Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

25.05.2022 | Technical Article

Microstructure and Mechanical Properties of Aluminum: Graphene Composites Produced by Powder Metallurgical Method

verfasst von: Rumyana Lazarova, Yana Mourjeva, Vesselin Petkov, Lubomir Anestiev, Marin Marinov, Rossitza Dimitrova, Daniela Shuleva

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aluminum-based composites containing 0.1-0.7 wt.% graphene were produced by the powder metallurgical process. The microstructure of the nanocomposites was studied using LM, SEM, EDS, TEM, and XRD. A relatively uniform distribution of graphene nano-platelets and compacted agglomerates in composites with different graphene contents was found. A mechanical bond between the nano-platelets and the aluminum matrix was established. Under the conditions used, neither particles nor nanoparticles of Al4C3 are formed. The microhardness and mechanical properties were studied. It was found out they are the highest in the composite containing 0.1% graphene. The change of these properties with the graphene content increasing has the same character. Agglomeration of GNPs occurs in all composites containing graphene, but a part of GNPs remain in a dispersed, non-agglomerated state. The microhardness and mechanical properties depend on this part of individual GNPs. It was proven that the observed increase in the yield strength of the studied composites is due to Orowan's strengthening mechanism. The fracture mechanism of GNPs de-bonding and pull-out from the aluminum matrix of the composite was experimentally proved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ö. Güler and N. Bagcı, A Short Review on Mechanical Properties of Graphene Reinforced Metal Matrix Composites, J. Mater. Res. Technol., 2020, 9(3), p 6808–6833. CrossRef Ö. Güler and N. Bagcı, A Short Review on Mechanical Properties of Graphene Reinforced Metal Matrix Composites, J. Mater. Res. Technol., 2020, 9(3), p 6808–6833. CrossRef
2.
Zurück zum Zitat M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu and N. Koratkar, Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS Nano, 2009, 3(12), p 3884–3890. CrossRef M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.-Z. Yu and N. Koratkar, Enhanced Mechanical Properties of Nanocomposites at Low Graphene Content, ACS Nano, 2009, 3(12), p 3884–3890. CrossRef
3.
Zurück zum Zitat F. Miao and C.N. Lau, Superior Thermal Conductivity of Singlelayer Graphene, Nano Lett., 2008, 8(3), p 902–907. CrossRef F. Miao and C.N. Lau, Superior Thermal Conductivity of Singlelayer Graphene, Nano Lett., 2008, 8(3), p 902–907. CrossRef
4.
Zurück zum Zitat C. Lee, X. Wei, J.W. Kysar and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321(5887), p 385–388. CrossRef C. Lee, X. Wei, J.W. Kysar and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008, 321(5887), p 385–388. CrossRef
5.
Zurück zum Zitat C. Lee, X. Wei, Q. Li, R. Carpick, J.W. Kysar and J. Hone, Elastic and Frictional Properties of Graphene, Phys. Status Solidi (B), 2009, 246(11–12), p 2562–2567. CrossRef C. Lee, X. Wei, Q. Li, R. Carpick, J.W. Kysar and J. Hone, Elastic and Frictional Properties of Graphene, Phys. Status Solidi (B), 2009, 246(11–12), p 2562–2567. CrossRef
7.
Zurück zum Zitat M.C. Şenel et al., An Investigation into the Mechanical Properties and Microstructures of Graphene Reinforced Aluminum Composites, Int. J. Res. Chem. Metall. Civ. Eng. (IJRCMCE), 2018, 5(1), p 5–8. M.C. Şenel et al., An Investigation into the Mechanical Properties and Microstructures of Graphene Reinforced Aluminum Composites, Int. J. Res. Chem. Metall. Civ. Eng. (IJRCMCE), 2018, 5(1), p 5–8.
8.
