Skip to main content
Erschienen in: Telecommunication Systems 3/2024

06.01.2024

Design of an ultra-compact reconfigurable IDC graphene-based SIW antenna in THz band with RHCP

verfasst von: Narges Kiani, Farzad Tavakkol Hamedani, Pejman Rezaei

Erschienen in: Telecommunication Systems | Ausgabe 3/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A substrate-integrated waveguide antenna is proposed in the presented article. Graphene is used in the structure of the designed substrate-integrated waveguide antenna. The application of the desired structure is in the THz frequency band. The frequency reconfigurable of graphene has been used in this study. The operating frequency of a substrate-integrated waveguide antenna is 2.3 THz. The structure of the patch antenna is located on a silicon dioxide substrate. Inter-digital capacitor (IDC) slots are used in the designed antenna structure. The form of these slots is in the form of a ramp. The application of IDCs is very effective in the miniaturization of the structure. Therefore, the structure is very compact. In the frequency range of 2–3 THz, the reconfigurable IDC graphene-based SIW antenna has suitable conditions from the matching approach and polarization point of view. In the working range, the S11 is reported to be below the − 10 dB level. The axial ratio is 0.943 dB at the central frequency. The radiation efficiency is reported at 78.7%. The designed antenna provides right-hand circular polarization. The results of 2D and 3D radiation patterns are shown. Surface current distribution, H-field distribution, and E-field distribution of an ultra-compact reconfigurable IDC graphene-based substrate-integrated waveguide antenna are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sahana, B. C., & Varshney, G. (2022). Tunable terahertz dual-band circularly polarized dielectric resonator antenna. Optik, 253, 168578.CrossRefADS Sahana, B. C., & Varshney, G. (2022). Tunable terahertz dual-band circularly polarized dielectric resonator antenna. Optik, 253, 168578.CrossRefADS
2.
Zurück zum Zitat Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2022). Realization of polarization adjusting in reconfigurable graphene-based microstrip antenna by adding leaf-shaped patch. Micro and Nanostructures, 168, 207322.CrossRef Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2022). Realization of polarization adjusting in reconfigurable graphene-based microstrip antenna by adding leaf-shaped patch. Micro and Nanostructures, 168, 207322.CrossRef
3.
Zurück zum Zitat Jafari Chashmi, M., Rezaei, P., & Kiani, N. (2019). Reconfigurable graphene-based V-shaped dipole antenna: from quasi-isotropic to directional radiation pattern. Opt International Journal Light Electron Opt, 184, 421–427.CrossRef Jafari Chashmi, M., Rezaei, P., & Kiani, N. (2019). Reconfigurable graphene-based V-shaped dipole antenna: from quasi-isotropic to directional radiation pattern. Opt International Journal Light Electron Opt, 184, 421–427.CrossRef
4.
Zurück zum Zitat Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2021). Polarization controlling method in reconfigurable graphene-based patch four-leaf clover-shaped antenna. Opt Int J Light Electron. Opt., 231, 166454.CrossRef Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2021). Polarization controlling method in reconfigurable graphene-based patch four-leaf clover-shaped antenna. Opt Int J Light Electron. Opt., 231, 166454.CrossRef
5.
Zurück zum Zitat Jafari Chashmi, M., Rezaei, P., & Kiani, N. (2020). Polarization controlling of multi resonant graphene-based microstrip antenna. Plasmonics, 15(2), 417–426.CrossRef Jafari Chashmi, M., Rezaei, P., & Kiani, N. (2020). Polarization controlling of multi resonant graphene-based microstrip antenna. Plasmonics, 15(2), 417–426.CrossRef
6.
Zurück zum Zitat Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2021). Polarization controlling plan in graphene-based reconfigurable microstrip patch antenna. Opt Int J Light Electron Opt, 244, 167595.CrossRef Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2021). Polarization controlling plan in graphene-based reconfigurable microstrip patch antenna. Opt Int J Light Electron Opt, 244, 167595.CrossRef
7.
