurück zum Zitat Morales-Masis, M., Van der Molen, S.J., Fu, W.T., Hesselberth, M.B., Van Ruitenbeek, J.M.: Conductance switching in \(\text{ Ag }_{2}\text{ S }\) devices fabricated by in situ sulfurization. Nanotechnology 20(9), 095710 (2009)CrossRef Morales-Masis, M., Van der Molen, S.J., Fu, W.T., Hesselberth, M.B., Van Ruitenbeek, J.M.: Conductance switching in \(\text{ Ag }_{2}\text{ S }\) devices fabricated by in situ sulfurization. Nanotechnology 20(9), 095710 (2009)CrossRef
82.
Zurück zum Zitat Tamura, T., Hasegawa, T., Terabe, K., Nakayama, T., Sakamoto, T., Sunamura, H., Kawaura, H., Hosaka, S., Aono, M.: Switching property of atomic switch controlled by solid electrochemical reaction. Jpn. J. Appl. Phys. 45(4L), L364 (2006)CrossRef Tamura, T., Hasegawa, T., Terabe, K., Nakayama, T., Sakamoto, T., Sunamura, H., Kawaura, H., Hosaka, S., Aono, M.: Switching property of atomic switch controlled by solid electrochemical reaction. Jpn. J. Appl. Phys. 45(4L), L364 (2006)CrossRef
83.
Zurück zum Zitat Kim, H.D., An, H.M., Hong, S.M., Kim, T.G.: Unipolar resistive switching phenomena in fully transparent SiN-based memory cells. Semicond. Sci. Technol. 27(12), 125020 (2012)CrossRef Kim, H.D., An, H.M., Hong, S.M., Kim, T.G.: Unipolar resistive switching phenomena in fully transparent SiN-based memory cells. Semicond. Sci. Technol. 27(12), 125020 (2012)CrossRef
84.
Zurück zum Zitat Kim, H.D., An, H.M., Hong, S.M., Kim, T.G.: Forming-free SiN-based resistive switching memory prepared by RF sputtering. Phys. Status Solidi (a) 210(9), 1822–1827 (2013) Kim, H.D., An, H.M., Hong, S.M., Kim, T.G.: Forming-free SiN-based resistive switching memory prepared by RF sputtering. Phys. Status Solidi (a) 210(9), 1822–1827 (2013)
85.
Zurück zum Zitat Kim, H.D., An, H.-M., Lee, E.B., Kim, T.G.: Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices. IEEE Trans. Device 58(10), 3566–3573 (2011)CrossRef Kim, H.D., An, H.-M., Lee, E.B., Kim, T.G.: Stable bipolar resistive switching characteristics and resistive switching mechanisms observed in aluminum nitride-based ReRAM devices. IEEE Trans. Device 58(10), 3566–3573 (2011)CrossRef
86.
Zurück zum Zitat Lei, B., Kwan, W.L., Shao, Y., Yang, Y.: Statistical characterization of the memory effect in polyfluorene based non-volatile resistive memory devices. Org. Electron. 10(6), 1048–1053 (2009)CrossRef Lei, B., Kwan, W.L., Shao, Y., Yang, Y.: Statistical characterization of the memory effect in polyfluorene based non-volatile resistive memory devices. Org. Electron. 10(6), 1048–1053 (2009)CrossRef
87.
Zurück zum Zitat Baek, S., Lee, D., Kim, J., Hong, S.H., Kim, O., Ree, M.: Novel digital nonvolatile memory devices based on semiconducting polymer thin films. Adv. Funct. Mater. 17(15), 2637–2644 (2007)CrossRef Baek, S., Lee, D., Kim, J., Hong, S.H., Kim, O., Ree, M.: Novel digital nonvolatile memory devices based on semiconducting polymer thin films. Adv. Funct. Mater. 17(15), 2637–2644 (2007)CrossRef
88.
Zurück zum Zitat Lee, D., Baek, S., Ree, M., Kim, O.: Effect of the electrode material on the electrical-switching characteristics of nonvolatile memory devices based on poly (o-anthranilic acid) thin films. IEEE Electron Device Lett. 29(7), 694–697 (2008)CrossRef Lee, D., Baek, S., Ree, M., Kim, O.: Effect of the electrode material on the electrical-switching characteristics of nonvolatile memory devices based on poly (o-anthranilic acid) thin films. IEEE Electron Device Lett. 29(7), 694–697 (2008)CrossRef
89.
Zurück zum Zitat Ha, H., Kim, O.: Bipolar switching characteristics of nonvolatile memory devices based on poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) thin film. Appl. Phys. Lett. 93(3), 265 (2008)MathSciNetCrossRef Ha, H., Kim, O.: Bipolar switching characteristics of nonvolatile memory devices based on poly (3, 4-ethylenedioxythiophene): poly (styrenesulfonate) thin film. Appl. Phys. Lett. 93(3), 265 (2008)MathSciNetCrossRef
90.
Zurück zum Zitat Kim, M., Kim, O.: Unipolar resistance switching in polymeric resistance random access memories. Jpn. J. Appl. Phys. 48(6S), 06FD02 (2009) Kim, M., Kim, O.: Unipolar resistance switching in polymeric resistance random access memories. Jpn. J. Appl. Phys. 48(6S), 06FD02 (2009)
91.
Zurück zum Zitat Kuang, Y., Huang, R., Tang, Y., Ding, W., Zhang, L., Wang, Y.: Flexible single-component-polymer resistive memory for ultrafast and highly compatible nonvolatile memory applications. IEEE Electron Device Lett. 31(7), 758–760 (2010)CrossRef Kuang, Y., Huang, R., Tang, Y., Ding, W., Zhang, L., Wang, Y.: Flexible single-component-polymer resistive memory for ultrafast and highly compatible nonvolatile memory applications. IEEE Electron Device Lett. 31(7), 758–760 (2010)CrossRef
92.
Zurück zum Zitat Huang, R., Tang, Y., Kuang, Y., Ding, W., Zhang, L., Wang, Y.: Resistive switching in organic memory device based on parylene-C with highly compatible process for high-density and low-cost memory applications. IEEE Trans. Electron Devices 59(12), 3578–3582 (2012)CrossRef Huang, R., Tang, Y., Kuang, Y., Ding, W., Zhang, L., Wang, Y.: Resistive switching in organic memory device based on parylene-C with highly compatible process for high-density and low-cost memory applications. IEEE Trans. Electron Devices 59(12), 3578–3582 (2012)CrossRef
93.
Zurück zum Zitat Lai, Y.C., Wang, D.Y., Huang, I.S., Chen, Y.T., Hsu, Y.H., Lin, T.Y., Meng, H.F., Chang, T.C., Yang, Y.J., Chen, C.C., Hsu, F.C., Chen, Y.F.: Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. J. Mater. Chem. C 1(3), 552–559 (2013)CrossRef Lai, Y.C., Wang, D.Y., Huang, I.S., Chen, Y.T., Hsu, Y.H., Lin, T.Y., Meng, H.F., Chang, T.C., Yang, Y.J., Chen, C.C., Hsu, F.C., Chen, Y.F.: Low operation voltage macromolecular composite memory assisted by graphene nanoflakes. J. Mater. Chem. C 1(3), 552–559 (2013)CrossRef
94.
Zurück zum Zitat ChandraKishore, S., Pandurangan, A.: Facile synthesis of carbon nanotubes and their use in the fabrication of resistive switching memory devices. RSC Adv. 4(20), 9905–9911 (2014)CrossRef ChandraKishore, S., Pandurangan, A.: Facile synthesis of carbon nanotubes and their use in the fabrication of resistive switching memory devices. RSC Adv. 4(20), 9905–9911 (2014)CrossRef
95.
Zurück zum Zitat Hui, F., Grustan-Gutierrez, E., Long, S., Liu, Q., Ott, A.K., Ferrari, A.C., Lanza, M.: Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 1600195 (2017) Hui, F., Grustan-Gutierrez, E., Long, S., Liu, Q., Ott, A.K., Ferrari, A.C., Lanza, M.: Graphene and related materials for resistive random access memories. Adv. Electron. Mater. 1600195 (2017)
96.
Zurück zum Zitat Puglisi, F.M., Larcher, L., Pan, C., Xiao, N., Shi, Y., Hui, F., Lanza, M.: 2D h-BN based RRAM devices. In: Electron Devices Meeting (IEDM), 2016 IEEE International, pp. 34-8 (2016) Puglisi, F.M., Larcher, L., Pan, C., Xiao, N., Shi, Y., Hui, F., Lanza, M.: 2D h-BN based RRAM devices. In: Electron Devices Meeting (IEDM), 2016 IEEE International, pp. 34-8 (2016)
97.
Zurück zum Zitat Xie, X., Puglisi, F.M., Larcher, L., Miranda, E., Jiang, L., Shi, Y., Valov, I., McIntyre, P.C., Waser, R., Lanza, M.: Coexistence of grainboundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27(10), 1604811 (2017)CrossRef Xie, X., Puglisi, F.M., Larcher, L., Miranda, E., Jiang, L., Shi, Y., Valov, I., McIntyre, P.C., Waser, R., Lanza, M.: Coexistence of grainboundaries-assisted bipolar and threshold resistive switching in multilayer hexagonal boron nitride. Adv. Funct. Mater. 27(10), 1604811 (2017)CrossRef
98.
Zurück zum Zitat Hu, B., Quhe, R., Chen, C., Zhuge, F., Zhu, X., Peng, S., Chen, X., Pan, L., Wu, Y., Zheng, W., Yan, Q., Lu, J., Li, R.W.: Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. J. Mater. Chem. 22(32), 16422–16430 (2012)CrossRef Hu, B., Quhe, R., Chen, C., Zhuge, F., Zhu, X., Peng, S., Chen, X., Pan, L., Wu, Y., Zheng, W., Yan, Q., Lu, J., Li, R.W.: Electrically controlled electron transfer and resistance switching in reduced graphene oxide noncovalently functionalized with thionine. J. Mater. Chem. 22(32), 16422–16430 (2012)CrossRef
99.
Zurück zum Zitat Jin, C., Lee, J., Lee, E., Hwang, E., Lee, H.: Nonvolatile resistive memory of ferrocene covalently bonded to reduced graphene oxide. Chem. Commun. 48(35), 4235–4237 (2012)CrossRef Jin, C., Lee, J., Lee, E., Hwang, E., Lee, H.: Nonvolatile resistive memory of ferrocene covalently bonded to reduced graphene oxide. Chem. Commun. 48(35), 4235–4237 (2012)CrossRef
100.
Zurück zum Zitat He, C.L., Zhuge, F., Zhou, X.F., Li, M., Zhou, G.C., Liu, Y.W., Wang, J.Z., Chen, B., Su, W.J., Liu, Z.P., Wu, Y.H., Ciu, P., Li, R.W.: Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95(23), 232101 (2009)CrossRef He, C.L., Zhuge, F., Zhou, X.F., Li, M., Zhou, G.C., Liu, Y.W., Wang, J.Z., Chen, B., Su, W.J., Liu, Z.P., Wu, Y.H., Ciu, P., Li, R.W.: Nonvolatile resistive switching in graphene oxide thin films. Appl. Phys. Lett. 95(23), 232101 (2009)CrossRef
101.