Zurück zum Zitat J. Li et al., Microstructure and Tensile Properties of Bulk Nanostructured Aluminumgraphene Composites Prepared via Cryomilling, Mater. Sci. Eng. A, 2015, 626, p 400–405. CrossRef J. Li et al., Microstructure and Tensile Properties of Bulk Nanostructured Aluminumgraphene Composites Prepared via Cryomilling, Mater. Sci. Eng. A, 2015, 626, p 400–405. CrossRef
9.
Zurück zum Zitat T. Varol and A. Canakci, Microstructure, Electrical Conductivity and Hardness of Multilayer Graphene/Copper Nanocomposites Synthesized by Flake Powder Metallurgy, Met. Mater. Int., 2015, 21, p 704–712. CrossRef T. Varol and A. Canakci, Microstructure, Electrical Conductivity and Hardness of Multilayer Graphene/Copper Nanocomposites Synthesized by Flake Powder Metallurgy, Met. Mater. Int., 2015, 21, p 704–712. CrossRef
10.
Zurück zum Zitat X. Gao et al., Preparation and Tensile Properties of Homogeneously Dispersed Graphene Reinforced Aluminum Matrix Composites, Mater. Des., 2016, 94, p 54–60. CrossRef X. Gao et al., Preparation and Tensile Properties of Homogeneously Dispersed Graphene Reinforced Aluminum Matrix Composites, Mater. Des., 2016, 94, p 54–60. CrossRef
11.
Zurück zum Zitat L. Zhang et al., Aluminum/Graphene Composites with Enhanced Heat-Dissipation Properties by in-Situ Reduction of Graphene Oxide on Aluminum, Particles, J. Alloys Compd., 2018, 748, p 854–860. CrossRef L. Zhang et al., Aluminum/Graphene Composites with Enhanced Heat-Dissipation Properties by in-Situ Reduction of Graphene Oxide on Aluminum, Particles, J. Alloys Compd., 2018, 748, p 854–860. CrossRef
12.
Zurück zum Zitat S. Yan, C. Yang, Q. Hong, J. Chen, D. Liu and S. Dai, Research of Graphene-Reinforced Aluminum Matrix Nanocomposites, J. Mater. Eng., 2014, 4, p 1–6. S. Yan, C. Yang, Q. Hong, J. Chen, D. Liu and S. Dai, Research of Graphene-Reinforced Aluminum Matrix Nanocomposites, J. Mater. Eng., 2014, 4, p 1–6.
13.
Zurück zum Zitat J. Wang et al., Effect of the Graphene Content on the Microstructures and Properties of Graphene/Aluminum Composites, New Carbon Mater., 2019, 34(3), p 275–285. CrossRef J. Wang et al., Effect of the Graphene Content on the Microstructures and Properties of Graphene/Aluminum Composites, New Carbon Mater., 2019, 34(3), p 275–285. CrossRef
14.
Zurück zum Zitat Du. Xiaoming, K. Zheng and F. Liu, Microstructure and Mechanical Properties of Graphene-Reinforced Aluminum-Matrix Composites, Mater. Technol., 2018, 52(6), p 763–768. Du. Xiaoming, K. Zheng and F. Liu, Microstructure and Mechanical Properties of Graphene-Reinforced Aluminum-Matrix Composites, Mater. Technol., 2018, 52(6), p 763–768.
15.
Zurück zum Zitat X.M. Du et al., Investigation of Graphene Nanosheets Reinforced Aluminum Matrix Composites, Dig. J. Nanomater. Biostruct., 2017, 12(1), p 37–45. X.M. Du et al., Investigation of Graphene Nanosheets Reinforced Aluminum Matrix Composites, Dig. J. Nanomater. Biostruct., 2017, 12(1), p 37–45.
16.
Zurück zum Zitat X.M. Du, R.Q. Chen and F.G. Liu, Investigation of Graphene Nanosheets Reinforced Aluminum Matrix Composites, Dig. J. Nanomater. Biostruct., 2017, 12(1), p 37–45. X.M. Du, R.Q. Chen and F.G. Liu, Investigation of Graphene Nanosheets Reinforced Aluminum Matrix Composites, Dig. J. Nanomater. Biostruct., 2017, 12(1), p 37–45.
