Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 8/2019

11.03.2019

Giant anomalous dielectric behaviour of BaSnO3 at high temperature

verfasst von: Ku Noor Dhaniah Ku Muhsen, Rozana Aina Maulat Osman, Mohd Sobri Idris

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

BaSnO3 ceramic was synthesized by conventional solid state route at high sintering temperature 1450 °C which leading to oxygen loss in air. X-ray diffraction (XRD) analysis has confirmed the phase purity of BaSnO3 with cubic structure and space group Pm-3m. The unexpected giant anomalous dielectric properties of pure BaSnO3 ceramic was revealed by impedance spectroscopy analysis when the dielectric constant (εr) value rapidly increased by temperature and gives the highest εr peak at 220 °C with 87,290 and 6027 measured at 10 Hz and 1 kHz respectively. Then, it decreases gradually by increasing the temperature above 220 °C. This anomalous giant εr was observed during heating impedance measurement and disappear upon cooling. The anomalous behaviour is expected due to oxygen deficiency.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat W.W. Coffeen, Ceramic and dielectric properties of the stannates. J. Am. Ceram. Soc. 36(7), 207–214 (1953)CrossRef W.W. Coffeen, Ceramic and dielectric properties of the stannates. J. Am. Ceram. Soc. 36(7), 207–214 (1953)CrossRef
2.
Zurück zum Zitat Y. Shimizu, Y. Fukuyama, T. Narikiyo, H. Arai, T. Seiyama, Perovskite-type oxides having semiconductivity as oxygen sensors. Chem. Lett. 14(3), 377–380 (1985)CrossRef Y. Shimizu, Y. Fukuyama, T. Narikiyo, H. Arai, T. Seiyama, Perovskite-type oxides having semiconductivity as oxygen sensors. Chem. Lett. 14(3), 377–380 (1985)CrossRef
3.
Zurück zum Zitat A. Marikutsa, M. Rumyantseva, A. Baranchikov, A. Gaskov, Nanocrystalline BaSnO3 as an alternative gas sensor material: surface reactivity and high sensitivity to SO2. Materials 8(9), 6437–6454 (2015)CrossRef A. Marikutsa, M. Rumyantseva, A. Baranchikov, A. Gaskov, Nanocrystalline BaSnO3 as an alternative gas sensor material: surface reactivity and high sensitivity to SO2. Materials 8(9), 6437–6454 (2015)CrossRef
4.
Zurück zum Zitat H.D. Megaw, Crystal structure of double oxides of the perovskite type. Proc. Phys. Soc. 58(2), 133 (1946)CrossRef H.D. Megaw, Crystal structure of double oxides of the perovskite type. Proc. Phys. Soc. 58(2), 133 (1946)CrossRef
5.
Zurück zum Zitat O.I. Prokopalo, Conductivity and anomalous polarization in ceramic ferroelectrics with perovskite structure. Ferroelectrics 14(1), 683–685 (1976)CrossRef O.I. Prokopalo, Conductivity and anomalous polarization in ceramic ferroelectrics with perovskite structure. Ferroelectrics 14(1), 683–685 (1976)CrossRef
6.
Zurück zum Zitat A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Ferroelectric phase transition in Te-modified BaSnO3. Mater. Lett. 59(14–15), 1880–1888 (2005)CrossRef A. Kumar, B.P. Singh, R.N.P. Choudhary, A.K. Thakur, Ferroelectric phase transition in Te-modified BaSnO3. Mater. Lett. 59(14–15), 1880–1888 (2005)CrossRef
7.
Zurück zum Zitat S. Upadhyay, O. Parkash, D. Kumar, Preparation and characterization of barium stannate BaSnO3. J. Mater. Sci. Lett. 16(16), 1330–1332 (1997)CrossRef S. Upadhyay, O. Parkash, D. Kumar, Preparation and characterization of barium stannate BaSnO3. J. Mater. Sci. Lett. 16(16), 1330–1332 (1997)CrossRef
8.
Zurück zum Zitat T. Maekawa, K. Kurosaki, S. Yamanaka, Thermal and mechanical properties of polycrystalline BaSnO3. J. Alloys Compd. 416(1), 214–217 (2006)CrossRef T. Maekawa, K. Kurosaki, S. Yamanaka, Thermal and mechanical properties of polycrystalline BaSnO3. J. Alloys Compd. 416(1), 214–217 (2006)CrossRef
