Skip to main content
Erschienen in: Cellulose 1/2019

17.01.2019 | Original Paper

Effects of ball milling on the structure of cotton cellulose

verfasst von: Zhe Ling, Tuo Wang, Mohamadamin Makarem, Michael Santiago Cintrón, H. N. Cheng, Xue Kang, Markus Bacher, Antje Potthast, Thomas Rosenau, Holly King, Christopher D. Delhom, Sunghyun Nam, J. Vincent Edwards, Seong H. Kim, Feng Xu, Alfred D. French

Erschienen in: Cellulose | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Cellulose is often described as a mixture of crystalline and amorphous material. A large part of the general understanding of the chemical, biochemical and physical properties of cellulosic materials is thought to depend on the consequences of the ratio of these components. For example, amorphous materials are said to be more reactive and have less tensile strength but comprehensive understanding and definitive analysis remain elusive. Ball milling has been used for decades to increase the ratio of amorphous material. The present work used 13 techniques to follow the changes in cotton fibers (nearly pure cellulose) after ball milling for 15, 45 and 120 min. X-ray diffraction results were analyzed with the Rietveld method; DNP (dynamic nuclear polarization) natural abundance 2D NMR studies in the next paper in this issue assisted with the interpretation of the 1D analyses in the present work. A conventional NMR model’s paracrystalline and inaccessible crystallite surfaces were not needed in the model used for the DNP studies. Sum frequency generation (SFG) spectroscopy also showed profound changes as the cellulose was decrystallized. Optical microscopy and field emission-scanning electron microscopy results showed the changes in particle size; molecular weight and carbonyl group analyses by gel permeation chromatography confirmed chemical changes. Specific surface areas and pore sizes increased. Fourier transform infrared (FTIR) and Raman spectroscopy also indicated progressive changes; some proposed indicators of crystallinity for FTIR were not in good agreement with our results. Thermogravimetric analysis results indicated progressive increase in initial moisture content and some loss in stability. Although understanding of structural changes as cellulose is amorphized by ball milling is increased by this work, continued effort is needed to improve agreement between the synchrotron and laboratory X-ray methods used herein and to provide physical interpretation of the SFG results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Even though cotton has a high microfibril angle (French and Kim 2018) or range of deviations of alignment of microfibrils to the fiber axis, for this discussion the alignment of adjacent microfibrils can be considered to be antiparallel.
 
2
Despite its simplicity, the Segal method is sometimes used incorrectly. The Segal CrI depends on the intensity minimum between the (110) and (200) peaks, as well as the peak intensity of the (200) reflection. However, authors have too-often chosen the (110) or combined (1–10) and (110) peak as representing the amorphous material. Furthermore, for material to be represented by the minimum intensity near 18 deg. (copper Kα radiation), the background must be subtracted. Typically, this would mean subtraction of a blank.
 
Literatur
Zurück zum Zitat Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086CrossRef Ahvenainen P, Kontro I, Svedström K (2016) Comparison of sample crystallinity determination methods by X-ray diffraction for challenging cellulose I materials. Cellulose 23:1073–1086CrossRef
Zurück zum Zitat Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinctive crystalline forms. Science 223:283–285CrossRefPubMed Atalla RH, Vanderhart DL (1984) Native cellulose: a composite of two distinctive crystalline forms. Science 223:283–285CrossRefPubMed
Zurück zum Zitat Atalla RH, Gast JC, Sindorf DW, Bartuska VJ, Maciel GE (1980) Carbon-13 NMR spectra of cellulose polymorphs. J Am Chem Soc 102(9):3249–3251CrossRef Atalla RH, Gast JC, Sindorf DW, Bartuska VJ, Maciel GE (1980) Carbon-13 NMR spectra of cellulose polymorphs. J Am Chem Soc 102(9):3249–3251CrossRef
