Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 3/2022

05.11.2021

Effect of Alternating Current and Cathodic Protection on Corrosion of X80 Steel in Alkaline Soil

verfasst von: Bo Liu, Cuiwei Du, Xiaogang Li, Dan Wang, Jin Xu, Cheng Sun, Lihui Yang, Baorong Hou

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 3/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

X80 steel was buried in alkaline soil for 0.5, 1, and 2 years under conditions of natural burial, alternating current interference, and cathodic protection. The morphology and influence mechanism of X80 steel corrosion under nine different test conditions were studied through field data collection, macroscopic morphology observation, weight loss analysis, electrochemical methods, and corrosion product analysis. The results show that the rate of corrosion of X80 steel decreased with increase in the burial time under different test conditions. The corrosion rate of X80 steel under 15 VCSE and 30 VCSE alternating current interference increased at least 4.66 and 4.73 times, respectively, compared with that under natural environment. At the same time, the corrosion morphology exhibited more numerous and deeper pits. Under the cathodic protection of Mg or Zn, the corrosion rate of X80 steel decreased noticeably, whether under natural environment or under alternating current interference. The cathodic protection efficiency of Mg and Zn was higher than 76.04% under different test conditions and periods. The corrosion products of X80 steel were mainly found to be α-FeOOH and γ-FeOOH, and the overall structure of the rust layer was relatively stable. Moreover, the resistance of the rust layer on the sample surface under cathodic protection was small, which indicates that cathodic protection can effectively alleviate alternating current corrosion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. Gervasyev, I. Pyshmintsev, R. Petrov, C. Huo and F. Barbaro, Splitting Susceptibility in Modern X80 Pipeline Steels, Mater. Sci. Eng. A, 2020, 772(10), p 138746.CrossRef A. Gervasyev, I. Pyshmintsev, R. Petrov, C. Huo and F. Barbaro, Splitting Susceptibility in Modern X80 Pipeline Steels, Mater. Sci. Eng. A, 2020, 772(10), p 138746.CrossRef
2.
Zurück zum Zitat M. Büchler, On the Mechanism of Cathodic Protection and Its Implications on Criteria Including AC and DC Interference Conditions, Corrosion, 2020, 76(5), p 451–463.CrossRef M. Büchler, On the Mechanism of Cathodic Protection and Its Implications on Criteria Including AC and DC Interference Conditions, Corrosion, 2020, 76(5), p 451–463.CrossRef
3.
Zurück zum Zitat A. Junker, L.J. Belmonte, N. Kioupis, L. Vendelbo Nielsen and P. Miller, Investigation of Stone-Hard-Soil Formation from AC Corrosion of Cathodically Protected Pipeline, Mater. Corrosion, 2018, 69(9), p 1170–1179.CrossRef A. Junker, L.J. Belmonte, N. Kioupis, L. Vendelbo Nielsen and P. Miller, Investigation of Stone-Hard-Soil Formation from AC Corrosion of Cathodically Protected Pipeline, Mater. Corrosion, 2018, 69(9), p 1170–1179.CrossRef
4.
Zurück zum Zitat T. Nagai, H. Yamanaka, A. Nishikawa and H. Nonaka, Influence of Anodic Current on Corrosion Protection of Buried Steel Pipeline under Cathodic Protection, J. Soc. Mater. Sci. Japan, 2015, 64(12), p 997–1002.CrossRef T. Nagai, H. Yamanaka, A. Nishikawa and H. Nonaka, Influence of Anodic Current on Corrosion Protection of Buried Steel Pipeline under Cathodic Protection, J. Soc. Mater. Sci. Japan, 2015, 64(12), p 997–1002.CrossRef
5.
Zurück zum Zitat Z. Yu, L. Liu, Z. Wang, M. Li and X. Wang, Evaluation of the Interference Effects of HVDC Grounding Current on a Buried Pipeline, IEEE Trans. Appl. Supercond., 2019, 29(2), p 1–5. Z. Yu, L. Liu, Z. Wang, M. Li and X. Wang, Evaluation of the Interference Effects of HVDC Grounding Current on a Buried Pipeline, IEEE Trans. Appl. Supercond., 2019, 29(2), p 1–5.
6.
