Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 4/2019

27.03.2019

Mechanical Response of 3D Printed Bending-Dominated Ligament-Based Triply Periodic Cellular Polymeric Solids

verfasst von: Aliaa M. Abou-Ali, Oraib Al-Ketan, Reza Rowshan, Rashid Abu Al-Rub

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Lightweight materials with complex structures such as cellular solids (or foams) have proven to possess desirable properties, specifically in terms of its stiffness, strength, and thermal conductivity, among other mechanical and thermal performance aspects while the density is reduced. The fabrication of such attractive yet complex materials has become possible due to the witnessed advancements in fabrication techniques. However, a major challenge in adapting cellular solids in mechanical design is choosing the appropriate lattice design. Therefore, this paper focuses on studying the compressive mechanical behavior of four different types of cellular solids with topologies based on the mathematically known triply periodic minimal surfaces (TPMS); namely, Diamond (D), I-WP (IWP), Gyroid (G), and Fisher-Koch C(Y) (CY). These cellular materials are 3D printed using the powder bed fusion selective laser sintering technique out of Nylon thermoplastic polymer at various relative densities. The effects of the number of unit cells, type of the ligament-based TPMS architecture, and relative density on the stiffness, yield strength, ultimate strength, and toughness are thoroughly investigated. The results indicated that the effect of the architecture is stronger when the relative density is decreased. Also, the analyses showed that all the tested architectures were bending dominated implying that it could be best applied in shock absorbing and vibration mitigation applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat L.J. Gibson and M.F. Ashby, Cellular Solids: Structure And Properties, Cambridge University Press, Cambridge, 1999 L.J. Gibson and M.F. Ashby, Cellular Solids: Structure And Properties, Cambridge University Press, Cambridge, 1999
2.
Zurück zum Zitat M. Ashby, The Properties of Foams and Lattices, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., 2006, 364(1838), p 15–30CrossRef M. Ashby, The Properties of Foams and Lattices, Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci., 2006, 364(1838), p 15–30CrossRef
3.
Zurück zum Zitat V. Deshpande, M. Ashby, and N. Fleck, Foam Topology: Bending Versus Stretching Dominated Architectures, Acta Mater., 2001, 49(6), p 1035–1040CrossRef V. Deshpande, M. Ashby, and N. Fleck, Foam Topology: Bending Versus Stretching Dominated Architectures, Acta Mater., 2001, 49(6), p 1035–1040CrossRef
4.
Zurück zum Zitat S. Guessasma, P. Babin, G. Della Valle, and R. Dendievel, Relating Cellular Structure of Open Solid Food Foams to Their Young’s Modulus: Finite Element Calculation, Int. J. Solids Struct., 2008, 45(10), p 2881–2896CrossRef S. Guessasma, P. Babin, G. Della Valle, and R. Dendievel, Relating Cellular Structure of Open Solid Food Foams to Their Young’s Modulus: Finite Element Calculation, Int. J. Solids Struct., 2008, 45(10), p 2881–2896CrossRef
5.
Zurück zum Zitat W. Lee, Cellular Solids, Structure and Properties, Mater. Sci. Technol., 2000, 16(2), p 233 W. Lee, Cellular Solids, Structure and Properties, Mater. Sci. Technol., 2000, 16(2), p 233
6.
Zurück zum Zitat M.K. Ravari, M. Kadkhodaei, M. Badrossamay, and R. Rezaei, Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling, Int. J. Mech. Sci., 2014, 88, p 154–161CrossRef M.K. Ravari, M. Kadkhodaei, M. Badrossamay, and R. Rezaei, Numerical Investigation on Mechanical Properties of Cellular Lattice Structures Fabricated by Fused Deposition Modeling, Int. J. Mech. Sci., 2014, 88, p 154–161CrossRef
7.
Zurück zum Zitat V. Valuiskikh, Method of Stochastic Simulation Modeling of the Structure, Calculation, and Optimization of the Physicomechanical Characteristics of Foam Plastics, Mech. Compos. Mater., 1990, 25(4), p 429–435CrossRef V. Valuiskikh, Method of Stochastic Simulation Modeling of the Structure, Calculation, and Optimization of the Physicomechanical Characteristics of Foam Plastics, Mech. Compos. Mater., 1990, 25(4), p 429–435CrossRef
8.