Zurück zum Zitat Jafari Chashmi, M., Rezaei, P., & Kiani, N. (2020). Y-shaped graphene-based antenna with switchable circular polarization. Opt Int J Light Electron Opt, 200, 163321.CrossRef Jafari Chashmi, M., Rezaei, P., & Kiani, N. (2020). Y-shaped graphene-based antenna with switchable circular polarization. Opt Int J Light Electron Opt, 200, 163321.CrossRef
8.
Zurück zum Zitat Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2021). Polarization controlling idea in graphene-based patch antenna. Opt Int J Light Electron Opt, 239, 166795.CrossRef Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2021). Polarization controlling idea in graphene-based patch antenna. Opt Int J Light Electron Opt, 239, 166795.CrossRef
9.
Zurück zum Zitat Das, P., & Mandal, K. (2022). A tunable circularly polarized antenna in THz regime. Micr Na, 166, 207232. Das, P., & Mandal, K. (2022). A tunable circularly polarized antenna in THz regime. Micr Na, 166, 207232.
10.
Zurück zum Zitat Kiani, N., Tavakol Hamedani, F., Rezaei, P., Jafari Chashmi, M., & Danaie, M. (2020). Polarization controlling approach in reconfigurable microstrip graphene-based antenna. Opt Int J Light Electron Opt, 203, 163942.CrossRef Kiani, N., Tavakol Hamedani, F., Rezaei, P., Jafari Chashmi, M., & Danaie, M. (2020). Polarization controlling approach in reconfigurable microstrip graphene-based antenna. Opt Int J Light Electron Opt, 203, 163942.CrossRef
11.
Zurück zum Zitat Yadav, R., Pandey, V. S., Kumar, S., & Gotra, S. (2022). Obtaining wide bandwidth with higher-order TM modes merging in a graphene-based logarithmic antenna for THz sensing applications. Micr Na, 169, 207344. Yadav, R., Pandey, V. S., Kumar, S., & Gotra, S. (2022). Obtaining wide bandwidth with higher-order TM modes merging in a graphene-based logarithmic antenna for THz sensing applications. Micr Na, 169, 207344.
12.
Zurück zum Zitat Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2022). Implementation of a reconfigurable miniaturized graphene-based SIW antenna for THz applications. Micr. Na., 169, 207365. Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2022). Implementation of a reconfigurable miniaturized graphene-based SIW antenna for THz applications. Micr. Na., 169, 207365.
13.
Zurück zum Zitat Althuwayb, A. A., Alibakhshikenari, M., Virdee, B. S., Benetatos, H., Falcone, F., & Limiti, E. (2021). Antenna on chip (AoC) design using metasurface and SIW technologies for THz wireless applications. Electronics, 10(9), 1120.CrossRef Althuwayb, A. A., Alibakhshikenari, M., Virdee, B. S., Benetatos, H., Falcone, F., & Limiti, E. (2021). Antenna on chip (AoC) design using metasurface and SIW technologies for THz wireless applications. Electronics, 10(9), 1120.CrossRef
14.
Zurück zum Zitat J.U.R. Kazim, A. Abohmra, M.U. Rehman, M.A. Imran, Q.H. Abbasi, (2020) A corrugated SIW based slot antenna for terahertz application, IEEE Int. Symp. Antennas Propag. North American Radio Science Meeting, Montreal, QC, Canada 1407–1408. J.U.R. Kazim, A. Abohmra, M.U. Rehman, M.A. Imran, Q.H. Abbasi, (2020) A corrugated SIW based slot antenna for terahertz application, IEEE Int. Symp. Antennas Propag. North American Radio Science Meeting, Montreal, QC, Canada 1407–1408.
15.