Zurück zum Zitat M. Attarchi, A. Brenna and M. Ormellese, Cathodic Protection and DC Non-Stationary Anodic Interference, J. Nat. Gas Sci. Eng., 2020, 82(3), p 103497.CrossRef M. Attarchi, A. Brenna and M. Ormellese, Cathodic Protection and DC Non-Stationary Anodic Interference, J. Nat. Gas Sci. Eng., 2020, 82(3), p 103497.CrossRef
7.
Zurück zum Zitat U.M. Angst, A Critical Review of the Science and Engineering of Cathodic Protection of Steel in Soil and Concrete, Corrosion, 2019, 75(12), p 1420–1433.CrossRef U.M. Angst, A Critical Review of the Science and Engineering of Cathodic Protection of Steel in Soil and Concrete, Corrosion, 2019, 75(12), p 1420–1433.CrossRef
8.
Zurück zum Zitat Y. Hosokawa, F. Kajiyama and T. Fukuoka, Alternating Current Corrosion Risk Arising from Alternating Current-Powered Rail Transit Systems on Cathodically Protected Buried Steel Pipelines and Its Measures, Corrosion, 2004, 60(4), p 408–413.CrossRef Y. Hosokawa, F. Kajiyama and T. Fukuoka, Alternating Current Corrosion Risk Arising from Alternating Current-Powered Rail Transit Systems on Cathodically Protected Buried Steel Pipelines and Its Measures, Corrosion, 2004, 60(4), p 408–413.CrossRef
9.
Zurück zum Zitat M. Ormellese, S. Goidanich and L. Lazzari, Effect of AC Interference on Cathodic Protection Monitoring, Corros. Eng. Sci. Technol., 2011, 46, p 618–623.CrossRef M. Ormellese, S. Goidanich and L. Lazzari, Effect of AC Interference on Cathodic Protection Monitoring, Corros. Eng. Sci. Technol., 2011, 46, p 618–623.CrossRef
10.
Zurück zum Zitat E. Ghanbari, M. Iannuzzi and R.S. Lillard, The Mechanism of Alternating Current Corrosion of API Grade X65 Pipeline Steel, Corrosion, 2016, 72(9), p 1196–1210.CrossRef E. Ghanbari, M. Iannuzzi and R.S. Lillard, The Mechanism of Alternating Current Corrosion of API Grade X65 Pipeline Steel, Corrosion, 2016, 72(9), p 1196–1210.CrossRef
11.
Zurück zum Zitat H.X. Wang, D. Song, Z.Y. Liu, C.W. Du and X.G. Li, Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment, Acta Metallurgica Sinica, 2017, 53(05), p 575–582.CrossRef H.X. Wang, D. Song, Z.Y. Liu, C.W. Du and X.G. Li, Effect of Alternating Current on Corrosion Behavior of X80 Pipeline Steel in Near-Neutral Environment, Acta Metallurgica Sinica, 2017, 53(05), p 575–582.CrossRef
12.
Zurück zum Zitat Q. Qin, B. Wei, Y. Bai, L. Nan, J. Xu, C. Yu and C. Sun, Effect of Alternating Current Frequency on Corrosion Behavior of X80 Pipeline Steel in Soil Extract Solution of Dagang, Int. J. Pressure Vessels Piping, 2020, 179(9), p 104016.CrossRef Q. Qin, B. Wei, Y. Bai, L. Nan, J. Xu, C. Yu and C. Sun, Effect of Alternating Current Frequency on Corrosion Behavior of X80 Pipeline Steel in Soil Extract Solution of Dagang, Int. J. Pressure Vessels Piping, 2020, 179(9), p 104016.CrossRef
13.
Zurück zum Zitat S. Goidanich, L. Lazzari and M. Ormellese, AC Corrosion. Part 2: Parameters Influencing Corrosion Rate, Corros. Sci., 2010, 52(3), p 916–922.CrossRef S. Goidanich, L. Lazzari and M. Ormellese, AC Corrosion. Part 2: Parameters Influencing Corrosion Rate, Corros. Sci., 2010, 52(3), p 916–922.CrossRef
14.