Zurück zum Zitat V. Yakushin and U. Stirna, Physicomechanical Characteristics of Spray-on Rigid Polyurethane Foams at Normal and Low Temperatures, Mech. Compos. Mater., 2002, 38(3), p 273–280CrossRef V. Yakushin and U. Stirna, Physicomechanical Characteristics of Spray-on Rigid Polyurethane Foams at Normal and Low Temperatures, Mech. Compos. Mater., 2002, 38(3), p 273–280CrossRef
9.
Zurück zum Zitat R. Gümrük, R. Mines, and S. Karadeniz, Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method, J. Mater. Eng. Perform., 2018, 27(3), p 1016–1032CrossRef R. Gümrük, R. Mines, and S. Karadeniz, Determination of Strain Rate Sensitivity of Micro-struts Manufactured Using the Selective Laser Melting Method, J. Mater. Eng. Perform., 2018, 27(3), p 1016–1032CrossRef
10.
Zurück zum Zitat M.K. Ravari and M. Kadkhodaei, A Computationally Efficient Modeling Approach for Predicting Mechanical Behavior of Cellular Lattice Structures, J. Mater. Eng. Perform., 2015, 24(1), p 245–252CrossRef M.K. Ravari and M. Kadkhodaei, A Computationally Efficient Modeling Approach for Predicting Mechanical Behavior of Cellular Lattice Structures, J. Mater. Eng. Perform., 2015, 24(1), p 245–252CrossRef
11.
Zurück zum Zitat T. Lu, H. Stone, and M. Ashby, Heat Transfer in Open-Cell Metal Foams, Acta Mater., 1998, 46(10), p 3619–3635CrossRef T. Lu, H. Stone, and M. Ashby, Heat Transfer in Open-Cell Metal Foams, Acta Mater., 1998, 46(10), p 3619–3635CrossRef
12.
Zurück zum Zitat L.R. Meza, S. Das, and J.R. Greer, Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices, Science, 2014, 345(6202), p 1322–1326CrossRef L.R. Meza, S. Das, and J.R. Greer, Strong, Lightweight, and Recoverable Three-Dimensional Ceramic Nanolattices, Science, 2014, 345(6202), p 1322–1326CrossRef
13.
Zurück zum Zitat O. Al-Ketan, R. Rezgui, R. Rowshan, H. Du, N.X. Fang, and R.K. Abu Al-Rub, Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies, Adv. Eng. Mater., 2018, 20(9), p 1800029CrossRef O. Al-Ketan, R. Rezgui, R. Rowshan, H. Du, N.X. Fang, and R.K. Abu Al-Rub, Microarchitected Stretching-Dominated Mechanical Metamaterials with Minimal Surface Topologies, Adv. Eng. Mater., 2018, 20(9), p 1800029CrossRef
14.
Zurück zum Zitat X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C.M. Spadaccini, Multiscale Metallic Metamaterials, Nat. Mater., 2016, 15, p 1100CrossRef X. Zheng, W. Smith, J. Jackson, B. Moran, H. Cui, D. Chen, J. Ye, N. Fang, N. Rodriguez, T. Weisgraber, and C.M. Spadaccini, Multiscale Metallic Metamaterials, Nat. Mater., 2016, 15, p 1100CrossRef
15.
Zurück zum Zitat A.H. Schoen, Infinite Periodic Minimal Surfaces Without Self-Intersections, NASA Report D5541, 1970 A.H. Schoen, Infinite Periodic Minimal Surfaces Without Self-Intersections, NASA Report D5541, 1970
16.
Zurück zum Zitat D. Cvijović and J. Klinowski, The Computation of the Triply Periodic I-WP Minimal Surface, Chem. Phys. Lett., 1994, 226(1), p 93–99CrossRef D. Cvijović and J. Klinowski, The Computation of the Triply Periodic I-WP Minimal Surface, Chem. Phys. Lett., 1994, 226(1), p 93–99CrossRef
17.
Zurück zum Zitat S.C. Kapfer, S.T. Hyde, K. Mecke, C.H. Arns, and G.E. Schröder-Turk, Minimal Surface Scaffold Designs for Tissue Engineering, Biomaterials, 2011, 32(29), p 6875–6882CrossRef S.C. Kapfer, S.T. Hyde, K. Mecke, C.H. Arns, and G.E. Schröder-Turk, Minimal Surface Scaffold Designs for Tissue Engineering, Biomaterials, 2011, 32(29), p 6875–6882CrossRef
18.