Zurück zum Zitat Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum frequency generation (SFG) vibration spectroscopy. Biomacromolecules 12:2434–2439CrossRefPubMed Barnette AL, Bradley LC, Veres BD, Schreiner EP, Park J, Park S, Kim SH (2011) Selective detection of crystalline cellulose in plant cell walls with sum frequency generation (SFG) vibration spectroscopy. Biomacromolecules 12:2434–2439CrossRefPubMed
Zurück zum Zitat Barnette AL, Lee C, Bradley LC, Schreiner EP, Park H, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89:802–809CrossRefPubMed Barnette AL, Lee C, Bradley LC, Schreiner EP, Park H, Shin H, Cosgrove DJ, Park S, Kim SH (2012) Quantification of crystalline cellulose in lignocellulosic biomass using sum frequency generation (SFG) vibration spectroscopy and comparison with other analytical methods. Carbohydr Polym 89:802–809CrossRefPubMed
Zurück zum Zitat Bertran MS, Dale BE (1986) Determination of cellulose accessibility by differential scanning calorimetry. J Appl Polym Sci 32:4241–4253CrossRef Bertran MS, Dale BE (1986) Determination of cellulose accessibility by differential scanning calorimetry. J Appl Polym Sci 32:4241–4253CrossRef
Zurück zum Zitat Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRef Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319CrossRef
Zurück zum Zitat Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762CrossRef Chen L, Wang Q, Hirth K, Baez C, Agarwal UP, Zhu JY (2015) Tailoring the yield and characteristics of wood cellulose nanocrystals (CNC) using concentrated acid hydrolysis. Cellulose 22:1753–1762CrossRef
Zurück zum Zitat Dollase WA (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J Appl Crystallogr 19(4):267–272CrossRef Dollase WA (1986) Correction of intensities for preferred orientation in powder diffractometry: application of the March model. J Appl Crystallogr 19(4):267–272CrossRef
Zurück zum Zitat Driemeier C (2014) Two-dimensional Rietveld analysis of celluloses from higher plants. Cellulose 21:1065–1073CrossRef Driemeier C (2014) Two-dimensional Rietveld analysis of celluloses from higher plants. Cellulose 21:1065–1073CrossRef
Zurück zum Zitat Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44:184–192CrossRef Driemeier C, Calligaris GA (2011) Theoretical and experimental developments for accurate determination of crystallinity of cellulose I materials. J Appl Cryst 44:184–192CrossRef
Zurück zum Zitat Driemeier C, Francisco LH (2014) X-ray diffraction from faulted cellulose I constructed with mixed Iα–Iβ stacking. Cellulose 21:3161–3169CrossRef Driemeier C, Francisco LH (2014) X-ray diffraction from faulted cellulose I constructed with mixed Iα–Iβ stacking. Cellulose 21:3161–3169CrossRef
Zurück zum Zitat Duchemin B (2017) Size, shape, orientation and crystallinity of cellulose Iβ by X-ray powder diffraction using a free spreadsheet program. Cellulose 24:2727–2741CrossRef Duchemin B (2017) Size, shape, orientation and crystallinity of cellulose Iβ by X-ray powder diffraction using a free spreadsheet program. Cellulose 24:2727–2741CrossRef
Zurück zum Zitat Forziati FH, Stone WK, Rowen JW, Appel WD (1950) Cotton powder for infrared transmission measurements. J Res Nat Bur Stand 45:109–113CrossRef Forziati FH, Stone WK, Rowen JW, Appel WD (1950) Cotton powder for infrared transmission measurements. J Res Nat Bur Stand 45:109–113CrossRef
Zurück zum Zitat French AD (2012) Combining computational chemistry and crystallography for a better understanding of the structure of cellulose. Horton D, ed. Adv Carbohydr Chem Biochem 67:19–93CrossRefPubMed French AD (2012) Combining computational chemistry and crystallography for a better understanding of the structure of cellulose. Horton D, ed. Adv Carbohydr Chem Biochem 67:19–93CrossRefPubMed
Zurück zum Zitat French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef French AD, Santiago Cintrón M (2013) Cellulose polymorphy, crystallite size, and the Segal crystallinity index. Cellulose 20:583–588CrossRef