Zurück zum Zitat D.K. Kim, S. Muralidharan, T.H. Ha, J.H. Bae, Y.C. Ha, H.G. Lee and J.D. Scantlebury, Electrochemical Studies on the Alternating Current Corrosion of Mild Steel Under Cathodic Protection Condition in Marine Environments, Electrochim. Acta, 2006, 51(25), p 5259–5267.CrossRef D.K. Kim, S. Muralidharan, T.H. Ha, J.H. Bae, Y.C. Ha, H.G. Lee and J.D. Scantlebury, Electrochemical Studies on the Alternating Current Corrosion of Mild Steel Under Cathodic Protection Condition in Marine Environments, Electrochim. Acta, 2006, 51(25), p 5259–5267.CrossRef
15.
Zurück zum Zitat D.Z. Tang, Y.X. Du, M.X. Lu, Z.T. Jiang, L. Dong and J.J. Wang, Effect of AC Current on Corrosion Behavior of Cathodically Protected Q235 Steel, Mater. Corros., 2015, 66(3), p 278–285.CrossRef D.Z. Tang, Y.X. Du, M.X. Lu, Z.T. Jiang, L. Dong and J.J. Wang, Effect of AC Current on Corrosion Behavior of Cathodically Protected Q235 Steel, Mater. Corros., 2015, 66(3), p 278–285.CrossRef
16.
Zurück zum Zitat L.Y. Xu, X. Su and Y.F. Cheng, Effect of Alternating Current on Cathodic Protection on Pipelines, Corros. Sci., 2013, 66, p 263–268.CrossRef L.Y. Xu, X. Su and Y.F. Cheng, Effect of Alternating Current on Cathodic Protection on Pipelines, Corros. Sci., 2013, 66, p 263–268.CrossRef
17.
Zurück zum Zitat M. Zhu and C.W. Du, A New Understanding on AC Corrosion of Pipeline Steel in Alkaline Environment, J. Mater. Eng. Perform., 2017, 26(1), p 221–228.CrossRef M. Zhu and C.W. Du, A New Understanding on AC Corrosion of Pipeline Steel in Alkaline Environment, J. Mater. Eng. Perform., 2017, 26(1), p 221–228.CrossRef
18.
Zurück zum Zitat B. Wei, J. Xu, Q. Qin, Q. Fu, Y. Bai, C. Yu, C. Sun and W. Ke, Comparison of AC Corrosion of X80 Steel in Real Soil, Soil Extract Solution, and Simulated Solution, J. Mater. Eng. Perform., 2020, 29(8), p 4967–4977.CrossRef B. Wei, J. Xu, Q. Qin, Q. Fu, Y. Bai, C. Yu, C. Sun and W. Ke, Comparison of AC Corrosion of X80 Steel in Real Soil, Soil Extract Solution, and Simulated Solution, J. Mater. Eng. Perform., 2020, 29(8), p 4967–4977.CrossRef
19.
Zurück zum Zitat M. Zhu, Y.F. Yuan, S.M. Yin, G.H. Yu, S.Y. Guo, Y.Z. Huang and C.W. Du, Corrosion Behavior of Pipeline Steel with Different Microstructures Under AC Interference in Acid Soil Simulation Solution, J. Mater. Eng. Perform., 2019, 28(3), p 1698–1706.CrossRef M. Zhu, Y.F. Yuan, S.M. Yin, G.H. Yu, S.Y. Guo, Y.Z. Huang and C.W. Du, Corrosion Behavior of Pipeline Steel with Different Microstructures Under AC Interference in Acid Soil Simulation Solution, J. Mater. Eng. Perform., 2019, 28(3), p 1698–1706.CrossRef
20.
Zurück zum Zitat Y. Du, Y. Liang, D. Tang and S. Xie, Discussion on AC Corrosion Rate Assessment and Mechanism for Cathodically Protected Pipelines, Corrosion, 2021, 77, p 600–617.CrossRef Y. Du, Y. Liang, D. Tang and S. Xie, Discussion on AC Corrosion Rate Assessment and Mechanism for Cathodically Protected Pipelines, Corrosion, 2021, 77, p 600–617.CrossRef
21.
