Skip to main content
Erschienen in: Journal of Computational Electronics 4/2023

26.05.2023

Engineering the light absorption spectrum and electronic properties of black and blue phases of a SiSe monolayer via biaxial straining

verfasst von: Somayeh Behzad, Raad Chegel

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Black and blue SiSe monolayers are new types of group IV–VI two-dimensional semiconductors. The structural, electrical, and optical characteristics of black and blue SiSe monolayers subjected to in-plane biaxial strain are examined using first-principles calculations. Both monolayers exhibit an indirect band gap that is sensitively dependent to the application of strain. The black and blue SiSe monolayers have band gaps of 1.11 eV (2.94 eV) and 0.62 eV (2.12 eV) computed by the Perdew–Burke–Ernzerhof (PBE) Heyd–Scuseria–Ernzerhof (HSE06) functional. The band gap (based on HSE06 method) reduces when compressive or tensile biaxial strain is applied to the blue SiSe monolayer. The electronic band gap of the black SiSe monolayer increases with the tensile biaxial strain and reduces in the presence of compressive biaxial strain. We found that the blue SiSe monolayer remains a semiconductor under biaxial strain from −6% to 6%, while the black SiSe monolayer experiences a transition from semiconductor to metal when subjected to compressive biaxial strain of about −4%. These results show very intriguing possibilities to modify the electrical and optical properties of SiSe sheet.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805 (2010)CrossRef Mak, K.F., Lee, C., Hone, J., Shan, J., Heinz, T.F.: Atomically Thin ${\mathrm{MoS}}_{2}$: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 105, 136805 (2010)CrossRef
2.
Zurück zum Zitat Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)CrossRef Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699–712 (2012)CrossRef
3.
Zurück zum Zitat Osanloo, M.R., Van de Put, M.L., Saadat, A., Vandenberghe, W.G.: Identification of two-dimensional layered dielectrics from first principles. Nat. Commun. 12, 5051 (2021)CrossRef Osanloo, M.R., Van de Put, M.L., Saadat, A., Vandenberghe, W.G.: Identification of two-dimensional layered dielectrics from first principles. Nat. Commun. 12, 5051 (2021)CrossRef
4.
Zurück zum Zitat Xiao, H., Shi, X., Hao, F., Liao, X., Zhang, Y., Chen, X.: Development of a transferable reactive force field of P/H systems: application to the chemical and mechanical properties of phosphorene. J. Phys. Chem. A 121, 6135–6149 (2017)CrossRef Xiao, H., Shi, X., Hao, F., Liao, X., Zhang, Y., Chen, X.: Development of a transferable reactive force field of P/H systems: application to the chemical and mechanical properties of phosphorene. J. Phys. Chem. A 121, 6135–6149 (2017)CrossRef
5.
Zurück zum Zitat Lu, W., Nan, H., Hong, J., Chen, Y., Zhu, C., Liang, Z., Ma, X., Ni, Z., Jin, C., Zhang, Z.: Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014)CrossRef Lu, W., Nan, H., Hong, J., Chen, Y., Zhu, C., Liang, Z., Ma, X., Ni, Z., Jin, C., Zhang, Z.: Plasma-assisted fabrication of monolayer phosphorene and its Raman characterization. Nano Res. 7, 853–859 (2014)CrossRef
6.
Zurück zum Zitat Sannyal, A., Ahn, Y., Jang, J.: First-principles study on the two-dimensional siligene (2D SiGe) as an anode material of an alkali metal ion battery. Comput. Mater. Sci. 165, 121–128 (2019)CrossRef Sannyal, A., Ahn, Y., Jang, J.: First-principles study on the two-dimensional siligene (2D SiGe) as an anode material of an alkali metal ion battery. Comput. Mater. Sci. 165, 121–128 (2019)CrossRef
7.
Zurück zum Zitat Zhang, Y., Rubio, A., Lay, G.L.: Emergent elemental two-dimensional materials beyond graphene. J. Phys. D Appl. Phys. 50, 053004 (2017)CrossRef Zhang, Y., Rubio, A., Lay, G.L.: Emergent elemental two-dimensional materials beyond graphene. J. Phys. D Appl. Phys. 50, 053004 (2017)CrossRef
8.
Zurück zum Zitat Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014)CrossRef Xia, F., Wang, H., Xiao, D., Dubey, M., Ramasubramaniam, A.: Two-dimensional material nanophotonics. Nat. Photonics 8, 899–907 (2014)CrossRef
9.