Zurück zum Zitat Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, Petti C, Smilgies D-M, Estevez JM, Bonetta D, Urbanowicz BR, Ehrhardt DW, Somerville CR, Rose JKC, Hong M, Debolt S (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci 109:4098–4103CrossRefPubMed Harris DM, Corbin K, Wang T, Gutierrez R, Bertolo AL, Petti C, Smilgies D-M, Estevez JM, Bonetta D, Urbanowicz BR, Ehrhardt DW, Somerville CR, Rose JKC, Hong M, Debolt S (2012) Cellulose microfibril crystallinity is reduced by mutating C-terminal transmembrane region residues CESA1A903V and CESA3T942I of cellulose synthase. Proc Natl Acad Sci 109:4098–4103CrossRefPubMed
Zurück zum Zitat Hearle JWS (1958) A fringed fibril theory of structure in crystalline polymers. J Polym Sci 28:432–435CrossRef Hearle JWS (1958) A fringed fibril theory of structure in crystalline polymers. J Polym Sci 28:432–435CrossRef
Zurück zum Zitat Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat Nanotechnol 6:534CrossRefPubMed Holzwarth U, Gibson N (2011) The Scherrer equation versus the ‘Debye–Scherrer equation’. Nat Nanotechnol 6:534CrossRefPubMed
Zurück zum Zitat Howell C, Hastrup ACS, Jara R, Larsen FH, Goodell B, Jellison J (2011) Effects of hot water extraction and fungal decay on wood crystalline cellulose structure. Cellulose 18:1179–1190CrossRef Howell C, Hastrup ACS, Jara R, Larsen FH, Goodell B, Jellison J (2011) Effects of hot water extraction and fungal decay on wood crystalline cellulose structure. Cellulose 18:1179–1190CrossRef
Zurück zum Zitat Huang S, Makarem M, Kiemle SN, Hamedi H, Sau M, Cosgrove DJ, Kim SH (2018a) Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy. J Phys Chem B 122:5006–5019CrossRefPubMed Huang S, Makarem M, Kiemle SN, Hamedi H, Sau M, Cosgrove DJ, Kim SH (2018a) Inhomogeneity of cellulose microfibril assembly in plant cell walls revealed with sum frequency generation microscopy. J Phys Chem B 122:5006–5019CrossRefPubMed
Zurück zum Zitat Huang S, Makarem M, Kiemle SN, Zheng Y, Xin H, Ye D, Gomez EW, Gomez ED, Cosgrove DJ, Kim SH (2018b) Investigating dehydration-induced physical strains of cellulose microfibrils in plant cell walls. Carbohydr Polym 197:337–348CrossRefPubMed Huang S, Makarem M, Kiemle SN, Zheng Y, Xin H, Ye D, Gomez EW, Gomez ED, Cosgrove DJ, Kim SH (2018b) Investigating dehydration-induced physical strains of cellulose microfibrils in plant cell walls. Carbohydr Polym 197:337–348CrossRefPubMed
Zurück zum Zitat Ilharco LM, Garcia AR, Silva JL, Ferreira FV (1997) Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15):4126–4132CrossRef Ilharco LM, Garcia AR, Silva JL, Ferreira FV (1997) Infrared approach to the study of adsorption on cellulose: influence of cellulose crystallinity on the adsorption of benzophenone. Langmuir 13(15):4126–4132CrossRef
Zurück zum Zitat Isogai A, Atalla RH (1991) Amorphous celluloses stable in aqueous media: regeneration from SO2–amine solvent systems. J Polym Sci Part A Polym Chem 29:113–119CrossRef Isogai A, Atalla RH (1991) Amorphous celluloses stable in aqueous media: regeneration from SO2–amine solvent systems. J Polym Sci Part A Polym Chem 29:113–119CrossRef
Zurück zum Zitat Kim U-J, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781CrossRef Kim U-J, Eom SH, Wada M (2010) Thermal decomposition of native cellulose: influence on crystallite size. Polym Degrad Stab 95:778–781CrossRef
Zurück zum Zitat Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley-VCH, New York, p 992. ISBN 0-471-49369-4 Klug HP, Alexander LE (1974) X-ray diffraction procedures: for polycrystalline and amorphous materials, 2nd edn. Wiley-VCH, New York, p 992. ISBN 0-471-49369-4
Zurück zum Zitat Kono H, Numata Y (2006) Structural investigation of cellulose Iα and Iβ by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent d-glucose units along cellulose chain. Cellulose 13:317–326CrossRef Kono H, Numata Y (2006) Structural investigation of cellulose Iα and Iβ by 2D RFDR NMR spectroscopy: determination of sequence of magnetically inequivalent d-glucose units along cellulose chain. Cellulose 13:317–326CrossRef