Zurück zum Zitat Alibakhshikenari, M., et al. (2021). High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications. Science and Reports, 11, 10218.CrossRefADS Alibakhshikenari, M., et al. (2021). High-isolation antenna array using SIW and realized with a graphene layer for sub-terahertz wireless applications. Science and Reports, 11, 10218.CrossRefADS
16.
Zurück zum Zitat Alibakhshikenari, M., et al. (2023). High performance antenna-on-chip inspired by SIW and metasurface technologies for THz band operation. Science and Reports, 13, 56.CrossRefADS Alibakhshikenari, M., et al. (2023). High performance antenna-on-chip inspired by SIW and metasurface technologies for THz band operation. Science and Reports, 13, 56.CrossRefADS
17.
Zurück zum Zitat Chemweno, E. K., Kumar, P., & Afullo, T. J. O. (2022). Substrate-integrated waveguide-dielectric resonator antenna for future wireless communication. SAIEE Africa Research Journal, 113(3), 119–128.CrossRef Chemweno, E. K., Kumar, P., & Afullo, T. J. O. (2022). Substrate-integrated waveguide-dielectric resonator antenna for future wireless communication. SAIEE Africa Research Journal, 113(3), 119–128.CrossRef
18.
Zurück zum Zitat Chemweno, E. K., Kumar, P., & Afullo, T. J. (2023). Design of high-gain wideband substrate integrated waveguide dielectric resonator antenna for D-band applications. Optik, 1(272), 170261.CrossRef Chemweno, E. K., Kumar, P., & Afullo, T. J. (2023). Design of high-gain wideband substrate integrated waveguide dielectric resonator antenna for D-band applications. Optik, 1(272), 170261.CrossRef
19.
Zurück zum Zitat Balarajuswamy, T. A., & Nakkeeran, R. (2023). Reconfigurable SIW antenna at 28/38 GHz for 5G applications. International Journal on Interactive Design and Manufacturing IJIDeM, 6, 1. Balarajuswamy, T. A., & Nakkeeran, R. (2023). Reconfigurable SIW antenna at 28/38 GHz for 5G applications. International Journal on Interactive Design and Manufacturing IJIDeM, 6, 1.
20.
Zurück zum Zitat Poorgholam-Khanjari, S., Zarrabi, F. B., & Jarchi, S. (2020). Compact and wide-band quasi Yagi-Uda antenna based on periodic grating ground and coupling method in terahertz regime. Opt. Int. J. Light Electron. Opt., 203, 163990.CrossRef Poorgholam-Khanjari, S., Zarrabi, F. B., & Jarchi, S. (2020). Compact and wide-band quasi Yagi-Uda antenna based on periodic grating ground and coupling method in terahertz regime. Opt. Int. J. Light Electron. Opt., 203, 163990.CrossRef
21.
Zurück zum Zitat Poorgholam-Khanjari, S., & Zarrabi, F. B. (2021). Reconfigurable Vivaldi THz antenna based on graphene load as hyperbolic metamaterial for skin cancer spectroscopy. Optics Communication, 480, 126482.CrossRef Poorgholam-Khanjari, S., & Zarrabi, F. B. (2021). Reconfigurable Vivaldi THz antenna based on graphene load as hyperbolic metamaterial for skin cancer spectroscopy. Optics Communication, 480, 126482.CrossRef
22.
Zurück zum Zitat Llatser, I., Kremers, C., Cabellos-Aparicio, A., et al. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photon. Nano. Fund. App., 10(4), 353–358.CrossRefADS Llatser, I., Kremers, C., Cabellos-Aparicio, A., et al. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photon. Nano. Fund. App., 10(4), 353–358.CrossRefADS
23.
Zurück zum Zitat Vishwanath, R., Babu, V. S., et al. (2023). Controlling the resonant modes/bandwidth using graphene strip and isolation enhancement in a two-port THz MIMO DRA. Optical and Quantum Electronics, 55, 659.CrossRef Vishwanath, R., Babu, V. S., et al. (2023). Controlling the resonant modes/bandwidth using graphene strip and isolation enhancement in a two-port THz MIMO DRA. Optical and Quantum Electronics, 55, 659.CrossRef
24.