Zurück zum Zitat Zhuge, F., Hu, B., He, C., Zhou, X., Liu, Z., Li, R.W.: Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49(12), 3796–3802 (2011)CrossRef Zhuge, F., Hu, B., He, C., Zhou, X., Liu, Z., Li, R.W.: Mechanism of nonvolatile resistive switching in graphene oxide thin films. Carbon 49(12), 3796–3802 (2011)CrossRef
102.
Zurück zum Zitat Pradhan, A.K., Pradhan, S., Mundle, R., Xiao, B.: Graphene oxide and ZnO/Al: ZnO based transparent resistive switching devices for memristor applications. In: Meeting Abstracts (No. 16, pp. 1494–1494). The Electrochemical Society (2016) Pradhan, A.K., Pradhan, S., Mundle, R., Xiao, B.: Graphene oxide and ZnO/Al: ZnO based transparent resistive switching devices for memristor applications. In: Meeting Abstracts (No. 16, pp. 1494–1494). The Electrochemical Society (2016)
103.
Zurück zum Zitat Liu, J., Zeng, Z., Cao, X., Lu, G., Wang, L.H., Fan, Q.L., Huang, W., Zhang, H.: Preparation of \(\text{ MoS }_{2}\)-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 8(22), 3517–3522 (2012)CrossRef Liu, J., Zeng, Z., Cao, X., Lu, G., Wang, L.H., Fan, Q.L., Huang, W., Zhang, H.: Preparation of \(\text{ MoS }_{2}\)-polyvinylpyrrolidone nanocomposites for flexible nonvolatile rewritable memory devices with reduced graphene oxide electrodes. Small 8(22), 3517–3522 (2012)CrossRef
104.
Zurück zum Zitat Xu, X.Y., Yin, Z.Y., Xu, C.X., Dai, J., Hu, J.G.: Resistive switching memories in \(\text{ MoS }_{2}\) nanosphere assemblies. Appl. Phys. Lett. 104(3), 033504 (2014)CrossRef Xu, X.Y., Yin, Z.Y., Xu, C.X., Dai, J., Hu, J.G.: Resistive switching memories in \(\text{ MoS }_{2}\) nanosphere assemblies. Appl. Phys. Lett. 104(3), 033504 (2014)CrossRef
105.
Zurück zum Zitat Sun, B., Zhao, W., Liu, Y., Chen, P.: Resistive switching effect of \(\text{ Ag }/\text{ MoS }_{2}/\text{ FTO }\) device. Funct. Mater. Lett. 8(01), 1550010 (2015)CrossRef Sun, B., Zhao, W., Liu, Y., Chen, P.: Resistive switching effect of \(\text{ Ag }/\text{ MoS }_{2}/\text{ FTO }\) device. Funct. Mater. Lett. 8(01), 1550010 (2015)CrossRef
106.
Zurück zum Zitat Villena, M.A., Jimenez-Molinos, F., Roldán, J.B., Suñé, J., Long, S., Lian, X., Gámiz, F., Liu, M.: An in-depth simulation study of thermal reset transitions in resistive switching memories. J. Appl. Phys. 114(14), 144505 (2013)CrossRef Villena, M.A., Jimenez-Molinos, F., Roldán, J.B., Suñé, J., Long, S., Lian, X., Gámiz, F., Liu, M.: An in-depth simulation study of thermal reset transitions in resistive switching memories. J. Appl. Phys. 114(14), 144505 (2013)CrossRef
107.
Zurück zum Zitat Villena, M.A., González, M.B., Jimenez-Molinos, F., Campabadal, F., Roldán, J.B., Suñé, J., Romera, E., Miranda, E.: Simulation of thermal transitions in resistive switching memories including quantum effects. J. Appl. Phys. 115(21), 214504 (2014)CrossRef Villena, M.A., González, M.B., Jimenez-Molinos, F., Campabadal, F., Roldán, J.B., Suñé, J., Romera, E., Miranda, E.: Simulation of thermal transitions in resistive switching memories including quantum effects. J. Appl. Phys. 115(21), 214504 (2014)CrossRef
108.
Zurück zum Zitat Pengxiao, S., Su, L., Ling, L., Ming, L.: Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM. J. Semicond. 35(10), 104007 (2014)CrossRef Pengxiao, S., Su, L., Ling, L., Ming, L.: Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM. J. Semicond. 35(10), 104007 (2014)CrossRef
109.
Zurück zum Zitat Ielmini, D.: Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31(6), 063002 (2016)CrossRef Ielmini, D.: Resistive switching memories based on metal oxides: mechanisms, reliability and scaling. Semicond. Sci. Technol. 31(6), 063002 (2016)CrossRef
110.
Zurück zum Zitat Choi, D., Lee, D., Sim, H., Chang, M., Hwang, H.: Reversible resistive switching of \(\text{ SrTiO }_{{\rm x}}\) thin films for nonvolatile memory applications. Appl. Phys. Lett. 88(8), 082904 (2006)CrossRef Choi, D., Lee, D., Sim, H., Chang, M., Hwang, H.: Reversible resistive switching of \(\text{ SrTiO }_{{\rm x}}\) thin films for nonvolatile memory applications. Appl. Phys. Lett. 88(8), 082904 (2006)CrossRef
111.
Zurück zum Zitat Ismail, M., Huang, C.Y., Panda, D., Hung, C.J., Tsai, T.L., Jieng, J.H., Lin, C.A., Chand, U., Rana, A.M., Ahmed, E., Talib, I., Nadeem, M.Y., Tseng, T.Y.: Forming-free bipolar resistive switching in nonstoichiometric ceria films. Nanoscale Res. Lett. 9(1), 45 (2014)CrossRef Ismail, M., Huang, C.Y., Panda, D., Hung, C.J., Tsai, T.L., Jieng, J.H., Lin, C.A., Chand, U., Rana, A.M., Ahmed, E., Talib, I., Nadeem, M.Y., Tseng, T.Y.: Forming-free bipolar resistive switching in nonstoichiometric ceria films. Nanoscale Res. Lett. 9(1), 45 (2014)CrossRef
112.
Zurück zum Zitat Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization. In: Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE (2011) Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: physical modeling, Monte Carlo simulation, and experimental characterization. In: Electron Devices Meeting (IEDM), 2011 IEEE International. IEEE (2011)
113.
Zurück zum Zitat Huang, Y.J., Chao, S.C., Lien, D.H., He, J.H., Lee, S.C.: Dual-functional memory and threshold resistive switching based on the push-pull mechanism of oxygen ions. Sci. Rep. 6, 23945 (2016)CrossRef Huang, Y.J., Chao, S.C., Lien, D.H., He, J.H., Lee, S.C.: Dual-functional memory and threshold resistive switching based on the push-pull mechanism of oxygen ions. Sci. Rep. 6, 23945 (2016)CrossRef
114.
Zurück zum Zitat Guan, W., Long, S., Liu, Q., Liu, M., Wang, W.: Nonpolar nonvolatile resistive switching in Cu doped \(\text{ ZrO }_{2}\). IEEE Electron Device Lett. 29(5), 434–437 (2008)CrossRef Guan, W., Long, S., Liu, Q., Liu, M., Wang, W.: Nonpolar nonvolatile resistive switching in Cu doped \(\text{ ZrO }_{2}\). IEEE Electron Device Lett. 29(5), 434–437 (2008)CrossRef
115.
Zurück zum Zitat Liu, X., Ji, Z., Tu, D., Shang, L., Liu, J., Liu, M., Xie, C.: Organic nonpolar nonvolatile resistive switching in poly (3, 4-ethylene-dioxythiophene): polystyrenesulfonate thin film. Org. Electron. 10(6), 1191–1194 (2009)CrossRef Liu, X., Ji, Z., Tu, D., Shang, L., Liu, J., Liu, M., Xie, C.: Organic nonpolar nonvolatile resistive switching in poly (3, 4-ethylene-dioxythiophene): polystyrenesulfonate thin film. Org. Electron. 10(6), 1191–1194 (2009)CrossRef
116.
Zurück zum Zitat Du, G., Chen, Z., Mao, Q., Ji, Z.: Stable nonpolar resistive switching characteristics in Cu/Cu-dispersed \(\text{ ZrO }_{2}/\text{ Pt }\) memory devices. Appl. Phys. Lett. 110(9), 093507 (2017)CrossRef Du, G., Chen, Z., Mao, Q., Ji, Z.: Stable nonpolar resistive switching characteristics in Cu/Cu-dispersed \(\text{ ZrO }_{2}/\text{ Pt }\) memory devices. Appl. Phys. Lett. 110(9), 093507 (2017)CrossRef
117.
Zurück zum Zitat Peng, H.Y., Li, Y.F., Lin, W.N., Wang, Y.Z., Gao, X.Y., Wu, T.: Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation. Sci. Rep. 2, 442 (2012)CrossRef Peng, H.Y., Li, Y.F., Lin, W.N., Wang, Y.Z., Gao, X.Y., Wu, T.: Deterministic conversion between memory and threshold resistive switching via tuning the strong electron correlation. Sci. Rep. 2, 442 (2012)CrossRef
118.
Zurück zum Zitat Baek, Y.J., Hu, Q., Yoo, J.W., Choi, Y.J., Kang, C.J., Lee, H.H., Min, S.H., Kim, H.M., Kim, K.B., Yoon, T.S.: Tunable threshold resistive switching characteristics of \(\text{ Pt }-\text{ Fe }_{2}\text{ O }_{3}\) core-shell nanoparticle assembly by space charge effect. Nanoscale 5(2), 772–779 (2013)CrossRef Baek, Y.J., Hu, Q., Yoo, J.W., Choi, Y.J., Kang, C.J., Lee, H.H., Min, S.H., Kim, H.M., Kim, K.B., Yoon, T.S.: Tunable threshold resistive switching characteristics of \(\text{ Pt }-\text{ Fe }_{2}\text{ O }_{3}\) core-shell nanoparticle assembly by space charge effect. Nanoscale 5(2), 772–779 (2013)CrossRef
119.
Zurück zum Zitat Lanza, M.: A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope. Materials 7(3), 2155–2182 (2014)CrossRef Lanza, M.: A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope. Materials 7(3), 2155–2182 (2014)CrossRef
120.
Zurück zum Zitat Shi, Y., Ji, Y., Hui, F., Nafria, M., Porti, M., Bersuker, G., Lanza, M.: In situ demonstration of the link between mechanical strength and resistive switching in resistive random-access memories. Adv. Electron. Mater. 1(4), 1400058 (2015)CrossRef Shi, Y., Ji, Y., Hui, F., Nafria, M., Porti, M., Bersuker, G., Lanza, M.: In situ demonstration of the link between mechanical strength and resistive switching in resistive random-access memories. Adv. Electron. Mater. 1(4), 1400058 (2015)CrossRef
121.