Zurück zum Zitat Vandenberghe, W.G., Rostami Osanloo, M.: Two-dimensional dielectrics for future electronics: hexagonal boron nitride, oxyhalides, transition-metal nitride halides, and beyond. ACS Appl. Electron. Mater. 5, 623–631 (2023)CrossRef Vandenberghe, W.G., Rostami Osanloo, M.: Two-dimensional dielectrics for future electronics: hexagonal boron nitride, oxyhalides, transition-metal nitride halides, and beyond. ACS Appl. Electron. Mater. 5, 623–631 (2023)CrossRef
10.
Zurück zum Zitat Jeong, G.H., Sasikala, S.P., Yun, T., Lee, G.Y., Lee, W.J., Kim, S.O.: Nanoscale assembly of 2D materials for energy and environmental applications. Adv. Mater. 32, 1907006 (2020)CrossRef Jeong, G.H., Sasikala, S.P., Yun, T., Lee, G.Y., Lee, W.J., Kim, S.O.: Nanoscale assembly of 2D materials for energy and environmental applications. Adv. Mater. 32, 1907006 (2020)CrossRef
11.
Zurück zum Zitat Wu, Y., Li, X., Zhao, H., Yao, F., Cao, J., Chen, Z., Huang, X., Wang, D., Yang, Q.: Recent advances in transition metal carbides and nitrides (MXenes): characteristics, environmental remediation and challenges. Chem. Eng. J. 418, 129296 (2021)CrossRef Wu, Y., Li, X., Zhao, H., Yao, F., Cao, J., Chen, Z., Huang, X., Wang, D., Yang, Q.: Recent advances in transition metal carbides and nitrides (MXenes): characteristics, environmental remediation and challenges. Chem. Eng. J. 418, 129296 (2021)CrossRef
12.
Zurück zum Zitat Khan, K., Tareen, A.K., Aslam, M., Wang, R., Zhang, Y., Mahmood, A., Ouyang, Z., Zhang, H., Guo, Z.: Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8, 387–440 (2020)CrossRef Khan, K., Tareen, A.K., Aslam, M., Wang, R., Zhang, Y., Mahmood, A., Ouyang, Z., Zhang, H., Guo, Z.: Recent developments in emerging two-dimensional materials and their applications. J. Mater. Chem. C 8, 387–440 (2020)CrossRef
13.
Zurück zum Zitat Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013)CrossRef Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013)CrossRef
14.
Zurück zum Zitat Miró, P., Audiffred, M., Heine, T.: An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014)CrossRef Miró, P., Audiffred, M., Heine, T.: An atlas of two-dimensional materials. Chem. Soc. Rev. 43, 6537–6554 (2014)CrossRef
15.
Zurück zum Zitat Wang, Y., Ding, Y.: Strain-induced self-doping in silicene and germanene from first-principles. Solid State Commun. 155, 6–11 (2013)CrossRef Wang, Y., Ding, Y.: Strain-induced self-doping in silicene and germanene from first-principles. Solid State Commun. 155, 6–11 (2013)CrossRef
16.
Zurück zum Zitat Chegel, R., Behzad, S.: Tunable electronic, optical, and thermal properties of two- dimensional Germanene via an external electric field. Sci. Rep. 10, 704 (2020)CrossRef Chegel, R., Behzad, S.: Tunable electronic, optical, and thermal properties of two- dimensional Germanene via an external electric field. Sci. Rep. 10, 704 (2020)CrossRef
17.
Zurück zum Zitat Liu, C.-C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)CrossRef Liu, C.-C., Feng, W., Yao, Y.: Quantum spin Hall effect in silicene and two-dimensional germanium. Phys. Rev. Lett. 107, 076802 (2011)CrossRef
18.
Zurück zum Zitat Yan, J.-A., Gao, S.-P., Stein, R., Coard, G.: Tuning the electronic structure of silicene and germanene by biaxial strain and electric field. Phys. Rev. B 91, 245403 (2015)CrossRef Yan, J.-A., Gao, S.-P., Stein, R., Coard, G.: Tuning the electronic structure of silicene and germanene by biaxial strain and electric field. Phys. Rev. B 91, 245403 (2015)CrossRef
19.