Zurück zum Zitat M. Afshar, A.P. Anaraki, H. Montazerian, and J. Kadkhodapour, Additive Manufacturing and Mechanical Characterization of Graded Porosity Scaffolds Designed Based on Triply Periodic Minimal Surface Architectures, J. Mech. Behav. Biomed. Mater., 2016, 62, p 481–494CrossRef M. Afshar, A.P. Anaraki, H. Montazerian, and J. Kadkhodapour, Additive Manufacturing and Mechanical Characterization of Graded Porosity Scaffolds Designed Based on Triply Periodic Minimal Surface Architectures, J. Mech. Behav. Biomed. Mater., 2016, 62, p 481–494CrossRef
19.
Zurück zum Zitat J. Kadkhodapour, H. Montazerian, A.C. Darabi, A. Zargarian, and S. Schmauder, The Relationships Between Deformation Mechanisms and Mechanical Properties of Additively Manufactured Porous Biomaterials, J. Mech. Behav. Biomed. Mater., 2017, 70, p 28–42CrossRef J. Kadkhodapour, H. Montazerian, A.C. Darabi, A. Zargarian, and S. Schmauder, The Relationships Between Deformation Mechanisms and Mechanical Properties of Additively Manufactured Porous Biomaterials, J. Mech. Behav. Biomed. Mater., 2017, 70, p 28–42CrossRef
20.
Zurück zum Zitat I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck, and I.A. Ashcroft, Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading, Mater. Des., 2018, 155, p 220–232CrossRef I. Maskery, A.O. Aremu, L. Parry, R.D. Wildman, C.J. Tuck, and I.A. Ashcroft, Effective Design and Simulation of Surface-Based Lattice Structures Featuring Volume Fraction and Cell Type Grading, Mater. Des., 2018, 155, p 220–232CrossRef
21.
Zurück zum Zitat I. Maskery, L. Sturm, A.O. Aremu, A. Panesar, C.B. Williams, C.J. Tuck, R.D. Wildman, I.A. Ashcroft, and R.J.M. Hague, Insights into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing, Polymer, 2018, 152, p 62–71CrossRef I. Maskery, L. Sturm, A.O. Aremu, A. Panesar, C.B. Williams, C.J. Tuck, R.D. Wildman, I.A. Ashcroft, and R.J.M. Hague, Insights into the Mechanical Properties of Several Triply Periodic Minimal Surface Lattice Structures Made by Polymer Additive Manufacturing, Polymer, 2018, 152, p 62–71CrossRef
22.
Zurück zum Zitat D.W. Abueidda, M. Bakir, R.K. Abu Al-Rub, J.S. Bergström, N.A. Sobh, and I. Jasiuk, Mechanical Properties of 3D Printed Polymeric Cellular Materials with Triply Periodic Minimal Surface Architectures, Mater. Des., 2017, 122, p 255–267CrossRef D.W. Abueidda, M. Bakir, R.K. Abu Al-Rub, J.S. Bergström, N.A. Sobh, and I. Jasiuk, Mechanical Properties of 3D Printed Polymeric Cellular Materials with Triply Periodic Minimal Surface Architectures, Mater. Des., 2017, 122, p 255–267CrossRef
23.
Zurück zum Zitat O. Al-Ketan, R. Rowshan, and R.K. Abu Al-Rub, Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials, Addit. Manuf., 2018, 19, p 167–183CrossRef O. Al-Ketan, R. Rowshan, and R.K. Abu Al-Rub, Topology-Mechanical Property Relationship of 3D Printed Strut, Skeletal, and Sheet Based Periodic Metallic Cellular Materials, Addit. Manuf., 2018, 19, p 167–183CrossRef
24.
Zurück zum Zitat O. Al-Ketan, R.K. Abu Al-Rub, and R. Rowshan, The Effect of Architecture on the Mechanical Properties of Cellular Structures Based on the IWP Minimal Surface, J. Mater. Res., 2018, 33(03), p 343–359CrossRef O. Al-Ketan, R.K. Abu Al-Rub, and R. Rowshan, The Effect of Architecture on the Mechanical Properties of Cellular Structures Based on the IWP Minimal Surface, J. Mater. Res., 2018, 33(03), p 343–359CrossRef
25.