Zurück zum Zitat B. Wei, Q. Qin, Q. Fu, Y. Bai, J. Xu, C. Yu, C. Sun and W. Ke, X80 Steel Corrosion Induced by Alternating Current in Water-Saturated Acidic Soil, Corrosion, 2020, 76(3), p 248–267.CrossRef B. Wei, Q. Qin, Q. Fu, Y. Bai, J. Xu, C. Yu, C. Sun and W. Ke, X80 Steel Corrosion Induced by Alternating Current in Water-Saturated Acidic Soil, Corrosion, 2020, 76(3), p 248–267.CrossRef
22.
Zurück zum Zitat A. Moran and R.S. Lillard, AC Corrosion Evaluation of Cathodically Protected Pipeline Steel, Corrosion, 2018, 75(2), p 144–146.CrossRef A. Moran and R.S. Lillard, AC Corrosion Evaluation of Cathodically Protected Pipeline Steel, Corrosion, 2018, 75(2), p 144–146.CrossRef
23.
Zurück zum Zitat Z. Jiang, Y. Du, L. Dong and M. Lu, Effect of AC Current on Corrosion Potention of Q235 Steel, ACTA Materialia Sinica, 2011, 47(8), p 997–1002. Z. Jiang, Y. Du, L. Dong and M. Lu, Effect of AC Current on Corrosion Potention of Q235 Steel, ACTA Materialia Sinica, 2011, 47(8), p 997–1002.
24.
Zurück zum Zitat L.W. Wang, X.H. Wang, Z.Y. Cui, Z.Y. Liu, C.W. Du and X.G. Li, Effect of Alternating Voltage on Corrosion of X80 and X100 Steels in a Chloride Containing Solution – Investigated by AC Voltammetry Technique, Corros. Sci., 2014, 86(13), p 213–222.CrossRef L.W. Wang, X.H. Wang, Z.Y. Cui, Z.Y. Liu, C.W. Du and X.G. Li, Effect of Alternating Voltage on Corrosion of X80 and X100 Steels in a Chloride Containing Solution – Investigated by AC Voltammetry Technique, Corros. Sci., 2014, 86(13), p 213–222.CrossRef
25.
Zurück zum Zitat K.M. Moon, M.H. Lee and T.S. Baek, A Study on Galvanic Current Variation of Zn Sacrificial Anode Made by Including of Additive in Solutions with Various Conductivities, Mater. Sci. Forum, 2018, 926, p 25–30.CrossRef K.M. Moon, M.H. Lee and T.S. Baek, A Study on Galvanic Current Variation of Zn Sacrificial Anode Made by Including of Additive in Solutions with Various Conductivities, Mater. Sci. Forum, 2018, 926, p 25–30.CrossRef
26.
Zurück zum Zitat A.J. Olesen, K. Dideriksen, L.V. Nielsen and P. Møller, Corrosion Rate Measurement and Oxide Investigation of AC Corrosion at Varying AC/DC Current Densities, Corrosion, 2019, 75(9), p 1026–1033.CrossRef A.J. Olesen, K. Dideriksen, L.V. Nielsen and P. Møller, Corrosion Rate Measurement and Oxide Investigation of AC Corrosion at Varying AC/DC Current Densities, Corrosion, 2019, 75(9), p 1026–1033.CrossRef
27.
Zurück zum Zitat Y. Yang, X. Cheng, J. Zhao, Y. Fan and X. Li, A Study of Rust Layer of Low Alloy Structural Steel Containing 0.1 % Sb in Atmospheric Environment of the Yellow Sea in China, Corros. Sci., 2021, 188, p 109549.CrossRef Y. Yang, X. Cheng, J. Zhao, Y. Fan and X. Li, A Study of Rust Layer of Low Alloy Structural Steel Containing 0.1 % Sb in Atmospheric Environment of the Yellow Sea in China, Corros. Sci., 2021, 188, p 109549.CrossRef
28.
Zurück zum Zitat P. Wang, L. Ma, X. Cheng, X. Li, Influence of grain refinement on corrosion behaviors of metallic materials: A review Int. J. Miner. Metall. Mater. (2021) P. Wang, L. Ma, X. Cheng, X. Li, Influence of grain refinement on corrosion behaviors of metallic materials: A review Int. J. Miner. Metall. Mater. (2021)
29.