Zurück zum Zitat Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., Lu, J.: Tunable bandgap in silicene and Germanene. Nano Lett. 12, 113–118 (2012)CrossRef Ni, Z., Liu, Q., Tang, K., Zheng, J., Zhou, J., Qin, R., Gao, Z., Yu, D., Lu, J.: Tunable bandgap in silicene and Germanene. Nano Lett. 12, 113–118 (2012)CrossRef
20.
Zurück zum Zitat Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)CrossRef Li, L., Yu, Y., Ye, G.J., Ge, Q., Ou, X., Wu, H., Feng, D., Chen, X.H., Zhang, Y.: Black phosphorus field-effect transistors. Nat. Nanotechnol. 9, 372–377 (2014)CrossRef
21.
Zurück zum Zitat Kamal, C., Ezawa, M.: Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423 (2015)CrossRef Kamal, C., Ezawa, M.: Arsenene: Two-dimensional buckled and puckered honeycomb arsenic systems. Phys. Rev. B 91, 085423 (2015)CrossRef
22.
Zurück zum Zitat Kubota, Y., Watanabe, K., Tsuda, O., Taniguchi, T.: deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317, 932–934 (2007)CrossRef Kubota, Y., Watanabe, K., Tsuda, O., Taniguchi, T.: deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 317, 932–934 (2007)CrossRef
23.
Zurück zum Zitat Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)CrossRef Dean, C.R., Young, A.F., Meric, I., Lee, C., Wang, L., Sorgenfrei, S., Watanabe, K., Taniguchi, T., Kim, P., Shepard, K.L., Hone, J.: Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010)CrossRef
24.
Zurück zum Zitat de Sousa, J.M., Botari, T., Perim, E., Bizao, R.A., Galvao, D.S.: Mechanical and structural properties of graphene-like carbon nitride sheets. RSC Adv. 6, 76915–76921 (2016)CrossRef de Sousa, J.M., Botari, T., Perim, E., Bizao, R.A., Galvao, D.S.: Mechanical and structural properties of graphene-like carbon nitride sheets. RSC Adv. 6, 76915–76921 (2016)CrossRef
25.
Zurück zum Zitat Mortazavi, B.: Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon 118, 25–34 (2017)CrossRef Mortazavi, B.: Ultra high stiffness and thermal conductivity of graphene like C3N. Carbon 118, 25–34 (2017)CrossRef
26.
Zurück zum Zitat Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W.: Coupled spin and valley physics in monolayers of ${\mathrm{MoS}}_{2}$ and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)CrossRef Xiao, D., Liu, G.-B., Feng, W., Xu, X., Yao, W.: Coupled spin and valley physics in monolayers of ${\mathrm{MoS}}_{2}$ and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012)CrossRef
27.
Zurück zum Zitat Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)CrossRef Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V., Kis, A.: Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011)CrossRef
28.
Zurück zum Zitat Li, C., Cao, Q., Wang, F., Xiao, Y., Li, Y., Delaunay, J.-J., Zhu, H.: Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018)CrossRef Li, C., Cao, Q., Wang, F., Xiao, Y., Li, Y., Delaunay, J.-J., Zhu, H.: Engineering graphene and TMDs based van der Waals heterostructures for photovoltaic and photoelectrochemical solar energy conversion. Chem. Soc. Rev. 47, 4981–5037 (2018)CrossRef
29.
Zurück zum Zitat Shan, W.-Y., Lu, H.-Z., Xiao, D.: Spin Hall effect in spin-valley coupled monolayers of transition metal dichalcogenides. Phys. Rev. B 88, 125301 (2013)CrossRef Shan, W.-Y., Lu, H.-Z., Xiao, D.: Spin Hall effect in spin-valley coupled monolayers of transition metal dichalcogenides. Phys. Rev. B 88, 125301 (2013)CrossRef
30.
Zurück zum Zitat Madhushankar, B.N., Kaverzin, A., Giousis, T., Potsi, G., Gournis, D., Rudolf, P., Blake, G.R., van der Wal, C.H., van Wees, B.J.: Electronic properties of germanane field-effect transistors. 2D Mater. 4, 021009 (2017)CrossRef Madhushankar, B.N., Kaverzin, A., Giousis, T., Potsi, G., Gournis, D., Rudolf, P., Blake, G.R., van der Wal, C.H., van Wees, B.J.: Electronic properties of germanane field-effect transistors. 2D Mater. 4, 021009 (2017)CrossRef
31.
Zurück zum Zitat Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6, 183–191 (2007)CrossRef
32.