Zurück zum Zitat Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRefPubMed Langan P, Nishiyama Y, Chanzy H (2001) X-ray structure of mercerized cellulose II at 1 Å resolution. Biomacromolecules 2:410–416CrossRefPubMed
Zurück zum Zitat Larsson PT, Hult EL, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15:31–40CrossRefPubMed Larsson PT, Hult EL, Wickholm K, Pettersson E, Iversen T (1999) CP/MAS 13C NMR spectroscopy applied to structure and interaction studies on cellulose I. Solid State Nucl Magn Reson 15:31–40CrossRefPubMed
Zurück zum Zitat Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692CrossRefPubMed Lee CM, Mohamed NMA, Watts HD, Kubicki JD, Kim SH (2013) Sum-frequency-generation vibration spectroscopy and density functional theory calculations with dispersion corrections (DFT-D2) for cellulose Iα and Iβ. J Phys Chem B 117:6681–6692CrossRefPubMed
Zurück zum Zitat Lee C, Kafle K, Park Y-B, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853CrossRefPubMed Lee C, Kafle K, Park Y-B, Kim SH (2014) Probing crystal structure and mesoscale assembly of cellulose microfibrils in plant cell walls, tunicate tests, and bacterial films using vibrational sum frequency generation (SFG) spectroscopy. Phys Chem Chem Phys 16:10844–10853CrossRefPubMed
Zurück zum Zitat Lee CM, Kafle K, Huang S, Kim SH (2015a) Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope. J Phys Chem B 120:102–116CrossRefPubMed Lee CM, Kafle K, Huang S, Kim SH (2015a) Multimodal broadband vibrational sum frequency generation (MM-BB-V-SFG) spectrometer and microscope. J Phys Chem B 120:102–116CrossRefPubMed
Zurück zum Zitat Lee CM, Kubicki JD, Xin B, Zhong L, Jarvis MC, Kim SH (2015b) Hydrogen bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149CrossRefPubMed Lee CM, Kubicki JD, Xin B, Zhong L, Jarvis MC, Kim SH (2015b) Hydrogen bonding network and OH stretch vibration of cellulose: comparison of computational modeling with polarized IR and SFG spectra. J Phys Chem B 119:15138–15149CrossRefPubMed
Zurück zum Zitat Lee CM, Chen X, Weiss PA, Jensen L, Kim SH (2016a) Quantum mechanical calculations of vibrational sum-frequency-generation (SFG) spectra of cellulose: dependence of the CH and OH peak intensity on the polarity of cellulose chains within the SFG coherence domain. J Phys Chem Lett 8:55–60CrossRefPubMed Lee CM, Chen X, Weiss PA, Jensen L, Kim SH (2016a) Quantum mechanical calculations of vibrational sum-frequency-generation (SFG) spectra of cellulose: dependence of the CH and OH peak intensity on the polarity of cellulose chains within the SFG coherence domain. J Phys Chem Lett 8:55–60CrossRefPubMed
Zurück zum Zitat Lee CM, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH (2016b) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, & and SFG. Adv Polym Sci 27:115–131 Lee CM, Dazen K, Kafle K, Moore A, Johnson DK, Park S, Kim SH (2016b) Correlations of apparent cellulose crystallinity determined by XRD, NMR, IR, Raman, & and SFG. Adv Polym Sci 27:115–131
Zurück zum Zitat Liu Y, Kim HJ (2015) Use of attenuated total reflection fourier transform infrared (ATR FT-IR) Spectroscopy in direct, nondestructive, and rapid assessment of developmental cotton fibers grown in planta and in culture. Appl Spectrosc 69:1004–1010CrossRefPubMed Liu Y, Kim HJ (2015) Use of attenuated total reflection fourier transform infrared (ATR FT-IR) Spectroscopy in direct, nondestructive, and rapid assessment of developmental cotton fibers grown in planta and in culture. Appl Spectrosc 69:1004–1010CrossRefPubMed
Zurück zum Zitat Liu Y, Thibodeaux D, Gamble G, Bauer P, VanDerveer D (2012) Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Appl Spectrosc 66:983–986CrossRefPubMed Liu Y, Thibodeaux D, Gamble G, Bauer P, VanDerveer D (2012) Comparative investigation of Fourier transform infrared (FT-IR) spectroscopy and X-ray diffraction (XRD) in the determination of cotton fiber crystallinity. Appl Spectrosc 66:983–986CrossRefPubMed
Zurück zum Zitat Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk H-R (2007) Rietveld texture analysis from diffraction images. Z Kristallogr Suppl 26:125–130CrossRef Lutterotti L, Bortolotti M, Ischia G, Lonardelli I, Wenk H-R (2007) Rietveld texture analysis from diffraction images. Z Kristallogr Suppl 26:125–130CrossRef