Zurück zum Zitat Kiguchi, M., Ohto, T., Fujii, S., Sugiyasu, K., Nakajima, S., Takeuchi, M., Nakamura, H.: Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length. J. Am. Chem. Soc. 136(20), 7327–7332 (2014)CrossRef Kiguchi, M., Ohto, T., Fujii, S., Sugiyasu, K., Nakajima, S., Takeuchi, M., Nakamura, H.: Single molecular resistive switch obtained via sliding multiple anchoring points and varying effective wire length. J. Am. Chem. Soc. 136(20), 7327–7332 (2014)CrossRef
122.
Zurück zum Zitat Lanza, M., Zhang, K., Porti, M., Nafria, M., Shen, Z.Y., Liu, L.F., Kang, J.F., Gilmer, D., Bersuker, G.: Grain boundaries as preferential sites for resistive switching in the \(\text{ HfO }_{2}\) resistive random access memory structures. Appl. Phys. Lett. 100(12), 123508 (2012)CrossRef Lanza, M., Zhang, K., Porti, M., Nafria, M., Shen, Z.Y., Liu, L.F., Kang, J.F., Gilmer, D., Bersuker, G.: Grain boundaries as preferential sites for resistive switching in the \(\text{ HfO }_{2}\) resistive random access memory structures. Appl. Phys. Lett. 100(12), 123508 (2012)CrossRef
123.
Zurück zum Zitat Lanza, M., Bersuker, G., Porti, M., Miranda, E., Nafría, M., Aymerich, X.: Resistive switching in hafnium dioxide layers: local phenomenon at grain boundaries. Appl. Phys. Lett. 101(19), 193502 (2012)CrossRef Lanza, M., Bersuker, G., Porti, M., Miranda, E., Nafría, M., Aymerich, X.: Resistive switching in hafnium dioxide layers: local phenomenon at grain boundaries. Appl. Phys. Lett. 101(19), 193502 (2012)CrossRef
124.
Zurück zum Zitat Lanza, M.: Conductive Atomic Force Microscopy. Wiley, New York. ISBN: 978-3-527-34091-0 (2017) Lanza, M.: Conductive Atomic Force Microscopy. Wiley, New York. ISBN: 978-3-527-34091-0 (2017)
125.
Zurück zum Zitat Xiao, N., Villena, M.A., Yuan, B., Chen, S., Wang, B., Eliáš, M., Shi, Y., Hui, F., Jing, X., Scheuermann, A., Tang, K., McIntyre, P.C., Lanza, M.: Resistive random access memory cells with a bilayer TiO\(_2\)/SiO\(_{\rm X}\) insulating stack for simultaneous filamentary and distributed resistive switching. Adv. Funct. Mater. 27(19), 1700384 (2017)CrossRef Xiao, N., Villena, M.A., Yuan, B., Chen, S., Wang, B., Eliáš, M., Shi, Y., Hui, F., Jing, X., Scheuermann, A., Tang, K., McIntyre, P.C., Lanza, M.: Resistive random access memory cells with a bilayer TiO\(_2\)/SiO\(_{\rm X}\) insulating stack for simultaneous filamentary and distributed resistive switching. Adv. Funct. Mater. 27(19), 1700384 (2017)CrossRef
126.
Zurück zum Zitat Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Surf. Sci. 126(1–3), 236–244 (1983)CrossRef Binnig, G., Rohrer, H.: Scanning tunneling microscopy. Surf. Sci. 126(1–3), 236–244 (1983)CrossRef
127.
Zurück zum Zitat Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Physical Review B, 31(2), 805 (1985) Tersoff, J., Hamann, D.R.: Theory of the scanning tunneling microscope. Physical Review B, 31(2), 805 (1985)
128.
Zurück zum Zitat Yang, Y., Gao, P., Li, L., Pan, X., Tappertzhofen, S., Choi, S., Waser, R., Valov, I., Lu, W.D.: Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014) Yang, Y., Gao, P., Li, L., Pan, X., Tappertzhofen, S., Choi, S., Waser, R., Valov, I., Lu, W.D.: Electrochemical dynamics of nanoscale metallic inclusions in dielectrics. Nat. Commun. 5, 4232 (2014)
129.
Zurück zum Zitat Tung, C.H., Pey, K.L., Ranjan, R., Tang, L.J., Ang, D.S.: Nanometal-oxide-semiconductor field-effect-transistor contact and gate silicide instability during gate dielectric breakdown. Appl. Phys. Lett. 89(22), 221902 (2006)CrossRef Tung, C.H., Pey, K.L., Ranjan, R., Tang, L.J., Ang, D.S.: Nanometal-oxide-semiconductor field-effect-transistor contact and gate silicide instability during gate dielectric breakdown. Appl. Phys. Lett. 89(22), 221902 (2006)CrossRef
130.
Zurück zum Zitat Valov, Ilia: Redox-based resistive switching memories (ReRAMs): electrochemical systems at the atomic scale. ChemElectroChem 1(1), 26–36 (2014)CrossRef Valov, Ilia: Redox-based resistive switching memories (ReRAMs): electrochemical systems at the atomic scale. ChemElectroChem 1(1), 26–36 (2014)CrossRef
131.
Zurück zum Zitat Schindler, C., Meier, M., Waser, R., Kozicki, M.N.: Resistive switching in Ag-Ge-Se with extremely low write currents. In: Non-Volatile Memory Technology Symposium, 2007. NVMTS’07, pp. 82–85. IEEE Schindler, C., Meier, M., Waser, R., Kozicki, M.N.: Resistive switching in Ag-Ge-Se with extremely low write currents. In: Non-Volatile Memory Technology Symposium, 2007. NVMTS’07, pp. 82–85. IEEE
132.
Zurück zum Zitat Schindler, C.: Resistive switching in electrochemical metallization memory cells. Ph.D. Dissertation, RWTH Aachen Univ., Aachen, Germany (2009) Schindler, C.: Resistive switching in electrochemical metallization memory cells. Ph.D. Dissertation, RWTH Aachen Univ., Aachen, Germany (2009)
133.
Zurück zum Zitat Kamalanathan, D., Russo, U., Ielmini, D., ozicki, M.N.: Voltage-driven on-off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron Device Lett. 30(5), 553–555 (2009)CrossRef Kamalanathan, D., Russo, U., Ielmini, D., ozicki, M.N.: Voltage-driven on-off transition and tradeoff with program and erase current in programmable metallization cell (PMC) memory. IEEE Electron Device Lett. 30(5), 553–555 (2009)CrossRef
134.
Zurück zum Zitat Aono, M., Hasegawa, T.: The atomic switch. Proc. IEEE 98(12), 2228–2236 (2010)CrossRef Aono, M., Hasegawa, T.: The atomic switch. Proc. IEEE 98(12), 2228–2236 (2010)CrossRef
135.
Zurück zum Zitat Ielmini, D., Nardi, F., Cagli, C.: Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 22(25), 254022 (2011)CrossRef Ielmini, D., Nardi, F., Cagli, C.: Physical models of size-dependent nanofilament formation and rupture in NiO resistive switching memories. Nanotechnology 22(25), 254022 (2011)CrossRef
136.
Zurück zum Zitat Lian, X., Lanza, M., Rodríguez, A., Miranda E., Suñé, J.: On the properties of conducting filament in ReRAM. In: 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, pp. 1–4 (2014) Lian, X., Lanza, M., Rodríguez, A., Miranda E., Suñé, J.: On the properties of conducting filament in ReRAM. In: 2014 12th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, pp. 1–4 (2014)
137.
Zurück zum Zitat Gibbons, J.F., Beadle, W.E.: Switching properties of thin NiO films. Solid-State Electron. 7(11), 785–790 (1964)CrossRef Gibbons, J.F., Beadle, W.E.: Switching properties of thin NiO films. Solid-State Electron. 7(11), 785–790 (1964)CrossRef
138.
Zurück zum Zitat Villena, M.A., Roldán, J.B., Jimenez-Molinos, F., Suñé, J., Long, S., Miranda, E., Liu, M.: A comprehensive analysis on progressive reset transitions in RRAMs. J. Phys. D Appl. Phys. 47(20), 205102 (2014)CrossRef Villena, M.A., Roldán, J.B., Jimenez-Molinos, F., Suñé, J., Long, S., Miranda, E., Liu, M.: A comprehensive analysis on progressive reset transitions in RRAMs. J. Phys. D Appl. Phys. 47(20), 205102 (2014)CrossRef
139.
Zurück zum Zitat Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 193–200 (2009)CrossRef Russo, U., Ielmini, D., Cagli, C., Lacaita, A.L.: Self-accelerated thermal dissolution model for reset programming in unipolar resistive-switching memory (RRAM) devices. IEEE Trans. Electron Devices 56(2), 193–200 (2009)CrossRef
140.
Zurück zum Zitat Ielmini, D., Waser, R.: Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Wiley, New York (2015) Ielmini, D., Waser, R.: Resistive Switching: From Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Wiley, New York (2015)
141.
Zurück zum Zitat Pan, F., Yin, S., Subramanian, V.: A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. IEEE Electron Device Lett. 32(7), 949–951 (2011)CrossRef Pan, F., Yin, S., Subramanian, V.: A detailed study of the forming stage of an electrochemical resistive switching memory by KMC simulation. IEEE Electron Device Lett. 32(7), 949–951 (2011)CrossRef
142.
Zurück zum Zitat Pengxiao, S., Su, L., Ling, L., Ming, L.: Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM. J. Semicond. 35(10), 104007 (2014)CrossRef Pengxiao, S., Su, L., Ling, L., Ming, L.: Simulation study of conductive filament growth dynamics in oxide-electrolyte-based ReRAM. J. Semicond. 35(10), 104007 (2014)CrossRef
143.
Zurück zum Zitat Zhao, Y.D., Huang, P., Guo, Z.H., Lun, Z.Y., Gao, B., Liu, X.Y., Kang, J.F.: Atomic Monte-Carlo simulation for CBRAM with various filament geometries. In: 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 153–156. IEEE Zhao, Y.D., Huang, P., Guo, Z.H., Lun, Z.Y., Gao, B., Liu, X.Y., Kang, J.F.: Atomic Monte-Carlo simulation for CBRAM with various filament geometries. In: 2016 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD), pp. 153–156. IEEE
144.