17.
Zurück zum Zitat J.L. Li et al., Microstructure and Tensile Properties of Bulk Nanostructured Aluminum/Graphene Composites Prepared via Cryomilling, Mater. Sci. Eng. A, 2015, 626, p 400–405. CrossRef J.L. Li et al., Microstructure and Tensile Properties of Bulk Nanostructured Aluminum/Graphene Composites Prepared via Cryomilling, Mater. Sci. Eng. A, 2015, 626, p 400–405. CrossRef
19.
Zurück zum Zitat S.F. Bartolucci et al., Graphene–aluminum nanocomposites, Mater. Sci. Eng. A, 2011, 528, p 7933–7937. CrossRef S.F. Bartolucci et al., Graphene–aluminum nanocomposites, Mater. Sci. Eng. A, 2011, 528, p 7933–7937. CrossRef
20.
Zurück zum Zitat G. Li and B. Xiong, Effects of Graphene Content on Microstructures and Tensile Property of Graphene-Nanosheets/Aluminum Composites, J. Alloys Compd., 2017, 697, p 31. CrossRef G. Li and B. Xiong, Effects of Graphene Content on Microstructures and Tensile Property of Graphene-Nanosheets/Aluminum Composites, J. Alloys Compd., 2017, 697, p 31. CrossRef
21.
Zurück zum Zitat B. Xiong et al., Strengthening Effect Induced by Interfacial Reaction in Graphene Nano-Platelets Reinforced Aluminum Matrix Composites, J. Alloy. Compd., 2020, 845, 156282. CrossRef B. Xiong et al., Strengthening Effect Induced by Interfacial Reaction in Graphene Nano-Platelets Reinforced Aluminum Matrix Composites, J. Alloy. Compd., 2020, 845, 156282. CrossRef
22.
Zurück zum Zitat Z. Y et al., Effect of Ball Milling Time on Graphene Nanosheets Reinforced Al6063 Composite Fabricated by Pressure Infiltration Method, Carbon, 2019, 141, p 25–39. CrossRef Z. Y et al., Effect of Ball Milling Time on Graphene Nanosheets Reinforced Al6063 Composite Fabricated by Pressure Infiltration Method, Carbon, 2019, 141, p 25–39. CrossRef
23.
Zurück zum Zitat W. Zhou et al., Interfacial Reaction Induced Efficient Load Transfer in Few-Layer Graphene Reinforced Al Matrix Composites for High-Performance Conductor, Compos. B, 2019, 167, p 93–99. CrossRef W. Zhou et al., Interfacial Reaction Induced Efficient Load Transfer in Few-Layer Graphene Reinforced Al Matrix Composites for High-Performance Conductor, Compos. B, 2019, 167, p 93–99. CrossRef
25.
Zurück zum Zitat J. Li, X. Zhang and L. Geng, Effect of Heat Treatment on Interfacial Bonding and Strengthening Efficiency of Graphene in GNP/Al Composites, Compos. A, 2019, 121, p 487–498. CrossRef J. Li, X. Zhang and L. Geng, Effect of Heat Treatment on Interfacial Bonding and Strengthening Efficiency of Graphene in GNP/Al Composites, Compos. A, 2019, 121, p 487–498. CrossRef
27.
Zurück zum Zitat J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He et al., Microstructure and Tensile Properties of Bulk Nanostructured Aluminum/Graphene Composites Prepared via Cryomilling, Mater. Sci. Eng. A-Struct., 2015, 626, p 400–405. CrossRef J.L. Li, Y.C. Xiong, X.D. Wang, S.J. Yan, C. Yang, W.W. He et al., Microstructure and Tensile Properties of Bulk Nanostructured Aluminum/Graphene Composites Prepared via Cryomilling, Mater. Sci. Eng. A-Struct., 2015, 626, p 400–405. CrossRef
30.