Zurück zum Zitat Makarem M, Lee CM, Sawada D, O’Neill HM, Kim SH (2017) Distinguishing surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational sum frequency generation spectroscopy. J Phys Chem Letts 9:70–75CrossRef Makarem M, Lee CM, Sawada D, O’Neill HM, Kim SH (2017) Distinguishing surface versus bulk hydroxyl groups of cellulose nanocrystals using vibrational sum frequency generation spectroscopy. J Phys Chem Letts 9:70–75CrossRef
Zurück zum Zitat Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one-and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76CrossRef Massiot D, Fayon F, Capron M, King I, Le Calvé S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one-and two-dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76CrossRef
Zurück zum Zitat Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442CrossRefPubMed Mihranyan A, Llagostera AP, Karmhag R, Strømme M, Ek R (2004) Moisture sorption by cellulose powders of varying crystallinity. Int J Pharm 269:433–442CrossRefPubMed
Zurück zum Zitat Millett MA, Effland MJ, Caulfield DF (1979) Influence of fine grinding on the hydrolysis of cellulosic materials-acid vs. enzymatic. Adv Chem Ser 181:71–89CrossRef Millett MA, Effland MJ, Caulfield DF (1979) Influence of fine grinding on the hydrolysis of cellulosic materials-acid vs. enzymatic. Adv Chem Ser 181:71–89CrossRef
Zurück zum Zitat Nelson ML, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef Nelson ML, O’Connor RT (1964a) Relation of certain infrared bands to cellulose crystallinity and crystal lattice type. Part I. Spectra of lattice types I, II, III and of amorphous cellulose. J Appl Polym Sci 8:1311–1324CrossRef
Zurück zum Zitat Newman RH, Hemmingson JA (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44:351–356CrossRef Newman RH, Hemmingson JA (1990) Determination of the degree of cellulose crystallinity in wood by carbon-13 nuclear magnetic resonance spectroscopy. Holzforschung 44:351–356CrossRef
Zurück zum Zitat Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Am Soc Plant Biol 163:1558–1567 Newman RH, Hill SJ, Harris PJ (2013) Wide-angle X-ray scattering and solid-state nuclear magnetic resonance data combined to test models for cellulose microfibrils in mung bean cell walls. Am Soc Plant Biol 163:1558–1567
Zurück zum Zitat Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMed Nishiyama Y, Langan P, Chanzy H (2002) Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. J Am Chem Soc 124:9074–9082CrossRefPubMed
Zurück zum Zitat Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003b) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017CrossRefPubMed Nishiyama Y, Kim U-J, Kim D-Y, Katsumata KS, May RP, Langan P (2003b) Periodic disorder along ramie cellulose microfibrils. Biomacromolecules 4:1013–1017CrossRefPubMed
Zurück zum Zitat Oh SY, Yoo D, Shin Y, Kim HC, Kim HY et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed Oh SY, Yoo D, Shin Y, Kim HC, Kim HY et al (2005) Crystalline structure analysis of cellulose treated with sodium hydroxide and carbon dioxide by means of X-ray diffraction and FTIR spectroscopy. Carbohydr Res 340:2376–2391CrossRefPubMed
Zurück zum Zitat Park S, Baker JO, Himmel ME, Parrilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentral Park S, Baker JO, Himmel ME, Parrilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3:10CrossRefPubMedPubMedCentral
Zurück zum Zitat Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation (SFG) spectroscopy. Plant Physiol 163:907–913CrossRefPubMedPubMedCentral Park YB, Lee CM, Koo B-W, Park S, Cosgrove DJ, Kim SH (2013) Monitoring meso-scale ordering of cellulose in intact plant cell walls using sum frequency generation (SFG) spectroscopy. Plant Physiol 163:907–913CrossRefPubMedPubMedCentral
Zurück zum Zitat Phyo P, Wang T, Yang Y, O’Neill H, Hong M (2018) Direct determination of hydroxymethyl conformations of plant cell wall cellulose using 1H polarization transfer solid-state NMR. Biomacromolecules 19:1485–1497CrossRefPubMed Phyo P, Wang T, Yang Y, O’Neill H, Hong M (2018) Direct determination of hydroxymethyl conformations of plant cell wall cellulose using 1H polarization transfer solid-state NMR. Biomacromolecules 19:1485–1497CrossRefPubMed