Zurück zum Zitat Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., Wu, D.: Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22, 2743–2748 (2010)CrossRef Li, X., Zhu, H., Wang, K., Cao, A., Wei, J., Li, C., Jia, Y., Li, Z., Li, X., Wu, D.: Graphene-on-silicon Schottky junction solar cells. Adv. Mater. 22, 2743–2748 (2010)CrossRef
33.
Zurück zum Zitat Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef Schedin, F., Geim, A.K., Morozov, S.V., Hill, E.W., Blake, P., Katsnelson, M.I., Novoselov, K.S.: Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 6, 652–655 (2007)CrossRef
34.
Zurück zum Zitat Das, S., Pandey, D., Thomas, J., Roy, T.: The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater. 31, 1802722 (2019)CrossRef Das, S., Pandey, D., Thomas, J., Roy, T.: The role of graphene and other 2D materials in solar photovoltaics. Adv. Mater. 31, 1802722 (2019)CrossRef
35.
Zurück zum Zitat Ponraj, J.S., Xu, Z.-Q., Dhanabalan, S.C., Mu, H., Wang, Y., Yuan, J., Li, P., Thakur, S., Ashrafi, M., McCoubrey, K., Zhang, Y., Li, S., Zhang, H., Bao, Q.: Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 27, 462001 (2016)CrossRef Ponraj, J.S., Xu, Z.-Q., Dhanabalan, S.C., Mu, H., Wang, Y., Yuan, J., Li, P., Thakur, S., Ashrafi, M., McCoubrey, K., Zhang, Y., Li, S., Zhang, H., Bao, Q.: Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 27, 462001 (2016)CrossRef
36.
Zurück zum Zitat Xie, C., Mak, C., Tao, X., Yan, F.: Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Func. Mater. 27, 1603886 (2017)CrossRef Xie, C., Mak, C., Tao, X., Yan, F.: Photodetectors based on two-dimensional layered materials beyond graphene. Adv. Func. Mater. 27, 1603886 (2017)CrossRef
37.
Zurück zum Zitat Wang, K., Feng, Y., Chang, C., Zhan, J., Wang, C., Zhao, Q., Coleman, J.N., Zhang, L., Blau, W.J., Wang, J.: Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale 6, 10530–10535 (2014)CrossRef Wang, K., Feng, Y., Chang, C., Zhan, J., Wang, C., Zhao, Q., Coleman, J.N., Zhang, L., Blau, W.J., Wang, J.: Broadband ultrafast nonlinear absorption and nonlinear refraction of layered molybdenum dichalcogenide semiconductors. Nanoscale 6, 10530–10535 (2014)CrossRef
38.
Zurück zum Zitat Zhou, K.-G., Zhao, M., Chang, M.-J., Wang, Q., Wu, X.-Z., Song, Y., Zhang, H.-L.: Optical materials: size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets (small 6/2015). Small 11, 634–634 (2015)CrossRef Zhou, K.-G., Zhao, M., Chang, M.-J., Wang, Q., Wu, X.-Z., Song, Y., Zhang, H.-L.: Optical materials: size-dependent nonlinear optical properties of atomically thin transition metal dichalcogenide nanosheets (small 6/2015). Small 11, 634–634 (2015)CrossRef
39.
Zurück zum Zitat Bafekry, A., Ghergherehchi, M., Farjami Shayesteh, S.: Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: first-principles calculations. Phys. Chem. Chem. Phys. 21, 10552–10566 (2019)CrossRef Bafekry, A., Ghergherehchi, M., Farjami Shayesteh, S.: Tuning the electronic and magnetic properties of antimonene nanosheets via point defects and external fields: first-principles calculations. Phys. Chem. Chem. Phys. 21, 10552–10566 (2019)CrossRef
40.
Zurück zum Zitat Bafekry, A., Stampfl, C., Ghergherehchi, M., Farjami Shayesteh, S.: A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet. Carbon 157, 371–384 (2020)CrossRef Bafekry, A., Stampfl, C., Ghergherehchi, M., Farjami Shayesteh, S.: A first-principles study of the effects of atom impurities, defects, strain, electric field and layer thickness on the electronic and magnetic properties of the C2N nanosheet. Carbon 157, 371–384 (2020)CrossRef
41.