Zurück zum Zitat D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man and X. Li, Superior Resistance to Hydrogen Damage for Selective Laser Melted 316L Stainless Steel in a Proton Exchange Membrane Fuel Cell Environment, Corros. Sci., 2020, 166, p 108425.CrossRef D. Kong, C. Dong, X. Ni, L. Zhang, H. Luo, R. Li, L. Wang, C. Man and X. Li, Superior Resistance to Hydrogen Damage for Selective Laser Melted 316L Stainless Steel in a Proton Exchange Membrane Fuel Cell Environment, Corros. Sci., 2020, 166, p 108425.CrossRef
30.
Zurück zum Zitat D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-Functional and Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.CrossRef D. Kong, X. Ni, C. Dong, X. Lei, L. Zhang, C. Man, J. Yao, X. Cheng and X. Li, Bio-Functional and Anti-Corrosive 3D Printing 316L Stainless Steel Fabricated by Selective Laser Melting, Mater. Des., 2018, 152, p 88–101.CrossRef
31.
Zurück zum Zitat L.W. Wang, C.F. Dong, D.W. Zhang, X.G. Sun and T. Chowwanonthapunya, Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand, Acta Metallurgica Sinica, 2020, 56(01), p 119–128. L.W. Wang, C.F. Dong, D.W. Zhang, X.G. Sun and T. Chowwanonthapunya, Effect of Alloying Elements on Initial Corrosion Behavior of Aluminum Alloy in Bangkok, Thailand, Acta Metallurgica Sinica, 2020, 56(01), p 119–128.
32.
Zurück zum Zitat Y. Zhao, W. Liu, Y. Fan, E. Fan, B. Dong, T. Zhang and X. Li, Effect of Cr Content on the Passivation Behavior of Cr Alloy Steel in a CO2 Aqueous Environment Containing Silty Sand, Corros. Sci., 2020, 168(9), p 108591.CrossRef Y. Zhao, W. Liu, Y. Fan, E. Fan, B. Dong, T. Zhang and X. Li, Effect of Cr Content on the Passivation Behavior of Cr Alloy Steel in a CO2 Aqueous Environment Containing Silty Sand, Corros. Sci., 2020, 168(9), p 108591.CrossRef
33.
Zurück zum Zitat A. Contreras, L.M. Quej, H.B. Liu, J.L. Alamilla and E. Sosa, Role of Mexican Clay Soils on Corrosiveness and Stress Corrosion Cracking of Low-Carbon Pipeline Steels: A Case Study, Corrosion, 2020, 76(10), p 967–984.CrossRef A. Contreras, L.M. Quej, H.B. Liu, J.L. Alamilla and E. Sosa, Role of Mexican Clay Soils on Corrosiveness and Stress Corrosion Cracking of Low-Carbon Pipeline Steels: A Case Study, Corrosion, 2020, 76(10), p 967–984.CrossRef
34.
Zurück zum Zitat E. Rocca, H. Faiz, P. Dillmann, D. Neff and F. Mirambet, Electrochemical Behavior of Thick Rust Layers on Steel Artefact: Mechanism of Corrosion Inhibition, Electrochim. Acta, 2019, 316(10), p 219–227.CrossRef E. Rocca, H. Faiz, P. Dillmann, D. Neff and F. Mirambet, Electrochemical Behavior of Thick Rust Layers on Steel Artefact: Mechanism of Corrosion Inhibition, Electrochim. Acta, 2019, 316(10), p 219–227.CrossRef
35.
Zurück zum Zitat A.Q. Fu and Y.F. Cheng, Effect of Alternating Current on Corrosion and Effectiveness of Cathodic Protection of Pipelines, Can. Metall. Q., 2012, 51(1), p 81–90.CrossRef A.Q. Fu and Y.F. Cheng, Effect of Alternating Current on Corrosion and Effectiveness of Cathodic Protection of Pipelines, Can. Metall. Q., 2012, 51(1), p 81–90.CrossRef
36.
Zurück zum Zitat Z. Liu, G. Zhai, X. Li and C. Du, Effect of Deteriorated Microstructures on Stress Corrosion Cracking of X70 Pipeline Steel in Acidic Soil Environment, J. Univ. Sci. Technol. Beijing Min. Metall. Mater., 2008, 15(6), p 707–713. Z. Liu, G. Zhai, X. Li and C. Du, Effect of Deteriorated Microstructures on Stress Corrosion Cracking of X70 Pipeline Steel in Acidic Soil Environment, J. Univ. Sci. Technol. Beijing Min. Metall. Mater., 2008, 15(6), p 707–713.