Zurück zum Zitat Popa NC, Balzar D (2008) Size‐broadening anisotropy in whole powder pattern fitting. Application to zinc oxide and interpretation of the apparent crystallites in terms of physical models. J Appl Cryst 41:615–627CrossRef Popa NC, Balzar D (2008) Size‐broadening anisotropy in whole powder pattern fitting. Application to zinc oxide and interpretation of the apparent crystallites in terms of physical models. J Appl Cryst 41:615–627CrossRef
Zurück zum Zitat Reyes DCA, Skoglund N, Svedberg A, Eliasson B, Sundman O (2016) The influence of different parameters on the mercerisation of cellulose for viscose production. Cellulose 23:1061–1072CrossRef Reyes DCA, Skoglund N, Svedberg A, Eliasson B, Sundman O (2016) The influence of different parameters on the mercerisation of cellulose for viscose production. Cellulose 23:1061–1072CrossRef
Zurück zum Zitat Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef Rietveld H (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71CrossRef
Zurück zum Zitat Rodriguez-Navarro AB (2006) XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J Appl Crystallogr 39:905–909CrossRef Rodriguez-Navarro AB (2006) XRD2DScan: new software for polycrystalline materials characterization using two-dimensional X-ray diffraction. J Appl Crystallogr 39:905–909CrossRef
Zurück zum Zitat Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications. Biomacromolecules 3:969–975CrossRefPubMed Röhrling J, Potthast A, Rosenau T, Lange T, Borgards A, Sixta H, Kosma P (2002) A novel method for the determination of carbonyl groups in cellulosics by fluorescence labeling. 2. Validation and applications. Biomacromolecules 3:969–975CrossRefPubMed
Zurück zum Zitat Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30CrossRefPubMed Rollin JA, Zhu Z, Sathitsuksanoh N, Zhang YP (2011) Increasing cellulose accessibility is more important than removing lignin: a comparison of cellulose solvent-based lignocellulose fractionation and soaking in aqueous ammonia. Biotechnol Bioeng 108:22–30CrossRefPubMed
Zurück zum Zitat Sarko A, Nishimura H, Okano T (1987) Crystalline alkali-celllulose complexes as intermediates during mercerization. ACS Symp Ser 340:169–177CrossRef Sarko A, Nishimura H, Okano T (1987) Crystalline alkali-celllulose complexes as intermediates during mercerization. ACS Symp Ser 340:169–177CrossRef
Zurück zum Zitat Schroeder LR, Gentile VM, Atalla RH (1986) Nondegradative preparation of amorphous cellulose. J Wood Chem Technol 6:1–14CrossRef Schroeder LR, Gentile VM, Atalla RH (1986) Nondegradative preparation of amorphous cellulose. J Wood Chem Technol 6:1–14CrossRef
Zurück zum Zitat Schultz TP, McGinnis GD, Bertran MS (1985) Estimation of cellulose crystallinity using Fourier transform-infrared spectroscopy and dynamic thermogravimetry. J Wood Chem Technol 5:543–557CrossRef Schultz TP, McGinnis GD, Bertran MS (1985) Estimation of cellulose crystallinity using Fourier transform-infrared spectroscopy and dynamic thermogravimetry. J Wood Chem Technol 5:543–557CrossRef
Zurück zum Zitat Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599CrossRef Sehaqui H, Zhou Q, Berglund LA (2011) High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Compos Sci Technol 71:1593–1599CrossRef
Zurück zum Zitat Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87CrossRef Shibazaki H, Kuga S, Okano T (1997) Mercerization and acid hydrolysis of bacterial cellulose. Cellulose 4:75–87CrossRef
Zurück zum Zitat Solala I, Henniges U, Pirker KF, Rosenau T, Potthast A, Vuorinen T (2015) Mechanochemical reactions of cellulose and styrene. Cellulose 22:3217–3224CrossRef Solala I, Henniges U, Pirker KF, Rosenau T, Potthast A, Vuorinen T (2015) Mechanochemical reactions of cellulose and styrene. Cellulose 22:3217–3224CrossRef