Zurück zum Zitat Das, P. (2023). Beam-steering of THz MIMO antenna using graphene-based intelligent reflective surface. Optical and Quantum Electronics, 55, 711.CrossRef Das, P. (2023). Beam-steering of THz MIMO antenna using graphene-based intelligent reflective surface. Optical and Quantum Electronics, 55, 711.CrossRef
25.
Zurück zum Zitat Khan, M. S., Kumar, A., Gupta, A., & Varshney, G. (2023). Reforming the capacitive edges in the plasmonic radiator of THz antenna using graphene for controllable notched band. Plasmonics, 18(6), 2001–2008.CrossRef Khan, M. S., Kumar, A., Gupta, A., & Varshney, G. (2023). Reforming the capacitive edges in the plasmonic radiator of THz antenna using graphene for controllable notched band. Plasmonics, 18(6), 2001–2008.CrossRef
26.
Zurück zum Zitat Amn-e-Elahi, A., & Rezaei, P. (2020). SIW corporate-feed network for circular polarization slot array antenna. Wireless Personal Communications., 111, 2129–2136.CrossRef Amn-e-Elahi, A., & Rezaei, P. (2020). SIW corporate-feed network for circular polarization slot array antenna. Wireless Personal Communications., 111, 2129–2136.CrossRef
27.
Zurück zum Zitat Pourghorban Saghati, A., Pourghorban Saghati, A., & Entesari, K. (2015). Ultra-miniature SIW cavity resonators and filters. IEEE Transactions on Microwave Theory and Techniques, 63(12), 4329–4340.CrossRefADS Pourghorban Saghati, A., Pourghorban Saghati, A., & Entesari, K. (2015). Ultra-miniature SIW cavity resonators and filters. IEEE Transactions on Microwave Theory and Techniques, 63(12), 4329–4340.CrossRefADS
28.
Zurück zum Zitat Kiani, N., & Afsahi, M. (2019). Design and fabrication of a compact SIW diplexer in C-band. Iran J Electr Electron Eng IJEEE, 15(2), 189–194. Kiani, N., & Afsahi, M. (2019). Design and fabrication of a compact SIW diplexer in C-band. Iran J Electr Electron Eng IJEEE, 15(2), 189–194.
29.
Zurück zum Zitat Guo, G., Min, J., Xie, Z., Wu, H., & Zhang, Y. (2022). First-principles study on the strain-modulated structure and electronic properties of janus tin oxide selenide monolayer. Micr Na, 166, 207212. Guo, G., Min, J., Xie, Z., Wu, H., & Zhang, Y. (2022). First-principles study on the strain-modulated structure and electronic properties of janus tin oxide selenide monolayer. Micr Na, 166, 207212.
30.
Zurück zum Zitat Moradiani, F., Seifouri, M., Abedi, K., & Geran Gharakhili, F. (2021). High extinction ratio all-optical modulator using a vanadium-dioxide integrated hybrid plasmonic waveguide. Plasmonics, 16, 189–198.CrossRef Moradiani, F., Seifouri, M., Abedi, K., & Geran Gharakhili, F. (2021). High extinction ratio all-optical modulator using a vanadium-dioxide integrated hybrid plasmonic waveguide. Plasmonics, 16, 189–198.CrossRef
31.
Zurück zum Zitat Singh, S., Shamra, A. K., Lohia, P., & Dwivedi, D. K. (2022). Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements. Micr Na, 163, 107126. Singh, S., Shamra, A. K., Lohia, P., & Dwivedi, D. K. (2022). Ferric oxide and heterostructure BlueP/MoSe2 nanostructure based SPR sensor using magnetic material nickel for sensitivity enhancements. Micr Na, 163, 107126.
32.