Zurück zum Zitat Kong, L.-J., Liu, G.-H., Zhang, Y.-J.: Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv. 6, 10919–10929 (2016)CrossRef Kong, L.-J., Liu, G.-H., Zhang, Y.-J.: Tuning the electronic and optical properties of phosphorene by transition-metal and nonmetallic atom co-doping. RSC Adv. 6, 10919–10929 (2016)CrossRef
42.
Zurück zum Zitat Roldán, R., Chirolli, L., Prada, E., Silva-Guillén, J.A., San-Jose, P., Guinea, F.: Theory of 2D crystals: graphene and beyond. Chem. Soc. Rev. 46, 4387–4399 (2017)CrossRef Roldán, R., Chirolli, L., Prada, E., Silva-Guillén, J.A., San-Jose, P., Guinea, F.: Theory of 2D crystals: graphene and beyond. Chem. Soc. Rev. 46, 4387–4399 (2017)CrossRef
43.
Zurück zum Zitat Yang, J.-H., Zhang, Y., Yin, W.-J., Gong, X.G., Yakobson, B.I., Wei, S.-H.: Two-dimensional SiS layers with promising electronic and optoelectronic properties: theoretical prediction. Nano Lett. 16, 1110–1117 (2016)CrossRef Yang, J.-H., Zhang, Y., Yin, W.-J., Gong, X.G., Yakobson, B.I., Wei, S.-H.: Two-dimensional SiS layers with promising electronic and optoelectronic properties: theoretical prediction. Nano Lett. 16, 1110–1117 (2016)CrossRef
44.
Zurück zum Zitat Zhu, Y.-L., Yuan, J.-H., Song, Y.-Q., Wang, S., Xue, K.-H., Xu, M., Cheng, X.-M., Miao, X.-S.: Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting. J. Mater. Sci. 54, 11485–11496 (2019)CrossRef Zhu, Y.-L., Yuan, J.-H., Song, Y.-Q., Wang, S., Xue, K.-H., Xu, M., Cheng, X.-M., Miao, X.-S.: Two-dimensional silicon chalcogenides with high carrier mobility for photocatalytic water splitting. J. Mater. Sci. 54, 11485–11496 (2019)CrossRef
45.
Zurück zum Zitat Zhu, Z., Guan, J., Liu, D., Tománek, D.: designing isoelectronic counterparts to layered group V semiconductors. ACS Nano 9, 8284–8290 (2015)CrossRef Zhu, Z., Guan, J., Liu, D., Tománek, D.: designing isoelectronic counterparts to layered group V semiconductors. ACS Nano 9, 8284–8290 (2015)CrossRef
46.
Zurück zum Zitat Kamal, C., Chakrabarti, A., Ezawa, M.: Direct band gaps in group IV-VI monolayer materials: binary counterparts of phosphorene. Phys. Rev. B 93, 125428 (2016)CrossRef Kamal, C., Chakrabarti, A., Ezawa, M.: Direct band gaps in group IV-VI monolayer materials: binary counterparts of phosphorene. Phys. Rev. B 93, 125428 (2016)CrossRef
47.
Zurück zum Zitat Karmakar, S., Chowdhury, C., Datta, A.: Two-dimensional group IV monochalcogenides: anode materials for Li-ion batteries. J. Phys. Chem. C 120, 14522–14530 (2016)CrossRef Karmakar, S., Chowdhury, C., Datta, A.: Two-dimensional group IV monochalcogenides: anode materials for Li-ion batteries. J. Phys. Chem. C 120, 14522–14530 (2016)CrossRef
48.
Zurück zum Zitat Jiang, H.R., Zhao, T.S., Liu, M., Wu, M.C., Yan, X.H.: Two-dimensional SiS as a potential anode material for lithium-based batteries: a first-principles study. J. Power Sources 331, 391–399 (2016)CrossRef Jiang, H.R., Zhao, T.S., Liu, M., Wu, M.C., Yan, X.H.: Two-dimensional SiS as a potential anode material for lithium-based batteries: a first-principles study. J. Power Sources 331, 391–399 (2016)CrossRef
49.
Zurück zum Zitat Du, L., Zheng, K., Cui, H., Wang, Y., Tao, L., Chen, X.: Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and F4TCNQ/blue phosphorene heterostructures: a DFT + NEGF study. Phys. Chem. Chem. Phys. 20, 28777–28785 (2018)CrossRef Du, L., Zheng, K., Cui, H., Wang, Y., Tao, L., Chen, X.: Novel electronic structures and enhanced optical properties of boron phosphide/blue phosphorene and F4TCNQ/blue phosphorene heterostructures: a DFT + NEGF study. Phys. Chem. Chem. Phys. 20, 28777–28785 (2018)CrossRef
50.