9.
Zurück zum Zitat S. Upadhyay, High temperature impedance spectroscopy of barium stannate, BaSnO3. Bull. Mater. Sci. 36(6), 1019–1036 (2013)CrossRef S. Upadhyay, High temperature impedance spectroscopy of barium stannate, BaSnO3. Bull. Mater. Sci. 36(6), 1019–1036 (2013)CrossRef
10.
Zurück zum Zitat P. Singh, B.J. Brandenburg, C.P. Sebastian, P. Singh, S. Singh, D. Kumar, O. Parkash, Electronic structure, electrical and dielectric properties of BaSnO3 below 300 K. Jpn. J. Appl. Phys. 47(5R), 3540 (2008)CrossRef P. Singh, B.J. Brandenburg, C.P. Sebastian, P. Singh, S. Singh, D. Kumar, O. Parkash, Electronic structure, electrical and dielectric properties of BaSnO3 below 300 K. Jpn. J. Appl. Phys. 47(5R), 3540 (2008)CrossRef
11.
Zurück zum Zitat I.A. Alagdal, A.R. West, Oxygen stoichiometry, conductivity and gas sensing properties of BaSnO3. J. Mater. Chem. C 4(21), 4770–4777 (2016)CrossRef I.A. Alagdal, A.R. West, Oxygen stoichiometry, conductivity and gas sensing properties of BaSnO3. J. Mater. Chem. C 4(21), 4770–4777 (2016)CrossRef
12.
Zurück zum Zitat A.M. Azad, N.C. Hon, Characterization of BaSnO3-based ceramics: Part 1. Synthesis, processing and microstructural development. J. Alloy. Compd. 270(1–2), 95–106 (1998)CrossRef A.M. Azad, N.C. Hon, Characterization of BaSnO3-based ceramics: Part 1. Synthesis, processing and microstructural development. J. Alloy. Compd. 270(1–2), 95–106 (1998)CrossRef
13.
Zurück zum Zitat T.Q. Tan, M.S. Idris, R.A.M. Osman, M.V. Reddy, B.V.R. Chowdari, Structure and electrochemical behaviour of LiNi0.4Mn0.4Co0.2O2 as cathode material for lithium ion batteries. Solid State Ionics 278, 43–48 (2015)CrossRef T.Q. Tan, M.S. Idris, R.A.M. Osman, M.V. Reddy, B.V.R. Chowdari, Structure and electrochemical behaviour of LiNi0.4Mn0.4Co0.2O2 as cathode material for lithium ion batteries. Solid State Ionics 278, 43–48 (2015)CrossRef
14.
Zurück zum Zitat M.S. Idris (2011). Synthesis and characterisation of lithium nickel manganese cobalt oxide as cathode material. PhD thesis, Department of Materials Science and Engineering, The University of Sheffield M.S. Idris (2011). Synthesis and characterisation of lithium nickel manganese cobalt oxide as cathode material. PhD thesis, Department of Materials Science and Engineering, The University of Sheffield
15.
Zurück zum Zitat T.Q. Tan, R.A.M. Osman, M.S. Idris Characterisation of cation ordering in layered rock-salt LiNi1/3Mn1/3Co1/3O2 cathode material for lithium ion batteries. Mater. Sci. Forum 819, 179–184 (2015)CrossRef T.Q. Tan, R.A.M. Osman, M.S. Idris Characterisation of cation ordering in layered rock-salt LiNi1/3Mn1/3Co1/3O2 cathode material for lithium ion batteries. Mater. Sci. Forum 819, 179–184 (2015)CrossRef
16.
Zurück zum Zitat T.Q. Tan, R.A.M. Osman, M.V. Reddy, S.F. Khor, M.S. Idris, Structure and electrochemical properties of Zn and Co dual-doped (Li2Co1 – xZnxMn3O8) as cathode material for rechargeable lithium-ion batteries. In EPJ Web of Conferences (Vol. 162, p. 01053). EDP Sciences (2017) T.Q. Tan, R.A.M. Osman, M.V. Reddy, S.F. Khor, M.S. Idris, Structure and electrochemical properties of Zn and Co dual-doped (Li2Co1 – xZnxMn3O8) as cathode material for rechargeable lithium-ion batteries. In EPJ Web of Conferences (Vol. 162, p. 01053). EDP Sciences (2017)
17.
Zurück zum Zitat M.S. Idris, R.A. Osman, Structure refinement strategy of Li-based complex oxides using GSAS-EXPGUI software package. Adv. Mater. Res. 795, 479–482 (2013)CrossRef M.S. Idris, R.A. Osman, Structure refinement strategy of Li-based complex oxides using GSAS-EXPGUI software package. Adv. Mater. Res. 795, 479–482 (2013)CrossRef