Zurück zum Zitat Poonia, R., Bhat, A. M., Periasamy, C., & Sahu, C. (2022). A highly sensitive Nano Gap Embedded AlGaN/GaN HEMT sensor for Anti-IRIS antibody detection. Micr Na, 169, 207342. Poonia, R., Bhat, A. M., Periasamy, C., & Sahu, C. (2022). A highly sensitive Nano Gap Embedded AlGaN/GaN HEMT sensor for Anti-IRIS antibody detection. Micr Na, 169, 207342.
33.
Zurück zum Zitat Wu, Z., Tian, J., & Yang, R. (2022). A graphene based dual-band metamaterial absorber for TE polarized THz wave. Micr Na, 168, 207331. Wu, Z., Tian, J., & Yang, R. (2022). A graphene based dual-band metamaterial absorber for TE polarized THz wave. Micr Na, 168, 207331.
34.
Zurück zum Zitat Kari, M., & Saghfi, K. (2022). Current-voltage hysteresis reduction of CH3NH3PbI3 planar perovskite solar cell by multi-layer absorber. Micr Na, 165, 207207. Kari, M., & Saghfi, K. (2022). Current-voltage hysteresis reduction of CH3NH3PbI3 planar perovskite solar cell by multi-layer absorber. Micr Na, 165, 207207.
35.
Zurück zum Zitat Shamloo, H., & Goharrizi, A. Y. (2022). Performance study of tunneling field effect transistors based on the graphene and phosphorene nanoribbons. Micr Na, 169, 207336. Shamloo, H., & Goharrizi, A. Y. (2022). Performance study of tunneling field effect transistors based on the graphene and phosphorene nanoribbons. Micr Na, 169, 207336.
36.
Zurück zum Zitat Fotovvat, M. H., & Shomali, Z. (2022). A time-fractional dual-phase-lag framework to investigate transistors with TMTC channels (TiS3, In4Se3) and size-dependent properties. Micr Na, 168, 207304. Fotovvat, M. H., & Shomali, Z. (2022). A time-fractional dual-phase-lag framework to investigate transistors with TMTC channels (TiS3, In4Se3) and size-dependent properties. Micr Na, 168, 207304.
37.
Zurück zum Zitat Emamipour, H. (2022). Study of differential shot noise in ferromagnet-insulator-superconductor graphene junction with TRSB. Micr Na, 164, 107167. Emamipour, H. (2022). Study of differential shot noise in ferromagnet-insulator-superconductor graphene junction with TRSB. Micr Na, 164, 107167.
38.
Zurück zum Zitat Melkoud, S., Nafidi, A., & Barkissy, D. (2022). Effect of wells thicknesses disorder on quantum magneto-transport properties in GaAs/AlxGa1-xAs multi-quantum wells near wavelength infrared detectors. Micr Na, 163, 107138. Melkoud, S., Nafidi, A., & Barkissy, D. (2022). Effect of wells thicknesses disorder on quantum magneto-transport properties in GaAs/AlxGa1-xAs multi-quantum wells near wavelength infrared detectors. Micr Na, 163, 107138.
39.
Zurück zum Zitat Mohadesi, V., Asghari, A., Siahpoush, V., & Taheri, S. S. (2022). Analysis and optimization of graphene based reconfigurable electro-optical switches. Micr Na, 165, 207193. Mohadesi, V., Asghari, A., Siahpoush, V., & Taheri, S. S. (2022). Analysis and optimization of graphene based reconfigurable electro-optical switches. Micr Na, 165, 207193.
40.
Zurück zum Zitat Jain, N., Sharma, S. K., Kumawat, R., Jain, P. K., Kumar, D., & Vyas, R. (2022). Resistive switching, endurance and retention properties of ZnO/HfO2 bilayer heterostructure memory device. Micr Na, 169, 207366. Jain, N., Sharma, S. K., Kumawat, R., Jain, P. K., Kumar, D., & Vyas, R. (2022). Resistive switching, endurance and retention properties of ZnO/HfO2 bilayer heterostructure memory device. Micr Na, 169, 207366.