37.
Zurück zum Zitat L. Song, Z. Liu, X. Li and C. Du, Characteristics of Hydrogen Embrittlement in High-pH Stress Corrosion Cracking of X100 Pipeline Steel in Carbonate/Bicarbonate Solution, Constr. Build. Mater., 2020, 263(10), p 120124.CrossRef L. Song, Z. Liu, X. Li and C. Du, Characteristics of Hydrogen Embrittlement in High-pH Stress Corrosion Cracking of X100 Pipeline Steel in Carbonate/Bicarbonate Solution, Constr. Build. Mater., 2020, 263(10), p 120124.CrossRef
38.
Zurück zum Zitat P. Refait and J.M.R. Génin, The Oxidation of Ferrous Hydroxide in Chloride-Containing Aqueous Media and Pourbaix Diagrams of Green Rust One, Corros. Sci., 1993, 34(5), p 797–819.CrossRef P. Refait and J.M.R. Génin, The Oxidation of Ferrous Hydroxide in Chloride-Containing Aqueous Media and Pourbaix Diagrams of Green Rust One, Corros. Sci., 1993, 34(5), p 797–819.CrossRef
39.
Zurück zum Zitat M. Abdelmoula, P. Refait, S.H. Drissi, J.P. Mihe and J.M.R. Génin, Conversion Electron Mössbauer Spectroscopy and X-ray Diffraction Studies of the Formation of Carbonate-Containing Green Rust One by Corrosion of Metallic Iron in NaHCO3 and (NaHCO3 + NaCl) Solutions, Corros. Sci., 1996, 38(4), p 623–633.CrossRef M. Abdelmoula, P. Refait, S.H. Drissi, J.P. Mihe and J.M.R. Génin, Conversion Electron Mössbauer Spectroscopy and X-ray Diffraction Studies of the Formation of Carbonate-Containing Green Rust One by Corrosion of Metallic Iron in NaHCO3 and (NaHCO3 + NaCl) Solutions, Corros. Sci., 1996, 38(4), p 623–633.CrossRef
40.
Zurück zum Zitat P. Refait, M. Abdelmoula, J.-M.R. Génin and R. Sabot, Green Rusts in Electrochemical and Microbially Influenced Corrosion of Steel, C.R. Geosci., 2006, 338(6), p 476–487.CrossRef P. Refait, M. Abdelmoula, J.-M.R. Génin and R. Sabot, Green Rusts in Electrochemical and Microbially Influenced Corrosion of Steel, C.R. Geosci., 2006, 338(6), p 476–487.CrossRef
41.
Zurück zum Zitat W. Wu, W. Hao, Z. Liu, X. Li and C. Du, Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments, Constr. Build. Mater., 2020, 239(11), p 117903.CrossRef W. Wu, W. Hao, Z. Liu, X. Li and C. Du, Comparative study of the stress corrosion behavior of a multiuse bainite steel in the simulated tropical marine atmosphere and seawater environments, Constr. Build. Mater., 2020, 239(11), p 117903.CrossRef
42.
Zurück zum Zitat L.Y. Xu, X. Su, Z.X. Yin, Y.H. Tang and Y.F. Cheng, Development of a Real-Time AC/DC Data Acquisition Technique for Studies of AC Corrosion of Pipelines, Corros. Sci., 2012, 61(12), p 215–223.CrossRef L.Y. Xu, X. Su, Z.X. Yin, Y.H. Tang and Y.F. Cheng, Development of a Real-Time AC/DC Data Acquisition Technique for Studies of AC Corrosion of Pipelines, Corros. Sci., 2012, 61(12), p 215–223.CrossRef
Metadaten
Titel
Effect of Alternating Current and Cathodic Protection on Corrosion of X80 Steel in Alkaline Soil
verfasst von
Bo Liu
Cuiwei Du
Xiaogang Li
Dan Wang
Jin Xu
Cheng Sun
Lihui Yang
Baorong Hou
Publikationsdatum
05.11.2021
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 3/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-021-06309-8

Weitere Artikel der Ausgabe 3/2022

Journal of Materials Engineering and Performance 3/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.