Zurück zum Zitat Aldana, S., García-Fernández, P., Rodríguez-Fernández, A., Romero-Zaliz, R., González, M.B., Jiménez-Molinos, F., Campabadal, F., Gómez-Campos, F., Roldán, J.B.: A 3D kinetic Monte Carlo simulation study of resistive switching processes in Ni/HfO\(_2\)/Si-n+-based RRAMs. J. Phys. D Appl. Phys. 50(33), 335103 (2017)CrossRef Aldana, S., García-Fernández, P., Rodríguez-Fernández, A., Romero-Zaliz, R., González, M.B., Jiménez-Molinos, F., Campabadal, F., Gómez-Campos, F., Roldán, J.B.: A 3D kinetic Monte Carlo simulation study of resistive switching processes in Ni/HfO\(_2\)/Si-n+-based RRAMs. J. Phys. D Appl. Phys. 50(33), 335103 (2017)CrossRef
145.
Zurück zum Zitat Pan, F., Gao, S., Chen, C., Song, C., Zeng, F.: Recent progress in resistive random access memories: materials, switching mechanisms and performance. Mater. Sci. Eng. 83, 1–59 (2014)CrossRef Pan, F., Gao, S., Chen, C., Song, C., Zeng, F.: Recent progress in resistive random access memories: materials, switching mechanisms and performance. Mater. Sci. Eng. 83, 1–59 (2014)CrossRef
146.
Zurück zum Zitat Guy, J., Molas, G., Blaise, P., Bernard, M., Roule, A., Le Carval, G., Delaye, V., Toffoli, A., Ghibaudo, G., Clermidy, F., De Salvo, B., Perniola, L.: Investigation of forming, SET, and data retention of conductive-bridge random-access memory for stack optimization. IEEE Trans. Electron Devices 62(11), 3482–3489 (2015)CrossRef Guy, J., Molas, G., Blaise, P., Bernard, M., Roule, A., Le Carval, G., Delaye, V., Toffoli, A., Ghibaudo, G., Clermidy, F., De Salvo, B., Perniola, L.: Investigation of forming, SET, and data retention of conductive-bridge random-access memory for stack optimization. IEEE Trans. Electron Devices 62(11), 3482–3489 (2015)CrossRef
147.
Zurück zum Zitat Guan, X., Yu, S., Wong, H.S.P.: On the switching parameter variation of metal-oxide RRAM–Part I: physical modeling and simulation methodology. IEEE Trans. Electron Devices 59(4), 1172–1182 (2012)CrossRef Guan, X., Yu, S., Wong, H.S.P.: On the switching parameter variation of metal-oxide RRAM–Part I: physical modeling and simulation methodology. IEEE Trans. Electron Devices 59(4), 1172–1182 (2012)CrossRef
148.
Zurück zum Zitat Yu, S., Guan, X., Wong, H.S.P.: On the switching parameter variation of metal oxide RRAM–Part II: model corroboration and device design strategy. IEEE Trans. Electron Devices 59(4), 1183–1188 (2012)CrossRef Yu, S., Guan, X., Wong, H.S.P.: On the switching parameter variation of metal oxide RRAM–Part II: model corroboration and device design strategy. IEEE Trans. Electron Devices 59(4), 1183–1188 (2012)CrossRef
149.
Zurück zum Zitat Bocquet, M., Deleruyelle, D., Muller, C., Portal, J.M.: Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Appl. Phys. Lett. 98(26), 263507 (2011)CrossRef Bocquet, M., Deleruyelle, D., Muller, C., Portal, J.M.: Self-consistent physical modeling of set/reset operations in unipolar resistive-switching memories. Appl. Phys. Lett. 98(26), 263507 (2011)CrossRef
150.
Zurück zum Zitat Ielmini, D., Waser, R.: Resistive Switching, from Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Wiley-VCH, New York (2016)CrossRef Ielmini, D., Waser, R.: Resistive Switching, from Fundamentals of Nanoionic Redox Processes to Memristive Device Applications. Wiley-VCH, New York (2016)CrossRef
151.
Zurück zum Zitat Fang, X., Yang, X., Wu, J., Yi, X.: A compact SPICE model of unipolar memristive devices. IEEE Trans. Nanotechnol. 12(5), 843–850 (2013)CrossRef Fang, X., Yang, X., Wu, J., Yi, X.: A compact SPICE model of unipolar memristive devices. IEEE Trans. Nanotechnol. 12(5), 843–850 (2013)CrossRef
152.
Zurück zum Zitat Guan, X., Yu, S., Wong, H.S.P.: A SPICE compact model of metal oxide resistive switching memory with variations. IEEE Electron Device Lett. 33(10), 1405–1407 (2012)CrossRef Guan, X., Yu, S., Wong, H.S.P.: A SPICE compact model of metal oxide resistive switching memory with variations. IEEE Electron Device Lett. 33(10), 1405–1407 (2012)CrossRef
153.
Zurück zum Zitat Hsu, K.H., Ding, W.W., Chiang, M.H.: A compact SPICE model for bipolar resistive switching memory. In: 2013 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp. 1–2. IEEE (2013) Hsu, K.H., Ding, W.W., Chiang, M.H.: A compact SPICE model for bipolar resistive switching memory. In: 2013 IEEE International Conference of Electron Devices and Solid-State Circuits (EDSSC), pp. 1–2. IEEE (2013)
154.
Zurück zum Zitat Sheridan, P., Kim, K.H., Gaba, S., Chang, T., Chen, L., Lu, W.: Device and SPICE modeling of RRAM devices. Nanoscale 3(9), 3833–3840 (2011)CrossRef Sheridan, P., Kim, K.H., Gaba, S., Chang, T., Chen, L., Lu, W.: Device and SPICE modeling of RRAM devices. Nanoscale 3(9), 3833–3840 (2011)CrossRef
155.
Zurück zum Zitat Vourkas, I., Batsos, A., Sirakoulis, G.C.: SPICE modeling of nonlinear memristive behavior. Int. J. Circuit Theory Appl. 43(5), 553–565 (2015)CrossRef Vourkas, I., Batsos, A., Sirakoulis, G.C.: SPICE modeling of nonlinear memristive behavior. Int. J. Circuit Theory Appl. 43(5), 553–565 (2015)CrossRef
156.
Zurück zum Zitat Tang, K., Meng, A.C., Hui, F., Shi, Y., Petach, T., Hitzman, C., Koh, A.L., Goldhaber-Gordon, D., Lanza, M., McIntyre, P.C.: Distinguishing oxygen vacancy electromigration and conductive filament formation in \(\text{ TiO }_{2}\) resistance switching using liquid electrolyte contacts. Nano Lett. 17(7), 4390–4399 (2017)CrossRef Tang, K., Meng, A.C., Hui, F., Shi, Y., Petach, T., Hitzman, C., Koh, A.L., Goldhaber-Gordon, D., Lanza, M., McIntyre, P.C.: Distinguishing oxygen vacancy electromigration and conductive filament formation in \(\text{ TiO }_{2}\) resistance switching using liquid electrolyte contacts. Nano Lett. 17(7), 4390–4399 (2017)CrossRef
157.
Zurück zum Zitat Patterson, G.A., Rodriguez-Fernandez, A., Suñé, J., Miranda E., Cagli, C., Perniola, L.: SPICE simulation of 1T1R structures based on a logistic hysteresis operator. In: 2017 Spanish Conference on Electron Devices (CDE), Barcelona, pp. 1–4 (2017) Patterson, G.A., Rodriguez-Fernandez, A., Suñé, J., Miranda E., Cagli, C., Perniola, L.: SPICE simulation of 1T1R structures based on a logistic hysteresis operator. In: 2017 Spanish Conference on Electron Devices (CDE), Barcelona, pp. 1–4 (2017)
158.
Zurück zum Zitat Jiménez-Molinos, F., Villena, M.A., Roldán, J.B., Roldán, A.M.: A SPICE compact model for unipolar RRAM reset process analysis. IEEE Trans. Electron Devices 62(3), 955–962 (2015)CrossRef Jiménez-Molinos, F., Villena, M.A., Roldán, J.B., Roldán, A.M.: A SPICE compact model for unipolar RRAM reset process analysis. IEEE Trans. Electron Devices 62(3), 955–962 (2015)CrossRef
159.
Zurück zum Zitat Menzel, S., Böttger, U., Waser, R.: Simulation of multilevel switching in electrochemical metallization memory cells. J. Appl. Phys. 111(1), 014501 (2012)CrossRef Menzel, S., Böttger, U., Waser, R.: Simulation of multilevel switching in electrochemical metallization memory cells. J. Appl. Phys. 111(1), 014501 (2012)CrossRef
160.
Zurück zum Zitat González, G., Jiménez-Molinos, F., Roldán, J.B., González, M.B., Campabadal, F.: Transient SPICE simulation of \(\text{ Ni }/\text{ HfO }_{2}/\text{ Si }-\text{ n }^{+}\) resistive memories. In: 2016 Conference on Design of Circuits and Integrated Systems (DCIS), pp. 1–6. IEEE (2016) González, G., Jiménez-Molinos, F., Roldán, J.B., González, M.B., Campabadal, F.: Transient SPICE simulation of \(\text{ Ni }/\text{ HfO }_{2}/\text{ Si }-\text{ n }^{+}\) resistive memories. In: 2016 Conference on Design of Circuits and Integrated Systems (DCIS), pp. 1–6. IEEE (2016)
161.
Zurück zum Zitat González-Cordero, G., Roldan, J.B., Jiménez-Molinos, F., Suñé, J., Long, S., Liu, M.: A new model for bipolar RRAMs based on truncated cone conductive filaments, a Verilog-A approach. Semicond. Sci. Technol. 31, 115013 (2016)CrossRef González-Cordero, G., Roldan, J.B., Jiménez-Molinos, F., Suñé, J., Long, S., Liu, M.: A new model for bipolar RRAMs based on truncated cone conductive filaments, a Verilog-A approach. Semicond. Sci. Technol. 31, 115013 (2016)CrossRef
162.
Zurück zum Zitat Chen, P.Y., Yu, S.: Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices 62(12), 4022–4028 (2015)MathSciNetCrossRef Chen, P.Y., Yu, S.: Compact modeling of RRAM devices and its applications in 1T1R and 1S1R array design. IEEE Trans. Electron Devices 62(12), 4022–4028 (2015)MathSciNetCrossRef
163.
Zurück zum Zitat González-Cordero, G., Jiménez-Molinos, F., Roldán, J.B., González, M.B., Campabadal, F.: An in-depth study of the physics behind resistive switching in \(\text{ TiN }/\text{ Ti }/\text{ HfO }_{2}/\text{ W }\) structures. J. Vac. Sci. Technol. 35, 01A110 (2017)CrossRef González-Cordero, G., Jiménez-Molinos, F., Roldán, J.B., González, M.B., Campabadal, F.: An in-depth study of the physics behind resistive switching in \(\text{ TiN }/\text{ Ti }/\text{ HfO }_{2}/\text{ W }\) structures. J. Vac. Sci. Technol. 35, 01A110 (2017)CrossRef
164.