Zurück zum Zitat C. Yan, L. Hao, A. Hussein, and P. Young, Ti-6Al-4 V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated via Selective Laser Melting, J. Mech. Behav. Biomed. Mater., 2015, 51, p 61–73CrossRef C. Yan, L. Hao, A. Hussein, and P. Young, Ti-6Al-4 V Triply Periodic Minimal Surface Structures for Bone Implants Fabricated via Selective Laser Melting, J. Mech. Behav. Biomed. Mater., 2015, 51, p 61–73CrossRef
26.
Zurück zum Zitat D.W. Abueidda, R.K. Abu Al-Rub, A.S. Dalaq, D.-W. Lee, K.A. Khan, and I. Jasiuk, Effective Conductivities and Elastic Moduli of Novel Foams with Triply Periodic Minimal Surfaces, Mech. Mater., 2016, 95, p 102–115CrossRef D.W. Abueidda, R.K. Abu Al-Rub, A.S. Dalaq, D.-W. Lee, K.A. Khan, and I. Jasiuk, Effective Conductivities and Elastic Moduli of Novel Foams with Triply Periodic Minimal Surfaces, Mech. Mater., 2016, 95, p 102–115CrossRef
27.
Zurück zum Zitat D.W. Abueidda, A.S. Dalaq, R.K. Abu Al-Rub, and H.A. Younes, Finite Element Predictions of Effective Multifunctional Properties of Interpenetrating Phase Composites with Novel Triply Periodic Solid Shell Architectured Reinforcements, Int. J. Mech. Sci., 2015, 92, p 80–89CrossRef D.W. Abueidda, A.S. Dalaq, R.K. Abu Al-Rub, and H.A. Younes, Finite Element Predictions of Effective Multifunctional Properties of Interpenetrating Phase Composites with Novel Triply Periodic Solid Shell Architectured Reinforcements, Int. J. Mech. Sci., 2015, 92, p 80–89CrossRef
28.
Zurück zum Zitat A.S. Dalaq, D.W. Abueidda, and R.K. Abu Al-Rub, Mechanical Properties of 3D Printed Interpenetrating Phase Composites with Novel Architectured 3D Solid-Sheet Reinforcements, Compos. A Appl. Sci. Manuf., 2016, 84, p 266–280CrossRef A.S. Dalaq, D.W. Abueidda, and R.K. Abu Al-Rub, Mechanical Properties of 3D Printed Interpenetrating Phase Composites with Novel Architectured 3D Solid-Sheet Reinforcements, Compos. A Appl. Sci. Manuf., 2016, 84, p 266–280CrossRef
29.
Zurück zum Zitat O. Al-Ketan, M. Adel Assad, and R.K. Abu Al-Rub, Mechanical Properties of Periodic Interpenetrating Phase Composites with Novel Architected Microstructures, Compos. Struct., 2017, 176, p 9–19CrossRef O. Al-Ketan, M. Adel Assad, and R.K. Abu Al-Rub, Mechanical Properties of Periodic Interpenetrating Phase Composites with Novel Architected Microstructures, Compos. Struct., 2017, 176, p 9–19CrossRef
30.
Zurück zum Zitat O. Al-Ketan, R.K. Abu Al-Rub, and R. Rowshan, Mechanical Properties of a New Type of Architected Interpenetrating Phase Composite Materials, Adv. Mater. Technol., 2017, 2(2), p 1600235CrossRef O. Al-Ketan, R.K. Abu Al-Rub, and R. Rowshan, Mechanical Properties of a New Type of Architected Interpenetrating Phase Composite Materials, Adv. Mater. Technol., 2017, 2(2), p 1600235CrossRef
31.
Zurück zum Zitat O. Al-Ketan, A. Soliman, A.M. AlQubaisi, and R.K. Abu Al-Rub, Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures, Adv. Eng. Mater., 2018, 20(2), p 1700549CrossRef O. Al-Ketan, A. Soliman, A.M. AlQubaisi, and R.K. Abu Al-Rub, Nature-Inspired Lightweight Cellular Co-Continuous Composites with Architected Periodic Gyroidal Structures, Adv. Eng. Mater., 2018, 20(2), p 1700549CrossRef
32.
Zurück zum Zitat K.A. Khan and R.K. Abu Al-Rub, Time Dependent Response of Architectured Neovius Foams, Int. J. Mech. Sci., 2017, 126, p 106–119CrossRef K.A. Khan and R.K. Abu Al-Rub, Time Dependent Response of Architectured Neovius Foams, Int. J. Mech. Sci., 2017, 126, p 106–119CrossRef
33.