41.
Zurück zum Zitat Singh, P., Kumari, V., Saxena, M., & Gupta, M. (2022). E-mode All-GaN-Integrated cascode MISHEMT with GaN/InAlGaN/GaN backbarrier for high power switching performance: Simulation study. Micr Na, 164, 107118. Singh, P., Kumari, V., Saxena, M., & Gupta, M. (2022). E-mode All-GaN-Integrated cascode MISHEMT with GaN/InAlGaN/GaN backbarrier for high power switching performance: Simulation study. Micr Na, 164, 107118.
43.
Zurück zum Zitat Al-Fadhali, N., Majid, H., & Omar, R. (2021). Multiband frequency reconfigurable substrate integrated waveguide antenna using copper strip for cognitive radio applicable to internet of things application. Telecommunication Systems, 76, 345–358.CrossRef Al-Fadhali, N., Majid, H., & Omar, R. (2021). Multiband frequency reconfigurable substrate integrated waveguide antenna using copper strip for cognitive radio applicable to internet of things application. Telecommunication Systems, 76, 345–358.CrossRef
44.
Zurück zum Zitat Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197–200.CrossRefADSPubMed Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Katsnelson, M. I., Grigorieva, I. V., Dubonos, S. V., & Firsov, A. A. (2005). Two-dimensional gas of massless Dirac fermions in graphene. Nature, 438(7065), 197–200.CrossRefADSPubMed
45.
Zurück zum Zitat Reyna, A., Garza, J. C., Elizarraras, O., et al. (2021). 3D random virtual antenna arrays for FANETs wireless links. Telecommunication Systems, 77, 469–477.CrossRef Reyna, A., Garza, J. C., Elizarraras, O., et al. (2021). 3D random virtual antenna arrays for FANETs wireless links. Telecommunication Systems, 77, 469–477.CrossRef
46.
Zurück zum Zitat Jiménez, D. A., Reyna, A., Panduro, M. A., et al. (2020). UAVs-based antenna arrays using time modulation. Telecommunication Systems, 74, 113–127.CrossRef Jiménez, D. A., Reyna, A., Panduro, M. A., et al. (2020). UAVs-based antenna arrays using time modulation. Telecommunication Systems, 74, 113–127.CrossRef
47.
Zurück zum Zitat Ziani, D., Meriah, S. M., Derraz, F., et al. (2023). A compact asymmetrically slotted antipodal Vivaldi antenna for MIMO imaging systems. Telecommunication Systems, 83, 267–275.CrossRef Ziani, D., Meriah, S. M., Derraz, F., et al. (2023). A compact asymmetrically slotted antipodal Vivaldi antenna for MIMO imaging systems. Telecommunication Systems, 83, 267–275.CrossRef
48.
Zurück zum Zitat Azim, R., Islam, M. T., & Misran, N. (2013). Printed circular disc compact planar antenna for UWB applications. Telecommunication Systems, 52, 1171–1177. Azim, R., Islam, M. T., & Misran, N. (2013). Printed circular disc compact planar antenna for UWB applications. Telecommunication Systems, 52, 1171–1177.
49.
Zurück zum Zitat Rohaninezhad, M., Ghayekhloo, A., Afsahi, M., & Denidni, T. A. (2022). Design of a transparent system for mutual coupling reduction of microstrip array antennas with confined water. Physics Status Solid (A) App Material Science, 219(12), 2200082.CrossRefADS Rohaninezhad, M., Ghayekhloo, A., Afsahi, M., & Denidni, T. A. (2022). Design of a transparent system for mutual coupling reduction of microstrip array antennas with confined water. Physics Status Solid (A) App Material Science, 219(12), 2200082.CrossRefADS
50.