Zurück zum Zitat Ielmini, D., Cagli, C., Nardi, F.: Resistance transition in metal oxides induced by electronic threshold switching. Appl. Phys. Lett. 94(6), 063–511 (2009)CrossRef Ielmini, D., Cagli, C., Nardi, F.: Resistance transition in metal oxides induced by electronic threshold switching. Appl. Phys. Lett. 94(6), 063–511 (2009)CrossRef
165.
Zurück zum Zitat Yang, Y., Lu, W.: Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5(21), 10076–10092 (2013)CrossRef Yang, Y., Lu, W.: Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale 5(21), 10076–10092 (2013)CrossRef
166.
Zurück zum Zitat Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Shin, H., Kim, D.-W., Jung, C.U., Seo, S., Lee, M.-J., Noh, T.W.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20, 1154 (2008)CrossRef Chae, S.C., Lee, J.S., Kim, S., Lee, S.B., Chang, S.H., Liu, C., Kahng, B., Shin, H., Kim, D.-W., Jung, C.U., Seo, S., Lee, M.-J., Noh, T.W.: Random circuit breaker network model for unipolar resistance switching. Adv. Mater. 20, 1154 (2008)CrossRef
167.
Zurück zum Zitat Lee, J.S., Lee, S.B., Chang, S.H., Gao, L.G., Kang, B.S., Lee, M.J., Kim, C.J., Noh, T.W., Kahng, B.: Scaling theory for unipolar resistance switching. Phys. Rev. Lett. 105, 205701 (2010)CrossRef Lee, J.S., Lee, S.B., Chang, S.H., Gao, L.G., Kang, B.S., Lee, M.J., Kim, C.J., Noh, T.W., Kahng, B.: Scaling theory for unipolar resistance switching. Phys. Rev. Lett. 105, 205701 (2010)CrossRef
168.
Zurück zum Zitat Wan, H.J., Zhou, P., Ye, L., Lin, Y.Y., Tang, T.A., Wu, H.M., Chi, M.H.: In situ observation of compliance-current overshoot and its effect on resistive switching. IEEE Electron Device Lett. 31(3), 246–248 (2010)CrossRef Wan, H.J., Zhou, P., Ye, L., Lin, Y.Y., Tang, T.A., Wu, H.M., Chi, M.H.: In situ observation of compliance-current overshoot and its effect on resistive switching. IEEE Electron Device Lett. 31(3), 246–248 (2010)CrossRef
169.
Zurück zum Zitat Yu, S., Wong, H.-S.P.: Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron Devices 58(5), 1352–1360 (2011)CrossRef Yu, S., Wong, H.-S.P.: Compact modeling of conducting-bridge random-access memory (CBRAM). IEEE Trans. Electron Devices 58(5), 1352–1360 (2011)CrossRef
170.
Zurück zum Zitat Meyer, R., Schloss, L., Brewer, J., Lambertson, R., Kinney, W., Sanchez, J., Rinerson, D.: Oxide dual-layer memory element for scalable nonvolatile cross-point memory technology. In: Proceedings of NVSMW, pp. 54–58 (2008) Meyer, R., Schloss, L., Brewer, J., Lambertson, R., Kinney, W., Sanchez, J., Rinerson, D.: Oxide dual-layer memory element for scalable nonvolatile cross-point memory technology. In: Proceedings of NVSMW, pp. 54–58 (2008)
171.
Zurück zum Zitat Wang, S.Y., Huang, C.W., Lee, D.Y., Tseng, T.Y., Chang, T.C.: Multilevel resistive switching in \(\text{ Ti }/\text{ Cu }_{{\rm x}}\text{ O }/\text{ Pt }\) memory devices. J. Appl. Phys. 108(11), 114110 (2010)CrossRef Wang, S.Y., Huang, C.W., Lee, D.Y., Tseng, T.Y., Chang, T.C.: Multilevel resistive switching in \(\text{ Ti }/\text{ Cu }_{{\rm x}}\text{ O }/\text{ Pt }\) memory devices. J. Appl. Phys. 108(11), 114110 (2010)CrossRef
172.
Zurück zum Zitat Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309–4317 (2011)CrossRef Ielmini, D.: Modeling the universal set/reset characteristics of bipolar RRAM by field-and temperature-driven filament growth. IEEE Trans. Electron Devices 58(12), 4309–4317 (2011)CrossRef
173.
Zurück zum Zitat Atwood, G.: Future directions and challenges for ETox flash memory scaling. IEEE Trans. Device Mater. Reliab. 4(3), 301–305 (2004)CrossRef Atwood, G.: Future directions and challenges for ETox flash memory scaling. IEEE Trans. Device Mater. Reliab. 4(3), 301–305 (2004)CrossRef
174.
Zurück zum Zitat Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (1980) Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. Wiley, New York (1980)
175.
Zurück zum Zitat Bocquet, M., Deleruyelle, D., Aziza, H., Muller, C., Portal, J.M., Cabout, T., Jalaguier, E.: Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Devices 61(3), 674–681 (2014)CrossRef Bocquet, M., Deleruyelle, D., Aziza, H., Muller, C., Portal, J.M., Cabout, T., Jalaguier, E.: Robust compact model for bipolar oxide-based resistive switching memories. IEEE Trans. Electron Devices 61(3), 674–681 (2014)CrossRef
176.
Zurück zum Zitat Rottländer, P., Hehn, M., Schuhl, A.: Determining the interfacial barrier height and its relation to tunnel magnetoresistance. Phys. Rev. B 65(5), 054422 (2012)CrossRef Rottländer, P., Hehn, M., Schuhl, A.: Determining the interfacial barrier height and its relation to tunnel magnetoresistance. Phys. Rev. B 65(5), 054422 (2012)CrossRef
177.
Zurück zum Zitat Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54(8), 647–648 (1938)CrossRef Frenkel, J.: On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys. Rev. 54(8), 647–648 (1938)CrossRef
178.
Zurück zum Zitat Walczyk, C., Walczyk, D., Schroeder, T., Bertaud, T., Sowinska, M., Lukosius, M., Fraschke, M., Wolansky, D., Tillack, B., Miranda, E., Wenger, C.: Impact of temperature on the resistive switching behavior of embedded \(\text{ HfO }_{2}\)-based RRAM devices. IEEE Trans. Electron Devices 58(9), 3124–3131 (2011)CrossRef Walczyk, C., Walczyk, D., Schroeder, T., Bertaud, T., Sowinska, M., Lukosius, M., Fraschke, M., Wolansky, D., Tillack, B., Miranda, E., Wenger, C.: Impact of temperature on the resistive switching behavior of embedded \(\text{ HfO }_{2}\)-based RRAM devices. IEEE Trans. Electron Devices 58(9), 3124–3131 (2011)CrossRef
179.
Zurück zum Zitat Tsui, S., Baikalov, A., Cmaidalka, J., Sun, Y.Y., Wang, Y.Q., Xue, Y.Y.: Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 85(2), 317–319 (2004)CrossRef Tsui, S., Baikalov, A., Cmaidalka, J., Sun, Y.Y., Wang, Y.Q., Xue, Y.Y.: Field-induced resistive switching in metal-oxide interfaces. Appl. Phys. Lett. 85(2), 317–319 (2004)CrossRef
180.
Zurück zum Zitat Rose, A.: Space-charge-limited currents in solids. Phys. Rev. 97(6), 1538 (1955)CrossRef Rose, A.: Space-charge-limited currents in solids. Phys. Rev. 97(6), 1538 (1955)CrossRef
181.
Zurück zum Zitat Miranda, E.A., Walczyk, C., Wenger, C., Schroeder, T.: Model for the resistive switching effect in \(\text{ HfO }_{2}\) MIM structures based on the transmission properties of narrow constrictions. IEEE Electron Device Lett. 31(6), 609–611 (2010)CrossRef Miranda, E.A., Walczyk, C., Wenger, C., Schroeder, T.: Model for the resistive switching effect in \(\text{ HfO }_{2}\) MIM structures based on the transmission properties of narrow constrictions. IEEE Electron Device Lett. 31(6), 609–611 (2010)CrossRef
182.
Zurück zum Zitat Prócel, L.M., Trojman, L., Moreno, J., Crupi, F., Maccaronio, V., Degraeve, R., Goux, L., Simoen, E.: Experimental evidence of the quantum point contact theory in the conduction mechanism of bipolar \(\text{ HfO }_{2}\)-based resistive random access memories. J. Appl. Phys. 114(7), 074509 (2013)CrossRef Prócel, L.M., Trojman, L., Moreno, J., Crupi, F., Maccaronio, V., Degraeve, R., Goux, L., Simoen, E.: Experimental evidence of the quantum point contact theory in the conduction mechanism of bipolar \(\text{ HfO }_{2}\)-based resistive random access memories. J. Appl. Phys. 114(7), 074509 (2013)CrossRef
183.
Zurück zum Zitat Chen, Y.Y., Goux, L., Clima, S., Govoreanu, B., Degraeve, R., Kar, G.S., Fantini, A., Groeseneken, G., Wounters, D.J., Jurczak, M.: Endurance/retention trade-off on \(\text{ HfO }_{2}/\text{ metal }\) cap 1T1R bipolar RRAM. IEEE Trans. Electron Devices 60(3), 1114–1121 (2013)CrossRef Chen, Y.Y., Goux, L., Clima, S., Govoreanu, B., Degraeve, R., Kar, G.S., Fantini, A., Groeseneken, G., Wounters, D.J., Jurczak, M.: Endurance/retention trade-off on \(\text{ HfO }_{2}/\text{ metal }\) cap 1T1R bipolar RRAM. IEEE Trans. Electron Devices 60(3), 1114–1121 (2013)CrossRef
184.
Zurück zum Zitat Kim, H.D., Crupi, F., Lukosius, M., Trusch, A., Walczyk, C., Wenger, C.: Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 33(5), 052204 (2015) Kim, H.D., Crupi, F., Lukosius, M., Trusch, A., Walczyk, C., Wenger, C.: Resistive switching characteristics of integrated polycrystalline hafnium oxide based one transistor and one resistor devices fabricated by atomic vapor deposition methods. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 33(5), 052204 (2015)
185.
Zurück zum Zitat Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997) Datta, S.: Electronic Transport in Mesoscopic Systems. Cambridge University Press, Cambridge (1997)
186.
Zurück zum Zitat Tekman, E., Ciraci, S.: Theoretical study of transport through a quantum point contact. Phys. Rev. B Condens. Matter 43(9), 7145–7169 (1991)CrossRef Tekman, E., Ciraci, S.: Theoretical study of transport through a quantum point contact. Phys. Rev. B Condens. Matter 43(9), 7145–7169 (1991)CrossRef
187.
Zurück zum Zitat Miranda, E., Sune, J.: Analytic modeling of leakage current through multiple breakdown paths in \(\text{ SiO }_{2}\) films. In: Reliability Physics Symposium, 2001. Proceedings. 39th Annual. 2001 IEEE International, pp. 367–379. IEEE (2001) Miranda, E., Sune, J.: Analytic modeling of leakage current through multiple breakdown paths in \(\text{ SiO }_{2}\) films. In: Reliability Physics Symposium, 2001. Proceedings. 39th Annual. 2001 IEEE International, pp. 367–379. IEEE (2001)
188.