Zurück zum Zitat Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014)CrossRef Zhu, Z., Tománek, D.: Semiconducting layered blue phosphorus: a computational study. Phys. Rev. Lett. 112, 176802 (2014)CrossRef
51.
Zurück zum Zitat Shu, H., Li, Y., Niu, X., Wang, J.: The stacking dependent electronic structure and optical properties of bilayer black phosphorus. Phys. Chem. Chem. Phys. 18, 6085–6091 (2016)CrossRef Shu, H., Li, Y., Niu, X., Wang, J.: The stacking dependent electronic structure and optical properties of bilayer black phosphorus. Phys. Chem. Chem. Phys. 18, 6085–6091 (2016)CrossRef
52.
Zurück zum Zitat Brent, J.R., Lewis, D.J., Lorenz, T., Lewis, E.A., Savjani, N., Haigh, S.J., Seifert, G., Derby, B., O’Brien, P.: Tin(II) sulfide (SnS) nanosheets by liquid-phase exfoliation of herzenbergite: IV–VI main group two-dimensional atomic crystals. J. Am. Chem. Soc. 137, 12689–12696 (2015)CrossRef Brent, J.R., Lewis, D.J., Lorenz, T., Lewis, E.A., Savjani, N., Haigh, S.J., Seifert, G., Derby, B., O’Brien, P.: Tin(II) sulfide (SnS) nanosheets by liquid-phase exfoliation of herzenbergite: IV–VI main group two-dimensional atomic crystals. J. Am. Chem. Soc. 137, 12689–12696 (2015)CrossRef
53.
Zurück zum Zitat Chang, Y.-H., Zhang, W., Zhu, Y., Han, Y., Pu, J., Chang, J.-K., Hsu, W.-T., Huang, J.-K., Hsu, C.-L., Chiu, M.-H., Takenobu, T., Li, H., Wu, C.-I., Chang, W.-H., Wee, A.T.S., Li, L.-J.: Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014)CrossRef Chang, Y.-H., Zhang, W., Zhu, Y., Han, Y., Pu, J., Chang, J.-K., Hsu, W.-T., Huang, J.-K., Hsu, C.-L., Chiu, M.-H., Takenobu, T., Li, H., Wu, C.-I., Chang, W.-H., Wee, A.T.S., Li, L.-J.: Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014)CrossRef
54.
Zurück zum Zitat Jiang, H., Zhao, T., Ren, Y., Zhang, R., Wu, M.: Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries. Sci. Bull. 62, 572–578 (2017)CrossRef Jiang, H., Zhao, T., Ren, Y., Zhang, R., Wu, M.: Ab initio prediction and characterization of phosphorene-like SiS and SiSe as anode materials for sodium-ion batteries. Sci. Bull. 62, 572–578 (2017)CrossRef
55.
Zurück zum Zitat Zhou, Q., Liu, L., Liu, Q., Wang, Z., Gao, C., Liu, Y., Ye, H.: Highly selective adsorption on sise monolayer and effect of strain engineering: a DFT study. Sensors 20, 977 (2020)CrossRef Zhou, Q., Liu, L., Liu, Q., Wang, Z., Gao, C., Liu, Y., Ye, H.: Highly selective adsorption on sise monolayer and effect of strain engineering: a DFT study. Sensors 20, 977 (2020)CrossRef
56.
Zurück zum Zitat He, Y., Yang, Y., Zhang, Z., Gong, Y., Zhou, W., Hu, Z., Ye, G., Zhang, X., Bianco, E., Lei, S., Jin, Z., Zou, X., Yang, Y., Zhang, Y., Xie, E., Lou, J., Yakobson, B., Vajtai, R., Li, B., Ajayan, P.: Strain-induced electronic structure changes in stacked Van Der waals heterostructures. Nano Lett. 16, 3314–3320 (2016)CrossRef He, Y., Yang, Y., Zhang, Z., Gong, Y., Zhou, W., Hu, Z., Ye, G., Zhang, X., Bianco, E., Lei, S., Jin, Z., Zou, X., Yang, Y., Zhang, Y., Xie, E., Lou, J., Yakobson, B., Vajtai, R., Li, B., Ajayan, P.: Strain-induced electronic structure changes in stacked Van Der waals heterostructures. Nano Lett. 16, 3314–3320 (2016)CrossRef
57.