Zurück zum Zitat Stefanovic B, Pirker KF, Rosenau T, Potthast A (2014) Effects of tribochemical treatments on the integrity of cellulose. Carbohydr Polym 111:688–699CrossRefPubMed Stefanovic B, Pirker KF, Rosenau T, Potthast A (2014) Effects of tribochemical treatments on the integrity of cellulose. Carbohydr Polym 111:688–699CrossRefPubMed
Zurück zum Zitat Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466CrossRef Sugiyama J, Persson J, Chanzy H (1991) Combined infrared and electron diffraction study of the polymorphism of native celluloses. Macromolecules 24:2461–2466CrossRef
Zurück zum Zitat Takahashi H, Lee D, Dubois L, Bardet M, Hediger S, De Paëpe G (2012) Rapid natural-abundance 2D 13C–13C correlation spectroscopy using dynamic nuclear polarization enhanced solid-state NMR and matrix-free sample preparation. Angew Chem Int Ed 51:11766–11769CrossRef Takahashi H, Lee D, Dubois L, Bardet M, Hediger S, De Paëpe G (2012) Rapid natural-abundance 2D 13C–13C correlation spectroscopy using dynamic nuclear polarization enhanced solid-state NMR and matrix-free sample preparation. Angew Chem Int Ed 51:11766–11769CrossRef
Zurück zum Zitat Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576CrossRef Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12:563–576CrossRef
Zurück zum Zitat Vieira FS, Pasquini C (2014) Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal Chem 86:3780–3786CrossRefPubMed Vieira FS, Pasquini C (2014) Determination of cellulose crystallinity by terahertz-time domain spectroscopy. Anal Chem 86:3780–3786CrossRefPubMed
Zurück zum Zitat Viëtor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30(6):721–731CrossRefPubMed Viëtor RJ, Newman RH, Ha MA, Apperley DC, Jarvis MC (2002) Conformational features of crystal-surface cellulose from higher plants. Plant J 30(6):721–731CrossRefPubMed
Zurück zum Zitat Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514CrossRefPubMed Wang T, Hong M (2016) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J Exp Bot 67:503–514CrossRefPubMed
Zurück zum Zitat Wertz J-L, Mercier JP, Bédué O (2010) Cellulose science and technology. Routledge, Taylor & Francis GroupCrossRef Wertz J-L, Mercier JP, Bédué O (2010) Cellulose science and technology. Routledge, Taylor & Francis GroupCrossRef
Zurück zum Zitat Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129CrossRef Wickholm K, Larsson PT, Iversen T (1998) Assignment of non-crystalline forms in cellulose I by CP/MAS 13C NMR spectroscopy. Carbohydr Res 312:123–129CrossRef
Zurück zum Zitat Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef Wiley JH, Atalla RH (1987) Band assignments in the Raman spectra of celluloses. Carbohydr Res 160:113–129CrossRef
Zurück zum Zitat Xiaohui J, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481CrossRef Xiaohui J, Bowden M, Brown EE, Zhang X (2015) An improved X-ray diffraction method for cellulose crystallinity measurement. Carbohydr Polym 123:476–481CrossRef
Zurück zum Zitat Yang H, Wang T, Oehme D, Petridis L, Hong M, Kubicki JD (2018) Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study. Cellulose 25:23–36CrossRef Yang H, Wang T, Oehme D, Petridis L, Hong M, Kubicki JD (2018) Structural factors affecting 13C NMR chemical shifts of cellulose: a computational study. Cellulose 25:23–36CrossRef
Zurück zum Zitat Young RA (ed) (1993) The Rietveld method. IUCr Monographs in crystallography. 5. International Union of Crystallography. Oxford University Press, New York, p 298 Young RA (ed) (1993) The Rietveld method. IUCr Monographs in crystallography. 5. International Union of Crystallography. Oxford University Press, New York, p 298
Metadaten
Titel
Effects of ball milling on the structure of cotton cellulose
verfasst von
Zhe Ling
Tuo Wang
Mohamadamin Makarem
Michael Santiago Cintrón
H. N. Cheng
Xue Kang
Markus Bacher
Antje Potthast
Thomas Rosenau
Holly King
Christopher D. Delhom
Sunghyun Nam
J. Vincent Edwards
Seong H. Kim
Feng Xu
Alfred D. French
Publikationsdatum
17.01.2019
Verlag
Springer Netherlands
Erschienen in
Cellulose / Ausgabe 1/2019
Print ISSN: 0969-0239
Elektronische ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-02230-x

Weitere Artikel der Ausgabe 1/2019

Cellulose 1/2019 Zur Ausgabe