Zurück zum Zitat K.A. Khan and R.K. Abu Al-Rub, Modeling Time and Frequency Domain Viscoelastic Behavior of Architectured Foams, J. Eng. Mech., 2018, 144(6), p 04018029CrossRef K.A. Khan and R.K. Abu Al-Rub, Modeling Time and Frequency Domain Viscoelastic Behavior of Architectured Foams, J. Eng. Mech., 2018, 144(6), p 04018029CrossRef
34.
Zurück zum Zitat D.-W. Lee, K.A. Khan, and R.K. Abu Al-Rub, Stiffness and Yield Strength of Architectured Foams Based on the Schwarz Primitive Triply Periodic Minimal Surface, Int. J. Plast., 2017, 95, p 1–20CrossRef D.-W. Lee, K.A. Khan, and R.K. Abu Al-Rub, Stiffness and Yield Strength of Architectured Foams Based on the Schwarz Primitive Triply Periodic Minimal Surface, Int. J. Plast., 2017, 95, p 1–20CrossRef
35.
Zurück zum Zitat F. Bobbert, K. Lietaert, A. Eftekhari, B. Pouran, S. Ahmadi, H. Weinans, and A. Zadpoor, Additively Manufactured Metallic Porous Biomaterials Based on Minimal Surfaces: A Unique Combination of Topological, Mechanical, and Mass Transport Properties, Acta Biomater., 2017, 53, p 572–584CrossRef F. Bobbert, K. Lietaert, A. Eftekhari, B. Pouran, S. Ahmadi, H. Weinans, and A. Zadpoor, Additively Manufactured Metallic Porous Biomaterials Based on Minimal Surfaces: A Unique Combination of Topological, Mechanical, and Mass Transport Properties, Acta Biomater., 2017, 53, p 572–584CrossRef
36.
Zurück zum Zitat I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, and I.A. Ashcroft, Compressive Failure Modes and Energy Absorption in Additively Manufactured Double Gyroid Lattices, Addit. Manuf., 2017, 16, p 24–29CrossRef I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, and I.A. Ashcroft, Compressive Failure Modes and Energy Absorption in Additively Manufactured Double Gyroid Lattices, Addit. Manuf., 2017, 16, p 24–29CrossRef
37.
Zurück zum Zitat L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, and W.F. Lu, Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures Under Compressive Loading, Addit. Manuf., 2018, 23, p 505–515CrossRef L. Zhang, S. Feih, S. Daynes, S. Chang, M.Y. Wang, J. Wei, and W.F. Lu, Energy Absorption Characteristics of Metallic Triply Periodic Minimal Surface Sheet Structures Under Compressive Loading, Addit. Manuf., 2018, 23, p 505–515CrossRef
38.
Zurück zum Zitat A. Ataee, Y. Li, D. Fraser, G. Song, and C. Wen, Anisotropic Ti-6Al-4 V Gyroid Scaffolds Manufactured by Electron Beam Melting (EBM) for Bone Implant Applications, Mater. Des., 2018, 137, p 345–354CrossRef A. Ataee, Y. Li, D. Fraser, G. Song, and C. Wen, Anisotropic Ti-6Al-4 V Gyroid Scaffolds Manufactured by Electron Beam Melting (EBM) for Bone Implant Applications, Mater. Des., 2018, 137, p 345–354CrossRef
39.
Zurück zum Zitat C. Han, Y. Li, Q. Wang, S. Wen, Q. Wei, C. Yan, L. Hao, J. Liu, and Y. Shi, Continuous Functionally Graded Porous Titanium Scaffolds Manufactured by Selective Laser Melting for Bone Implants, J. Mech. Behav. Biomed. Mater., 2018, 80, p 119–127CrossRef C. Han, Y. Li, Q. Wang, S. Wen, Q. Wei, C. Yan, L. Hao, J. Liu, and Y. Shi, Continuous Functionally Graded Porous Titanium Scaffolds Manufactured by Selective Laser Melting for Bone Implants, J. Mech. Behav. Biomed. Mater., 2018, 80, p 119–127CrossRef
40.