Zurück zum Zitat Lian, X., Long, S., Cagli, C., Buckley, J., Miranda, E., Liu, M., Suñé, J.: Quantum point contact model of filamentary conduction in resistive switching memories. In: 2012 13th International Conference on Ultimate Integration on Silicon (ULIS), pp. 101–104. IEEE (2012) Lian, X., Long, S., Cagli, C., Buckley, J., Miranda, E., Liu, M., Suñé, J.: Quantum point contact model of filamentary conduction in resistive switching memories. In: 2012 13th International Conference on Ultimate Integration on Silicon (ULIS), pp. 101–104. IEEE (2012)
189.
Zurück zum Zitat Long, S., Perniola, L., Cagli, C., Buckley, J., Lian, X., Miranda, E., Pan, F., Liu, M., Suñé, J.: Voltage and power-controlled regimes in the progressive unipolar RESET transition of \(\text{ HfO }_{2}\)-based RRAM. Sci. Rep. 3, 2929 (2013)CrossRef Long, S., Perniola, L., Cagli, C., Buckley, J., Lian, X., Miranda, E., Pan, F., Liu, M., Suñé, J.: Voltage and power-controlled regimes in the progressive unipolar RESET transition of \(\text{ HfO }_{2}\)-based RRAM. Sci. Rep. 3, 2929 (2013)CrossRef
190.
Zurück zum Zitat Gonzalez, M.B., Rafí, J.M., Beldarrain, O., Zabala, M., Campabadal, F.: Analysis of the switching variability in \(\text{ Ni }/\text{ HfO }_{2}\)-based RRAM devices. IEEE Trans. Device Mater. Reliab. 14(2), 769–771 (2014)CrossRef Gonzalez, M.B., Rafí, J.M., Beldarrain, O., Zabala, M., Campabadal, F.: Analysis of the switching variability in \(\text{ Ni }/\text{ HfO }_{2}\)-based RRAM devices. IEEE Trans. Device Mater. Reliab. 14(2), 769–771 (2014)CrossRef
191.
Zurück zum Zitat Picos, R., Roldán, J.B., Al Chawa, M.M., García-Fernández, P., Jiménez-Molinos, F., García-Moreno, E.: Semiempirical modeling of reset transitions in unipolar resistive-switching based memristors. Radioeng. J. 24, 420–424 (2015)CrossRef Picos, R., Roldán, J.B., Al Chawa, M.M., García-Fernández, P., Jiménez-Molinos, F., García-Moreno, E.: Semiempirical modeling of reset transitions in unipolar resistive-switching based memristors. Radioeng. J. 24, 420–424 (2015)CrossRef
192.
Zurück zum Zitat Cao, X., Li, X.M., Gao, X.D., Zhang, Y.W., Liu, X.J., Wang, Q., Chen, L.D.: Effects of the compliance current on the resistive switching behavior of \(\text{ TiO }_{2}\) thin films. Appl. Phys. A Mater. Sci. Process. 97(4), 883–887 (2009)CrossRef Cao, X., Li, X.M., Gao, X.D., Zhang, Y.W., Liu, X.J., Wang, Q., Chen, L.D.: Effects of the compliance current on the resistive switching behavior of \(\text{ TiO }_{2}\) thin films. Appl. Phys. A Mater. Sci. Process. 97(4), 883–887 (2009)CrossRef
193.
Zurück zum Zitat Ambrogio, S., Balatti, S., Gilmer, D.C., Ielmini, D.: Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices 61(7), 2378–2386 (2014)CrossRef Ambrogio, S., Balatti, S., Gilmer, D.C., Ielmini, D.: Analytical modeling of oxide-based bipolar resistive memories and complementary resistive switches. IEEE Trans. Electron Devices 61(7), 2378–2386 (2014)CrossRef
194.
Zurück zum Zitat Ambrogio, S., Balatti, S., Cubeta, A., Calderoni, A., Ramaswamy, N., Ielmini, D.: Statistical fluctuations in hfox resistive-switching memory: Part I—set/reset variability. IEEE Trans. Electron Devices 61(8), 2912–2919 (2014)CrossRef Ambrogio, S., Balatti, S., Cubeta, A., Calderoni, A., Ramaswamy, N., Ielmini, D.: Statistical fluctuations in hfox resistive-switching memory: Part I—set/reset variability. IEEE Trans. Electron Devices 61(8), 2912–2919 (2014)CrossRef
195.
Zurück zum Zitat Claramunt, S., Wu, Q., Maestro, M., Porti, M., Gonzalez, M.B., Martin-Martinez, J., Campabadal, F., Nafría, M.: Non-homogeneous conduction of conductive filaments in \(\text{ Ni }/\text{ HfO }_{2}/\text{ Si }\) resistive switching structures observed with CAFM. Microelectron. Eng. 147, 335–338 (2015)CrossRef Claramunt, S., Wu, Q., Maestro, M., Porti, M., Gonzalez, M.B., Martin-Martinez, J., Campabadal, F., Nafría, M.: Non-homogeneous conduction of conductive filaments in \(\text{ Ni }/\text{ HfO }_{2}/\text{ Si }\) resistive switching structures observed with CAFM. Microelectron. Eng. 147, 335–338 (2015)CrossRef
196.
Zurück zum Zitat Guo, X.: Roles of Schottky barrier and oxygen vacancies in the electroforming of \(\text{ SrTiO }_{3}\). Appl. Phys. Lett. 101(15), 152903 (2012)CrossRef Guo, X.: Roles of Schottky barrier and oxygen vacancies in the electroforming of \(\text{ SrTiO }_{3}\). Appl. Phys. Lett. 101(15), 152903 (2012)CrossRef
197.
Zurück zum Zitat Marshall, J.M.: On the interpretation of high field effects in chalcogenide thin films. Solid-State Electron. 16(5), 629–631 (1973)CrossRef Marshall, J.M.: On the interpretation of high field effects in chalcogenide thin films. Solid-State Electron. 16(5), 629–631 (1973)CrossRef
198.
Zurück zum Zitat Sun, J., Wu, X., Liu, Q., Liu, M., Sun, L.T.: Real time observation of nanoscale multiple conductive filaments in RRAM by using advanced in-situ TEM. In: 2013 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 560–562. IEEE (2013) Sun, J., Wu, X., Liu, Q., Liu, M., Sun, L.T.: Real time observation of nanoscale multiple conductive filaments in RRAM by using advanced in-situ TEM. In: 2013 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA), pp. 560–562. IEEE (2013)
199.
Zurück zum Zitat Wu, X., Cha, D., Bosman, M., Raghavan, N., Migas, D.B., Borisenko, V.E., Zhang, X.X., Li, K., Pey, K.L.: Intrinsic nanofilamentation in resistive switching. J. Appl. Phys. 113(11), 114503 (2013)CrossRef Wu, X., Cha, D., Bosman, M., Raghavan, N., Migas, D.B., Borisenko, V.E., Zhang, X.X., Li, K., Pey, K.L.: Intrinsic nanofilamentation in resistive switching. J. Appl. Phys. 113(11), 114503 (2013)CrossRef
200.
Zurück zum Zitat Kwon, D.H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.S., Park, G.S., Lee, B., Han, S., Kim, M., Hwang, C.S.: Atomic structure of conducting nanofilaments in \(\text{ TiO }_{2}\) resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010)CrossRef Kwon, D.H., Kim, K.M., Jang, J.H., Jeon, J.M., Lee, M.H., Kim, G.H., Li, X.S., Park, G.S., Lee, B., Han, S., Kim, M., Hwang, C.S.: Atomic structure of conducting nanofilaments in \(\text{ TiO }_{2}\) resistive switching memory. Nat. Nanotechnol. 5(2), 148–153 (2010)CrossRef
201.
Zurück zum Zitat Timsit, R.S.: Electrical contact resistance: properties of stationary interfaces. IEEE Trans. Compon. Packag. Technol. 22(1), 85–98 (1999)CrossRef Timsit, R.S.: Electrical contact resistance: properties of stationary interfaces. IEEE Trans. Compon. Packag. Technol. 22(1), 85–98 (1999)CrossRef
202.
Zurück zum Zitat Norberg, G., Dejanovic, S., Hesselbom, H.: Contact resistance of thin metal film contacts. IEEE Trans. Compon. Packag. Technol. 29(2), 371–378 (2006)CrossRef Norberg, G., Dejanovic, S., Hesselbom, H.: Contact resistance of thin metal film contacts. IEEE Trans. Compon. Packag. Technol. 29(2), 371–378 (2006)CrossRef
203.
Zurück zum Zitat Villena, M.A., Roldán, J.B., González, M.B., González-Rodelas, P., Jiménez-Molinos, F., Campabadal, F., Barrera, D.: A new parameter to characterize the charge transport regime in \(\text{ Ni }/\text{ HfO }_{2}/\text{ Si }-\text{ n }^{+}\)-based RRAMs. Solid-State Electron. 118, 56–60 (2016)CrossRef Villena, M.A., Roldán, J.B., González, M.B., González-Rodelas, P., Jiménez-Molinos, F., Campabadal, F., Barrera, D.: A new parameter to characterize the charge transport regime in \(\text{ Ni }/\text{ HfO }_{2}/\text{ Si }-\text{ n }^{+}\)-based RRAMs. Solid-State Electron. 118, 56–60 (2016)CrossRef
204.
Zurück zum Zitat Tsai, T.M., Chang, K.C., Chang, T.C., Syu, Y.E., Chuang, S.L., Chang, G.W., Liu, G.R., Chen, M.C., Huang, H.C., Liu, S.K., Tai, Y.H., Gan, D.S., Yang, Y.L., Young, T.F., Tseng, B.H., Chen, K.H., Tai, Y.H.: Bipolar resistive RAM characteristics induced by nickel incorporated into silicon oxide dielectrics for IC applications. IEEE Electron Device Lett. 33(12), 1696–1698 (2012)CrossRef Tsai, T.M., Chang, K.C., Chang, T.C., Syu, Y.E., Chuang, S.L., Chang, G.W., Liu, G.R., Chen, M.C., Huang, H.C., Liu, S.K., Tai, Y.H., Gan, D.S., Yang, Y.L., Young, T.F., Tseng, B.H., Chen, K.H., Tai, Y.H.: Bipolar resistive RAM characteristics induced by nickel incorporated into silicon oxide dielectrics for IC applications. IEEE Electron Device Lett. 33(12), 1696–1698 (2012)CrossRef
205.
Zurück zum Zitat Chang, W.Y., Lai, Y.C., Wu, T.B., Wang, S.F., Chen, F., Tsai, M.J.: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92(2), 022110 (2008)CrossRef Chang, W.Y., Lai, Y.C., Wu, T.B., Wang, S.F., Chen, F., Tsai, M.J.: Unipolar resistive switching characteristics of ZnO thin films for nonvolatile memory applications. Appl. Phys. Lett. 92(2), 022110 (2008)CrossRef
207.