Zurück zum Zitat Behzad, S.: Effect of uni-axial and bi-axial strains and vertical electric field on free standing buckled germanene. J. Electron Spectrosc. Relat. Phenom. 229, 13–19 (2018)CrossRef Behzad, S.: Effect of uni-axial and bi-axial strains and vertical electric field on free standing buckled germanene. J. Electron Spectrosc. Relat. Phenom. 229, 13–19 (2018)CrossRef
58.
Zurück zum Zitat Behzad, S.: Strain engineering of band dispersion and dielectric response of monolayer and bilayer AlN. J. Comput. Electron. 17, 514–520 (2018)CrossRef Behzad, S.: Strain engineering of band dispersion and dielectric response of monolayer and bilayer AlN. J. Comput. Electron. 17, 514–520 (2018)CrossRef
59.
Zurück zum Zitat Behzad, S.: Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain. Surf. Sci. 665, 37–42 (2017)CrossRef Behzad, S.: Mechanical control of the electro-optical properties of monolayer and bilayer BC3 by applying the in-plane biaxial strain. Surf. Sci. 665, 37–42 (2017)CrossRef
60.
Zurück zum Zitat Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90, 085402 (2014)CrossRef Peng, X., Wei, Q., Copple, A.: Strain-engineered direct-indirect band gap transition and its mechanism in two-dimensional phosphorene. Phys. Rev. B 90, 085402 (2014)CrossRef
61.
Zurück zum Zitat Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties, vol. 28. Technische Universität Wien, Wien (2001) Blaha, P., Schwarz, K., Madsen, G., Kvasnicka, D., Luitz, J.: WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties, vol. 28. Technische Universität Wien, Wien (2001)
62.
Zurück zum Zitat Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRef Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRef
63.
Zurück zum Zitat Madsen, G.K.H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134 (2001)CrossRef Madsen, G.K.H., Blaha, P., Schwarz, K., Sjöstedt, E., Nordström, L.: Efficient linearization of the augmented plane-wave method. Phys. Rev. B 64, 195134 (2001)CrossRef
64.
Zurück zum Zitat Hummer, K., Harl, J., Kresse, G.: Heyd–Scuseria–Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors. Phys. Rev. B 80, 115205 (2009)CrossRef Hummer, K., Harl, J., Kresse, G.: Heyd–Scuseria–Ernzerhof hybrid functional for calculating the lattice dynamics of semiconductors. Phys. Rev. B 80, 115205 (2009)CrossRef
65.
Zurück zum Zitat Chinnathambi, K., Chakrabarti, A., Ezawa, M.: Direct band gaps in group IV-VI monolayer materials: binary counterparts of phosphorene. Phys. Rev. B 93, 125428 (2015) Chinnathambi, K., Chakrabarti, A., Ezawa, M.: Direct band gaps in group IV-VI monolayer materials: binary counterparts of phosphorene. Phys. Rev. B 93, 125428 (2015)
66.
Zurück zum Zitat Hu, T., Dong, J.: Two new phases of monolayer group-IV monochalcogenides and their piezoelectric properties. Phys. Chem. Chem. Phys. 18, 32514–32520 (2016)CrossRef Hu, T., Dong, J.: Two new phases of monolayer group-IV monochalcogenides and their piezoelectric properties. Phys. Chem. Chem. Phys. 18, 32514–32520 (2016)CrossRef
67.
Zurück zum Zitat Chowdhury, C., Karmakar, S., Datta, A.: Monolayer group IV–VI monochalcogenides: low-dimensional materials for photocatalytic water splitting. J. Phys. Chem. C 121, 7615–7624 (2017)CrossRef Chowdhury, C., Karmakar, S., Datta, A.: Monolayer group IV–VI monochalcogenides: low-dimensional materials for photocatalytic water splitting. J. Phys. Chem. C 121, 7615–7624 (2017)CrossRef
Metadaten
Titel
Engineering the light absorption spectrum and electronic properties of black and blue phases of a SiSe monolayer via biaxial straining
verfasst von
Somayeh Behzad
Raad Chegel
Publikationsdatum
26.05.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02037-5

Weitere Artikel der Ausgabe 4/2023

Journal of Computational Electronics 4/2023 Zur Ausgabe

Neuer Inhalt