Zurück zum Zitat C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, and D. Raymont, Evaluation of Light-Weight AlSi10 Mg Periodic Cellular Lattice Structures Fabricated via Direct Metal Laser Sintering, J. Mater. Process. Technol., 2014, 214(4), p 856–864CrossRef C. Yan, L. Hao, A. Hussein, S.L. Bubb, P. Young, and D. Raymont, Evaluation of Light-Weight AlSi10 Mg Periodic Cellular Lattice Structures Fabricated via Direct Metal Laser Sintering, J. Mater. Process. Technol., 2014, 214(4), p 856–864CrossRef
41.
Zurück zum Zitat C. Yan, L. Hao, A. Hussein, and D. Raymont, Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting, Int. J. Mach. Tools Manuf, 2012, 62, p 32–38CrossRef C. Yan, L. Hao, A. Hussein, and D. Raymont, Evaluations of Cellular Lattice Structures Manufactured Using Selective Laser Melting, Int. J. Mach. Tools Manuf, 2012, 62, p 32–38CrossRef
42.
Zurück zum Zitat C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont, Advanced Lightweight 316L Stainless Steel Cellular Lattice Structures Fabricated via Selective Laser Melting, Mater. Des., 2014, 55, p 533–541CrossRef C. Yan, L. Hao, A. Hussein, P. Young, and D. Raymont, Advanced Lightweight 316L Stainless Steel Cellular Lattice Structures Fabricated via Selective Laser Melting, Mater. Des., 2014, 55, p 533–541CrossRef
43.
Zurück zum Zitat A. Yánez, A. Cuadrado, O. Martel, H. Afonso, and D. Monopoli, Gyroid Porous Titanium Structures: A Versatile Solution to be Used as Scaffolds in Bone Defect Reconstruction, Mater. Des., 2018, 140, p 21–29CrossRef A. Yánez, A. Cuadrado, O. Martel, H. Afonso, and D. Monopoli, Gyroid Porous Titanium Structures: A Versatile Solution to be Used as Scaffolds in Bone Defect Reconstruction, Mater. Des., 2018, 140, p 21–29CrossRef
44.
Zurück zum Zitat K. Michielsen and J. Kole, Photonic Band Gaps in Materials with Triply Periodic Surfaces and Related Tubular Structures, Phys. Rev. B, 2003, 68(11), p 115107CrossRef K. Michielsen and J. Kole, Photonic Band Gaps in Materials with Triply Periodic Surfaces and Related Tubular Structures, Phys. Rev. B, 2003, 68(11), p 115107CrossRef
45.
Zurück zum Zitat S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten, and J.-P. Kruth, Micro-CT-Based Improvement of Geometrical and Mechanical Controllability of Selective Laser Melted Ti-6Al-4 V Porous Structures, Mater. Sci. Eng. A, 2011, 528(24), p 7423–7431CrossRef S. Van Bael, G. Kerckhofs, M. Moesen, G. Pyka, J. Schrooten, and J.-P. Kruth, Micro-CT-Based Improvement of Geometrical and Mechanical Controllability of Selective Laser Melted Ti-6Al-4 V Porous Structures, Mater. Sci. Eng. A, 2011, 528(24), p 7423–7431CrossRef
46.
Zurück zum Zitat M.E. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Chapter 3: Characterization Methods 2000, Metal Foams, p 24–39 M.E. Ashby, A.G. Evans, N.A. Fleck, L.J. Gibson, J.W. Hutchinson, H.N.G. Wadley, Chapter 3: Characterization Methods 2000, Metal Foams, p 24–39
47.
Zurück zum Zitat I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, R.D. Wildman, and R.J.M. Hague, A Mechanical Property Evaluation of Graded Density Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 670, p 264–274CrossRef I. Maskery, N.T. Aboulkhair, A.O. Aremu, C.J. Tuck, I.A. Ashcroft, R.D. Wildman, and R.J.M. Hague, A Mechanical Property Evaluation of Graded Density Al-Si10-Mg Lattice Structures Manufactured by Selective Laser Melting, Mater. Sci. Eng. A, 2016, 670, p 264–274CrossRef
Metadaten
Titel
Mechanical Response of 3D Printed Bending-Dominated Ligament-Based Triply Periodic Cellular Polymeric Solids
verfasst von
Aliaa M. Abou-Ali
Oraib Al-Ketan
Reza Rowshan
Rashid Abu Al-Rub
Publikationsdatum
27.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 4/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-03982-8

Weitere Artikel der Ausgabe 4/2019

Journal of Materials Engineering and Performance 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.