Zurück zum Zitat Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2023). Reconfigurable graphene-gold-based microstrip patch antenna: RHCP to LHCP. Micr Na, 175, 207509. Kiani, N., Tavakol Hamedani, F., & Rezaei, P. (2023). Reconfigurable graphene-gold-based microstrip patch antenna: RHCP to LHCP. Micr Na, 175, 207509.
51.
Zurück zum Zitat Hanson, G. W. (2008). Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Transactions on Antennas and Propagation, 56(3), 747–757.CrossRefADS Hanson, G. W. (2008). Dyadic Green’s functions for an anisotropic, non-local model of biased graphene. IEEE Transactions on Antennas and Propagation, 56(3), 747–757.CrossRefADS
52.
Zurück zum Zitat Falkovsky, L. A. (2007). Unusual field and temperature dependence of the hall effect in graphene. Physical Review B, 75, 033409.CrossRefADS Falkovsky, L. A. (2007). Unusual field and temperature dependence of the hall effect in graphene. Physical Review B, 75, 033409.CrossRefADS
53.
Zurück zum Zitat Gusynin, V. P., Sharapov, S. G., & Charlotte, J. P. (2007). Magneto-optical conductivity in graphene. Journal Physics Condense Matterials, 19(2), 026222.CrossRefADS Gusynin, V. P., Sharapov, S. G., & Charlotte, J. P. (2007). Magneto-optical conductivity in graphene. Journal Physics Condense Matterials, 19(2), 026222.CrossRefADS
54.
Zurück zum Zitat Garza, J. C., Reyna, A., Balderas, L. I., et al. (2013). Dual-band virtual antenna array with time modulation in presence of position perturbations. Telecommunication Systems, 52, 1171–1177. Garza, J. C., Reyna, A., Balderas, L. I., et al. (2013). Dual-band virtual antenna array with time modulation in presence of position perturbations. Telecommunication Systems, 52, 1171–1177.
55.
Zurück zum Zitat Alanazi, F. (2023). Physical layer security of cognitive radio networks with adaptive transmit power and multi-antenna energy harvesting. Telecommunication Systems, 83, 91–99.CrossRef Alanazi, F. (2023). Physical layer security of cognitive radio networks with adaptive transmit power and multi-antenna energy harvesting. Telecommunication Systems, 83, 91–99.CrossRef
56.
Zurück zum Zitat Hanson, G. W. (2008). Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics., 103(6), 06430210643028.CrossRef Hanson, G. W. (2008). Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. Journal of Applied Physics., 103(6), 06430210643028.CrossRef
57.
Zurück zum Zitat Gómez-Díaz, J. S., Esquius-Morote, M., & Perruisseau-Carrier, J. (2013). Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips. Optics Express, 21(21), 24856–24872.CrossRefADSPubMed Gómez-Díaz, J. S., Esquius-Morote, M., & Perruisseau-Carrier, J. (2013). Plane wave excitation-detection of non-resonant plasmons along finite-width graphene strips. Optics Express, 21(21), 24856–24872.CrossRefADSPubMed
58.
Zurück zum Zitat Slepyan, G. Y., Maksimenko, S. A., Lakhtakia, A., Yevtushenko, O., & Gusakov, A. V. (1999). Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Physical Review B, 60, 17136.CrossRefADS Slepyan, G. Y., Maksimenko, S. A., Lakhtakia, A., Yevtushenko, O., & Gusakov, A. V. (1999). Electrodynamics of carbon nanotubes: Dynamic conductivity, impedance boundary conditions, and surface wave propagation. Physical Review B, 60, 17136.CrossRefADS
59.
Zurück zum Zitat Bouchibane, F. Z., Tayakout, H., & Boutellaa, E. (2023). A deep learning-based antenna selection approach in MIMO system. Telecommunication Systems, 84, 69–76.CrossRef Bouchibane, F. Z., Tayakout, H., & Boutellaa, E. (2023). A deep learning-based antenna selection approach in MIMO system. Telecommunication Systems, 84, 69–76.CrossRef
60.