18.
Zurück zum Zitat D.C. Sinclair, Characterisation of electro-materials using ac impedance spectroscopy. Bol. Soc. Español. Cerám. Vidrio 34(2), 55–65 (1995) D.C. Sinclair, Characterisation of electro-materials using ac impedance spectroscopy. Bol. Soc. Español. Cerám. Vidrio 34(2), 55–65 (1995)
19.
Zurück zum Zitat J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2(3), 132–138 (1990)CrossRef J.T. Irvine, D.C. Sinclair, A.R. West, Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2(3), 132–138 (1990)CrossRef
20.
Zurück zum Zitat S. Rodewald, J. Fleig, J. Maier, Microcontact impedance spectroscopy at single grain boundaries in Fe-doped SrTiO3 polycrystals. J. Am. Ceram. Soc. 84(3), 521–530 (2001)CrossRef S. Rodewald, J. Fleig, J. Maier, Microcontact impedance spectroscopy at single grain boundaries in Fe-doped SrTiO3 polycrystals. J. Am. Ceram. Soc. 84(3), 521–530 (2001)CrossRef
21.
Zurück zum Zitat R.A. Osman, N. Maso, A.R. West, Bismuth zinc niobate pyrochlore, a relaxor-like non-ferroelectric. J. Am. Ceram. Soc. 95(1), 296–302 (2012)CrossRef R.A. Osman, N. Maso, A.R. West, Bismuth zinc niobate pyrochlore, a relaxor-like non-ferroelectric. J. Am. Ceram. Soc. 95(1), 296–302 (2012)CrossRef
22.
Zurück zum Zitat R.A. Osman, M.S. Idris, Electrical properties of fresnoite Ba2TiSi2O8 using impedance spectroscopy. Adv. Mater. Res. 795, 640–643 (2013)CrossRef R.A. Osman, M.S. Idris, Electrical properties of fresnoite Ba2TiSi2O8 using impedance spectroscopy. Adv. Mater. Res. 795, 640–643 (2013)CrossRef
23.
Zurück zum Zitat R.A. Osman, A.R. West, Electrical characterization and equivalent circuit analysis of (Bi1.5Zn0.5)(Nb0.5Ti1.5) O7 pyrochlore, a relaxor ceramic. J. Appl. Phys. 109(7), 074106 (2011)CrossRef R.A. Osman, A.R. West, Electrical characterization and equivalent circuit analysis of (Bi1.5Zn0.5)(Nb0.5Ti1.5) O7 pyrochlore, a relaxor ceramic. J. Appl. Phys. 109(7), 074106 (2011)CrossRef
24.
Zurück zum Zitat B. Evgenij, J.R. Macdonald (eds.), Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley, New Jersey, 2005) B. Evgenij, J.R. Macdonald (eds.), Impedance Spectroscopy Theory, Experiment and Applications, 2nd edn. (Wiley, New Jersey, 2005)
25.
Zurück zum Zitat M. Bradha, T. Vijayaraghavan, A. Ashok, Synthesis and total conductivity studies in BaSnO3. Mater. Lett. 125, 187–190 (2014)CrossRef M. Bradha, T. Vijayaraghavan, A. Ashok, Synthesis and total conductivity studies in BaSnO3. Mater. Lett. 125, 187–190 (2014)CrossRef
26.
Zurück zum Zitat C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3. Phys. Rev. B 62(1), 228 (2000)CrossRef C. Ang, Z. Yu, L.E. Cross, Oxygen-vacancy-related low-frequency dielectric relaxation and electrical conduction in Bi: SrTiO3. Phys. Rev. B 62(1), 228 (2000)CrossRef
27.
Zurück zum Zitat A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications. (Wiley, Hoboken, 2003) p. 165.CrossRef A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications. (Wiley, Hoboken, 2003) p. 165.CrossRef
28.
Zurück zum Zitat K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22(2), 111–195 (1993)CrossRef K. Funke, Jump relaxation in solid electrolytes. Prog. Solid State Chem. 22(2), 111–195 (1993)CrossRef
29.
Zurück zum Zitat S.R. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36(2), 135–217 (1987)CrossRef S.R. Elliott, Ac conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36(2), 135–217 (1987)CrossRef
30.