Zurück zum Zitat Villena, M.A., González, M.B., Roldán, J.B., Campabadal, F., Jiménez-Molinos, F., Gómez-Campos, F.M., Suñé, J.: An in-depth study of thermal effects in reset transitions in \(\text{ HfO }_{2}\) based RRAMs. Solid-State Electron. 111, 47–51 (2015)CrossRef Villena, M.A., González, M.B., Roldán, J.B., Campabadal, F., Jiménez-Molinos, F., Gómez-Campos, F.M., Suñé, J.: An in-depth study of thermal effects in reset transitions in \(\text{ HfO }_{2}\) based RRAMs. Solid-State Electron. 111, 47–51 (2015)CrossRef
208.
Zurück zum Zitat Villena, M.A., Roldán, J.B., García-Fernández, P., Jiménez-Molinos, F.: Effects of the extension of conductive filaments, a simulation approach. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35(1), 01A105 (2017) Villena, M.A., Roldán, J.B., García-Fernández, P., Jiménez-Molinos, F.: Effects of the extension of conductive filaments, a simulation approach. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 35(1), 01A105 (2017)
209.
Zurück zum Zitat Yang, X., Long, S., Zhang, K., Liu, X., Lian, X., Liu, Q., Lv, H., Wang, M., Xie, H., Sun, H., Sun, P., Suñé, J., Liu, M.: Investigation on the RESET switching mechanism of bipolar \(\text{ Cu }/\text{ HfO }_{2}/\text{ Pt }\) RRAM devices with a statistical methodology. J. Phys. D Appl. Phys. 46, 245107 (2013)CrossRef Yang, X., Long, S., Zhang, K., Liu, X., Lian, X., Liu, Q., Lv, H., Wang, M., Xie, H., Sun, H., Sun, P., Suñé, J., Liu, M.: Investigation on the RESET switching mechanism of bipolar \(\text{ Cu }/\text{ HfO }_{2}/\text{ Pt }\) RRAM devices with a statistical methodology. J. Phys. D Appl. Phys. 46, 245107 (2013)CrossRef
210.
Zurück zum Zitat Ielmini, D., Cagli, F., Cagli, C.: Universal characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Device 58(10), 3246–3256 (2011)CrossRef Ielmini, D., Cagli, F., Cagli, C.: Universal characteristics of unipolar and bipolar metal-oxide RRAM. IEEE Trans. Device 58(10), 3246–3256 (2011)CrossRef
211.
Zurück zum Zitat Quintero, M., Levy, P., Leyva, A.G., Rozenberg, M.J.: Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 98(11), 116601 (2007)CrossRef Quintero, M., Levy, P., Leyva, A.G., Rozenberg, M.J.: Mechanism of electric-pulse-induced resistance switching in manganites. Phys. Rev. Lett. 98(11), 116601 (2007)CrossRef
212.
Zurück zum Zitat Ye, J.Y., Li, Y.Q., Gao, J., Peng, H.Y., Wu, S.X., Wu, T.: Nanoscale resistive switching and filamentary conduction in NiO thin films. Appl. Phys. Lett. 97(13), 132108 (2010)CrossRef Ye, J.Y., Li, Y.Q., Gao, J., Peng, H.Y., Wu, S.X., Wu, T.: Nanoscale resistive switching and filamentary conduction in NiO thin films. Appl. Phys. Lett. 97(13), 132108 (2010)CrossRef
213.
Zurück zum Zitat Yu, S., Yin Chen, Y., Guan, X., Philip Wong, H.S., Kittl, J.A.: A Monte Carlo study of the low resistance state retention of \(\text{ HfO }_{{\rm x}}\) based resistive switching memory. Appl. Phys. Lett. 100(4), 043507 (2012)CrossRef Yu, S., Yin Chen, Y., Guan, X., Philip Wong, H.S., Kittl, J.A.: A Monte Carlo study of the low resistance state retention of \(\text{ HfO }_{{\rm x}}\) based resistive switching memory. Appl. Phys. Lett. 100(4), 043507 (2012)CrossRef
214.
Zurück zum Zitat Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, Monte Carlo simulation, and experimental characterization. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 17-3. IEEE (2011) Yu, S., Guan, X., Wong, H.S.P.: On the stochastic nature of resistive switching in metal oxide RRAM: Physical modeling, Monte Carlo simulation, and experimental characterization. In: Electron Devices Meeting (IEDM), 2011 IEEE International, pp. 17-3. IEEE (2011)
215.
Zurück zum Zitat Chang, Y.F., Ji, L., Wu, Z.J., Zhou, F., Wang, Y., Xue, F., Fowler, B., Yu, E.T., Ho, P.S., Lee, J.C.: Oxygen-induced bi-modal failure phenomenon in \(\text{ SiO }_{\rm x}\)-based resistive switching memory. Appl. Phys. Lett. 103(3), 033521 (2013)CrossRef Chang, Y.F., Ji, L., Wu, Z.J., Zhou, F., Wang, Y., Xue, F., Fowler, B., Yu, E.T., Ho, P.S., Lee, J.C.: Oxygen-induced bi-modal failure phenomenon in \(\text{ SiO }_{\rm x}\)-based resistive switching memory. Appl. Phys. Lett. 103(3), 033521 (2013)CrossRef
216.
Zurück zum Zitat Kim, K.M., Choi, B.J., Jeong, D.S., Hwang, C.S., Han, S.: Influence of carrier injection on resistive switching of \(\text{ TiO }_{2}\) thin films with Pt electrodes. Appl. Phys. Lett. 89(16), 162912 (2006)CrossRef Kim, K.M., Choi, B.J., Jeong, D.S., Hwang, C.S., Han, S.: Influence of carrier injection on resistive switching of \(\text{ TiO }_{2}\) thin films with Pt electrodes. Appl. Phys. Lett. 89(16), 162912 (2006)CrossRef
217.
Zurück zum Zitat Jeong, D.S., Schroeder, H., Waser, R.: Mechanism for bipolar switching in a \(\text{ Pt }/\text{ TiO }_{2}/\text{ Pt }\) resistive switching cell. Phys. Rev. B 79(19), 195317 (2009)CrossRef Jeong, D.S., Schroeder, H., Waser, R.: Mechanism for bipolar switching in a \(\text{ Pt }/\text{ TiO }_{2}/\text{ Pt }\) resistive switching cell. Phys. Rev. B 79(19), 195317 (2009)CrossRef
218.
Zurück zum Zitat Nagashima, K., Yanagida, T., Oka, K., Kawai, T.: Unipolar resistive switching characteristics of room temperature grown \(\text{ SnO }_{2}\) thin films. Appl. Phys. Lett. 94(24), 242902 (2009)CrossRef Nagashima, K., Yanagida, T., Oka, K., Kawai, T.: Unipolar resistive switching characteristics of room temperature grown \(\text{ SnO }_{2}\) thin films. Appl. Phys. Lett. 94(24), 242902 (2009)CrossRef
219.
Zurück zum Zitat Peng, H., Wu, T.: Nonvolatile resistive switching in spinel \(\text{ ZnMn }_{2}{\rm O}_{4}\) and ilmenite \(\text{ ZnMnO }_{3}\). Appl. Phys. Lett. 95(15), 152106 (2009)CrossRef Peng, H., Wu, T.: Nonvolatile resistive switching in spinel \(\text{ ZnMn }_{2}{\rm O}_{4}\) and ilmenite \(\text{ ZnMnO }_{3}\). Appl. Phys. Lett. 95(15), 152106 (2009)CrossRef
220.
Zurück zum Zitat Shkabko, A., Aguirre, M.H., Marozau, I., Lippert, T., Weidenkaff, A.: Measurements of current-voltage-induced heating in the \(\text{ Al }/\text{ SrTiO }_{3-{\rm x}}\text{ N }_{{\rm y}}/\text{ Al }\) memristor during electroformation and resistance switching. Appl. Phys. Lett. 95(15), 152109 (2009)CrossRef Shkabko, A., Aguirre, M.H., Marozau, I., Lippert, T., Weidenkaff, A.: Measurements of current-voltage-induced heating in the \(\text{ Al }/\text{ SrTiO }_{3-{\rm x}}\text{ N }_{{\rm y}}/\text{ Al }\) memristor during electroformation and resistance switching. Appl. Phys. Lett. 95(15), 152109 (2009)CrossRef
221.
Zurück zum Zitat Zhang, L., Huang, R., Gao, D., Wu, D., Kuang, Y., Tang, P., Ding, W., Wang, A.Z.H., Wang, Y.: Unipolar resistive switch based on silicon monoxide realized by CMOS technology. IEEE Electron Device Lett. 30(8), 870–872 (2009)CrossRef Zhang, L., Huang, R., Gao, D., Wu, D., Kuang, Y., Tang, P., Ding, W., Wang, A.Z.H., Wang, Y.: Unipolar resistive switch based on silicon monoxide realized by CMOS technology. IEEE Electron Device Lett. 30(8), 870–872 (2009)CrossRef
222.
Zurück zum Zitat Bersuker, G., Gilmer, D.C., Veksler, D., Yum, J., Park, H., Lian, S., Vandelli, L., Padovani, A., Larcher, L. McKenna, K., Shluger, A., Iglesias, V., Porti, M., Nafría, M., Taylor, W., Kirsch, P.D., Jammy, R.: Metal oxide RRAM switching mechanism based on conductive filament microscopic properties. In: Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 19-6. IEEE (2010) Bersuker, G., Gilmer, D.C., Veksler, D., Yum, J., Park, H., Lian, S., Vandelli, L., Padovani, A., Larcher, L. McKenna, K., Shluger, A., Iglesias, V., Porti, M., Nafría, M., Taylor, W., Kirsch, P.D., Jammy, R.: Metal oxide RRAM switching mechanism based on conductive filament microscopic properties. In: Electron Devices Meeting (IEDM), 2010 IEEE International, pp. 19-6. IEEE (2010)
223.
Zurück zum Zitat Huang, J.J., Kuo, C.W., Chang, W.C., Hou, T.H.: Transition of stable rectification to resistive-switching in \(\text{ Ti }/\text{ TiO }_{2}/\text{ Pt }\) oxide diode. Appl. Phys. Lett. 96(26), 262901 (2010)CrossRef Huang, J.J., Kuo, C.W., Chang, W.C., Hou, T.H.: Transition of stable rectification to resistive-switching in \(\text{ Ti }/\text{ TiO }_{2}/\text{ Pt }\) oxide diode. Appl. Phys. Lett. 96(26), 262901 (2010)CrossRef
224.