Zurück zum Zitat Khalid, S., Mehmood, R., W.b. Abbas, et al. (2021). Probabilistic distribution learning algorithm based transmit antenna selection and precoding for millimeter wave massive MIMO systems. Telecommunication Systems, 76, 449–460.CrossRef Khalid, S., Mehmood, R., W.b. Abbas, et al. (2021). Probabilistic distribution learning algorithm based transmit antenna selection and precoding for millimeter wave massive MIMO systems. Telecommunication Systems, 76, 449–460.CrossRef
61.
Zurück zum Zitat Yang, Y., Zeng, Y., & Chen, Q. (2017). Model of input impedance of a circular-loop antenna. Telecommunication Systems, 65, 331–337.CrossRef Yang, Y., Zeng, Y., & Chen, Q. (2017). Model of input impedance of a circular-loop antenna. Telecommunication Systems, 65, 331–337.CrossRef
62.
Zurück zum Zitat Zhang, M., Zheng, J., & He, Y. (2020). Secure transmission scheme for SWIPT-powered full-duplex relay system with multi-antenna based on energy cooperation and cooperative jamming. Telecommunication Systems, 74, 55–66.CrossRef Zhang, M., Zheng, J., & He, Y. (2020). Secure transmission scheme for SWIPT-powered full-duplex relay system with multi-antenna based on energy cooperation and cooperative jamming. Telecommunication Systems, 74, 55–66.CrossRef
63.
Zurück zum Zitat Pattanayak, P., & Kumar, P. (2019). Combined user and antenna scheduling scheme for MIMO–OFDM networks. Telecommunication Systems, 70, 3–12.CrossRef Pattanayak, P., & Kumar, P. (2019). Combined user and antenna scheduling scheme for MIMO–OFDM networks. Telecommunication Systems, 70, 3–12.CrossRef
64.
Zurück zum Zitat Qureshi, M. N., Tiwana, M. I., & Haddad, M. (2019). Distributed self optimization techniques for heterogeneous network environments using active antenna tilt systems. Telecommunication Systems, 70, 379–389.CrossRef Qureshi, M. N., Tiwana, M. I., & Haddad, M. (2019). Distributed self optimization techniques for heterogeneous network environments using active antenna tilt systems. Telecommunication Systems, 70, 379–389.CrossRef
66.
Zurück zum Zitat Meiguni, J. S., & Ghobadi Rad, A. (2015). WLAN substrate-integrated waveguide filter with novel negative coupling structure. Journal Modeling and Simulation in Electrical and Electronics Engineering, 1(2), 15–18. Meiguni, J. S., & Ghobadi Rad, A. (2015). WLAN substrate-integrated waveguide filter with novel negative coupling structure. Journal Modeling and Simulation in Electrical and Electronics Engineering, 1(2), 15–18.
67.
Zurück zum Zitat Pourghorban Saghati, A., Mirsalehi, M., & Neshati, M. (2014). A HMSIW circularly polarized leaky-wave antenna with backward, broadside, forward radiation. IEEE Antennas and Wireless Propagation Letters, 13, 451–454.CrossRefADS Pourghorban Saghati, A., Mirsalehi, M., & Neshati, M. (2014). A HMSIW circularly polarized leaky-wave antenna with backward, broadside, forward radiation. IEEE Antennas and Wireless Propagation Letters, 13, 451–454.CrossRefADS
Metadaten
Titel
Design of an ultra-compact reconfigurable IDC graphene-based SIW antenna in THz band with RHCP
verfasst von
Narges Kiani
Farzad Tavakkol Hamedani
Pejman Rezaei
Publikationsdatum
06.01.2024
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 3/2024
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-023-01088-0

Weitere Artikel der Ausgabe 3/2024

Telecommunication Systems 3/2024 Zur Ausgabe

Neuer Inhalt