Zurück zum Zitat A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements. Appl. Phys. Lett. 73(14), 2039–2041 (1998)CrossRef A. Pelaiz-Barranco, M.P. Gutierrez-Amador, A. Huanosta, R. Valenzuela, Phase transitions in ferrimagnetic and ferroelectric ceramics by ac measurements. Appl. Phys. Lett. 73(14), 2039–2041 (1998)CrossRef
31.
Zurück zum Zitat H. Beltrán, E. Cordoncillo, P. Escribano, D.C. Sinclair, A.R. West, Oxygen loss, semiconductivity, and positive temperature coefficient of resistance behavior in undoped cation-stoichiometric BaTiO3 ceramics. J. Appl. Phys. 98(9), 094102 (2005)CrossRef H. Beltrán, E. Cordoncillo, P. Escribano, D.C. Sinclair, A.R. West, Oxygen loss, semiconductivity, and positive temperature coefficient of resistance behavior in undoped cation-stoichiometric BaTiO3 ceramics. J. Appl. Phys. 98(9), 094102 (2005)CrossRef
32.
Zurück zum Zitat N. Maso, H. Beltran, E. Cordoncillo, P. Escribano, A.R. West, Electrical properties of Fe-doped BaTiO3. J. Mater. Chem. 16(17), 1626–1633 (2006)CrossRef N. Maso, H. Beltran, E. Cordoncillo, P. Escribano, A.R. West, Electrical properties of Fe-doped BaTiO3. J. Mater. Chem. 16(17), 1626–1633 (2006)CrossRef
33.
Zurück zum Zitat P. Ren, N. Masó, A.R. West, Hole conductivity in oxygen-excess BaTi1 – xCaxO3–x + δ. Phys. Chem. Chem. Phys. 15(48), 20943–20950 (2013)CrossRef P. Ren, N. Masó, A.R. West, Hole conductivity in oxygen-excess BaTi1 – xCaxO3–x + δ. Phys. Chem. Chem. Phys. 15(48), 20943–20950 (2013)CrossRef
34.
Zurück zum Zitat M.S. Idris, The existing of oxygen nonstoichiometry in complex lithium oxides. Adv. Mater. Res. 795, 438–440 (2013)CrossRef M.S. Idris, The existing of oxygen nonstoichiometry in complex lithium oxides. Adv. Mater. Res. 795, 438–440 (2013)CrossRef
35.
Zurück zum Zitat Y. Dang, A.R. West (2018). Oxygen stoichiometry, chemical expansion or contraction and electrical properties of rutile, TiO2 ± δ ceramics. J. Am. Ceram. Soc. 102, 251–259CrossRef Y. Dang, A.R. West (2018). Oxygen stoichiometry, chemical expansion or contraction and electrical properties of rutile, TiO2 ± δ ceramics. J. Am. Ceram. Soc. 102, 251–259CrossRef
36.
Zurück zum Zitat A. Banday, S. Murugavel, Small polaron hopping conduction mechanism in LiFePO4 glass and crystal. J. Appl. Phys. 121(4), 045111 (2017)CrossRef A. Banday, S. Murugavel, Small polaron hopping conduction mechanism in LiFePO4 glass and crystal. J. Appl. Phys. 121(4), 045111 (2017)CrossRef
37.
Zurück zum Zitat J.L. Bredas, G.B. Street, Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18(10), 309–315 (1985)CrossRef J.L. Bredas, G.B. Street, Polarons, bipolarons, and solitons in conducting polymers. Acc. Chem. Res. 18(10), 309–315 (1985)CrossRef
38.
Zurück zum Zitat S. Upadhyay, A.K. Sahu, D. Kumar, O. Parkash, Probing electrical conduction behavior of BaSnO3. J. Appl. Phys. 84(2), 828–832 (1998)CrossRef S. Upadhyay, A.K. Sahu, D. Kumar, O. Parkash, Probing electrical conduction behavior of BaSnO3. J. Appl. Phys. 84(2), 828–832 (1998)CrossRef
39.
Zurück zum Zitat A.R. West, Solid State Chemistry and Its Applications. (Wiley, New York, 2014) p. 100, 417 A.R. West, Solid State Chemistry and Its Applications. (Wiley, New York, 2014) p. 100, 417
Metadaten
Titel
Giant anomalous dielectric behaviour of BaSnO3 at high temperature
verfasst von
Ku Noor Dhaniah Ku Muhsen
Rozana Aina Maulat Osman
Mohd Sobri Idris
Publikationsdatum
11.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 8/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01065-x

Weitere Artikel der Ausgabe 8/2019

Journal of Materials Science: Materials in Electronics 8/2019 Zur Ausgabe

Neuer Inhalt