Zurück zum Zitat Kim, S., Jeong, H.Y., Choi, S.Y., Choi, Y.K.: Comprehensive modeling of resistive switching in the \(\text{ Al }/\text{ TiO }_{{\rm x}}/\text{ TiO }_{2}/\text{ Al }\) heterostructure based on space-charge-limited conduction. Appl. Phys. Lett. 97(3), 033508 (2010)CrossRef Kim, S., Jeong, H.Y., Choi, S.Y., Choi, Y.K.: Comprehensive modeling of resistive switching in the \(\text{ Al }/\text{ TiO }_{{\rm x}}/\text{ TiO }_{2}/\text{ Al }\) heterostructure based on space-charge-limited conduction. Appl. Phys. Lett. 97(3), 033508 (2010)CrossRef
225.
Zurück zum Zitat Lee, S., Kim, H., Yun, D.J., Rhee, S.W., Yong, K.: Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices. Appl. Phys. Lett. 95(26), 262113 (2009)CrossRef Lee, S., Kim, H., Yun, D.J., Rhee, S.W., Yong, K.: Resistive switching characteristics of ZnO thin film grown on stainless steel for flexible nonvolatile memory devices. Appl. Phys. Lett. 95(26), 262113 (2009)CrossRef
226.
Zurück zum Zitat Chung, Y.L., Lai, P.Y., Chen, Y.C., Chen, J.S.: Schottky barrier mediated single-polarity resistive switching in Pt layer-included \(\text{ TiO }_{{\rm x}}\) memory device. ACS Appl. Mater. interfaces 3(6), 1918–1924 (2011)CrossRef Chung, Y.L., Lai, P.Y., Chen, Y.C., Chen, J.S.: Schottky barrier mediated single-polarity resistive switching in Pt layer-included \(\text{ TiO }_{{\rm x}}\) memory device. ACS Appl. Mater. interfaces 3(6), 1918–1924 (2011)CrossRef
227.
Zurück zum Zitat Hur, J.H., Kim, K.M., Chang, M., Lee, S.R., Lee, D., Lee, C.B., Lee, M.J., Kim, Y.B., Kim, C.J., Chung, U.I.: Modeling for multilevel switching in oxide-based bipolar resistive memory. Nanotechnology 23(22), 225702 (2012)CrossRef Hur, J.H., Kim, K.M., Chang, M., Lee, S.R., Lee, D., Lee, C.B., Lee, M.J., Kim, Y.B., Kim, C.J., Chung, U.I.: Modeling for multilevel switching in oxide-based bipolar resistive memory. Nanotechnology 23(22), 225702 (2012)CrossRef
228.
Zurück zum Zitat Larentis, S., Nardi, F., Balatti, S., Gilmer, D.C., Ielmini, D.: Resistive switching by voltage-driven ion migration in bipolar RRAM–Part II: Modeling. IEEE Trans. Electron Devices 59(9), 2468–2475 (2012)CrossRef Larentis, S., Nardi, F., Balatti, S., Gilmer, D.C., Ielmini, D.: Resistive switching by voltage-driven ion migration in bipolar RRAM–Part II: Modeling. IEEE Trans. Electron Devices 59(9), 2468–2475 (2012)CrossRef
229.
Zurück zum Zitat Lee, J.K., Jung, S., Park, J., Chung, S.W., Sung Roh, J., Hong, S.J., Cho, I.H., Kwon, H.I., Park, C.H., Park, B.G., Lee, J.H.: Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices. Appl. Phys. Lett. 101(10), 103506 (2012)CrossRef Lee, J.K., Jung, S., Park, J., Chung, S.W., Sung Roh, J., Hong, S.J., Cho, I.H., Kwon, H.I., Park, C.H., Park, B.G., Lee, J.H.: Accurate analysis of conduction and resistive-switching mechanisms in double-layered resistive-switching memory devices. Appl. Phys. Lett. 101(10), 103506 (2012)CrossRef
230.
Zurück zum Zitat Long, B., Li, Y., Mandal, S., Jha, R., Leedy, K.: Switching dynamics and charge transport studies of resistive random access memory devices. Appl. Phys. Lett. 101(11), 113503 (2012)CrossRef Long, B., Li, Y., Mandal, S., Jha, R., Leedy, K.: Switching dynamics and charge transport studies of resistive random access memory devices. Appl. Phys. Lett. 101(11), 113503 (2012)CrossRef
231.
Zurück zum Zitat Mehonic, A., Cueff, S., Wojdak, M., Hudziak, S., Labbé, C., Rizk, R., Kenyon, A.J.: Electrically tailored resistance switching in silicon oxide. Nanotechnology 23(45), 455201 (2012)CrossRef Mehonic, A., Cueff, S., Wojdak, M., Hudziak, S., Labbé, C., Rizk, R., Kenyon, A.J.: Electrically tailored resistance switching in silicon oxide. Nanotechnology 23(45), 455201 (2012)CrossRef
232.
Zurück zum Zitat Sasaki, M.: An electron conduction model of resistive memory for resistance dispersion, fluctuation, filament structures, and Set/Reset mechanism. J. Appl. Phys. 112(1), 014501 (2012)CrossRef Sasaki, M.: An electron conduction model of resistive memory for resistance dispersion, fluctuation, filament structures, and Set/Reset mechanism. J. Appl. Phys. 112(1), 014501 (2012)CrossRef
233.
Zurück zum Zitat Zhu, W., Chen, T.P., Liu, Y., Fung, S.: Conduction mechanisms at low-and high-resistance states in aluminum/anodic aluminum oxide/aluminum thin film structure. J. Appl. Phys. 112(6), 063706 (2012)CrossRef Zhu, W., Chen, T.P., Liu, Y., Fung, S.: Conduction mechanisms at low-and high-resistance states in aluminum/anodic aluminum oxide/aluminum thin film structure. J. Appl. Phys. 112(6), 063706 (2012)CrossRef
234.
Zurück zum Zitat Mickel, P.R., Lohn, A.J., Joon Choi, B., Joshua Yang, J., Zhang, M.X., Marinella, M.J., James, C.D., Stanley Williams, R.: A physical model of switching dynamics in tantalum oxide memristive devices. Appl. Phys. Lett. 102(22), 223502 (2013)CrossRef Mickel, P.R., Lohn, A.J., Joon Choi, B., Joshua Yang, J., Zhang, M.X., Marinella, M.J., James, C.D., Stanley Williams, R.: A physical model of switching dynamics in tantalum oxide memristive devices. Appl. Phys. Lett. 102(22), 223502 (2013)CrossRef
235.
Zurück zum Zitat Syu, Y.E., Chang, T.C., Lou, J.H., Tsai, T.M., Chang, K.C., Tsai, M.J., Liu, M., Sze, S.M.: Atomic-level quantized reaction of \(\text{ HfO }_{{\rm x}}\) memristor. Appl. Phys. Lett. 102(17), 172903 (2013)CrossRef Syu, Y.E., Chang, T.C., Lou, J.H., Tsai, T.M., Chang, K.C., Tsai, M.J., Liu, M., Sze, S.M.: Atomic-level quantized reaction of \(\text{ HfO }_{{\rm x}}\) memristor. Appl. Phys. Lett. 102(17), 172903 (2013)CrossRef
236.
Zurück zum Zitat Linn, E., Siemon, A., Waser, R., Menzel, S.: Applicability of well-established memristive models for simulations of resistive switching devices. IEEE Trans. Circuits Syst. I Regul. Pap. 61(8), 2402–2410 (2014)CrossRef Linn, E., Siemon, A., Waser, R., Menzel, S.: Applicability of well-established memristive models for simulations of resistive switching devices. IEEE Trans. Circuits Syst. I Regul. Pap. 61(8), 2402–2410 (2014)CrossRef
237.
Zurück zum Zitat Chen, B., Jun, Q.Y., Gao, B., Zhang, F.F., Wei, K.L., Chen, Y.S., Liu, L.F., Liu, X.Y., Kang, J.F., Han, R.Q.: A compact model of resistive switching devices. In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1829–1831. IEEE (2010) Chen, B., Jun, Q.Y., Gao, B., Zhang, F.F., Wei, K.L., Chen, Y.S., Liu, L.F., Liu, X.Y., Kang, J.F., Han, R.Q.: A compact model of resistive switching devices. In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (ICSICT), pp. 1829–1831. IEEE (2010)
238.
Zurück zum Zitat Strachan, J.P., Torrezan, A.C., Miao, F., Pickett, M.D., Yang, J.J., Yi, W., Medeiros-Ribeiro, G., Williams, R.S.: State dynamics and modeling of tantalum oxide memristors. IEEE Trans. Electron Devices 60(7), 2194–2202 (2013)CrossRef Strachan, J.P., Torrezan, A.C., Miao, F., Pickett, M.D., Yang, J.J., Yi, W., Medeiros-Ribeiro, G., Williams, R.S.: State dynamics and modeling of tantalum oxide memristors. IEEE Trans. Electron Devices 60(7), 2194–2202 (2013)CrossRef
239.
Zurück zum Zitat Bocquet, M., Aziza, H., Zhao, W., Zhang, Y., Onkaraiah, S., Muller, C., Reyboz, M., Deleruyelle, D., Clermidy, F., Portal, J.M.: Compact modeling solutions for oxide-based resistive switching memories (OxRAM). J. Low Power Electron. Appl. 4(1), 1–14 (2014) Bocquet, M., Aziza, H., Zhao, W., Zhang, Y., Onkaraiah, S., Muller, C., Reyboz, M., Deleruyelle, D., Clermidy, F., Portal, J.M.: Compact modeling solutions for oxide-based resistive switching memories (OxRAM). J. Low Power Electron. Appl. 4(1), 1–14 (2014)
240.
Zurück zum Zitat Larcher, L., Puglisi, F.M., Pavan, P., Padovani, A., Vandelli, L., Bersuker, G.: A compact model of program window in \(\text{ HfO }_{{\rm x}}\) RRAM devices for conductive filament characteristics analysis. IEEE Trans. Electron Devices 61(8), 2668–2673 (2014)CrossRef Larcher, L., Puglisi, F.M., Pavan, P., Padovani, A., Vandelli, L., Bersuker, G.: A compact model of program window in \(\text{ HfO }_{{\rm x}}\) RRAM devices for conductive filament characteristics analysis. IEEE Trans. Electron Devices 61(8), 2668–2673 (2014)CrossRef
Metadaten
Titel
: a physical model for RRAM devices simulation
verfasst von
Marco A. Villena
Juan B. Roldán
Francisco Jiménez-Molinos
Enrique Miranda
Jordi Suñé
Mario Lanza
Publikationsdatum
10.10.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1074-8

Weitere Artikel der Ausgabe 4/2017

Journal of Computational Electronics 4/2017 Zur Ausgabe

S.I.: Computational Electronics of Emerging Memory Elements

From materials to systems: a multiscale analysis of nanomagnetic switching

S.I.: Computational Electronics of Emerging Memory Elements

Design rules for threshold switches based on a field triggered thermal runaway mechanism

Neuer Inhalt