Zurück zum Zitat M. Rashad, F. Pan, A. Tang and M. Asif, Effect of Graphene Nano-Platelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method, Prog. Nat. Sci. Mater. Int., 2014, 24, p 101–108. CrossRef M. Rashad, F. Pan, A. Tang and M. Asif, Effect of Graphene Nano-Platelets Addition on Mechanical Properties of Pure Aluminum Using a Semi-Powder Method, Prog. Nat. Sci. Mater. Int., 2014, 24, p 101–108. CrossRef
31.
Zurück zum Zitat M. Hasanzadeh Azar et al., Investigating the Microstructure and Mechanical Properties of Aluminum-Matrix Reinforced-Graphene Nanosheet Composites Fabricated by Mechanical Milling and Equal-Channel Angular Pressing, Nanomaterials, 2019, 9(8), p 1070. CrossRef M. Hasanzadeh Azar et al., Investigating the Microstructure and Mechanical Properties of Aluminum-Matrix Reinforced-Graphene Nanosheet Composites Fabricated by Mechanical Milling and Equal-Channel Angular Pressing, Nanomaterials, 2019, 9(8), p 1070. CrossRef
32.
Zurück zum Zitat M. Khan et al., Study of Microstructure and Mechanical Behaviour of Aluminium Alloy Hybrid Composite with Boron Carbide and Graphene Nano-Platelets, Mater. Chem. Phys., 2021, 271, 124936. CrossRef M. Khan et al., Study of Microstructure and Mechanical Behaviour of Aluminium Alloy Hybrid Composite with Boron Carbide and Graphene Nano-Platelets, Mater. Chem. Phys., 2021, 271, 124936. CrossRef
33.
Zurück zum Zitat M. Li et al., Microstructure Evolution and Properties of Graphene Nano-Platelets Reinforced Aluminum Matrix Composites, Mater. Charact., 2018, 140, p 172–178. CrossRef M. Li et al., Microstructure Evolution and Properties of Graphene Nano-Platelets Reinforced Aluminum Matrix Composites, Mater. Charact., 2018, 140, p 172–178. CrossRef
34.
Zurück zum Zitat Le. Zhang et al., Aluminum/Graphene Composites with Enhanced Heat-Dissipation Properties by In-Situ Reduction of Graphene Oxide on Aluminum Particles, J. Alloys Compd., 2018, 748, p 854e860. CrossRef Le. Zhang et al., Aluminum/Graphene Composites with Enhanced Heat-Dissipation Properties by In-Situ Reduction of Graphene Oxide on Aluminum Particles, J. Alloys Compd., 2018, 748, p 854e860. CrossRef
38.
Zurück zum Zitat J. Humphreyes and P.B. Hirsch, The Deformation of Single Crystals of Copper and Copper–Zinc Alloys Containing Alumina Particles II Microstructure and Dislocation–Particle Interactions, Proc. R. Soc. (Lond.) A, 1970, 318, p 73–92. J. Humphreyes and P.B. Hirsch, The Deformation of Single Crystals of Copper and Copper–Zinc Alloys Containing Alumina Particles II Microstructure and Dislocation–Particle Interactions, Proc. R. Soc. (Lond.) A, 1970, 318, p 73–92.
39.
Zurück zum Zitat P.M. Hazzledine and P.B. Hirsch, A Coplanar Orowan Loops Model for Dispersion Hardening, Philos. Mag., 1974, 30, p 1331–1351. CrossRef P.M. Hazzledine and P.B. Hirsch, A Coplanar Orowan Loops Model for Dispersion Hardening, Philos. Mag., 1974, 30, p 1331–1351. CrossRef
40.
Zurück zum Zitat P. Haasen, Mechanical Properties of Solid Solutions. Chapter 23, Physical Metallurgy, Vol 3, 4th ed., R.W. Cahn, P. Haasen Ed., North-Holland, Amsterdam, 1996CrossRef P. Haasen, Mechanical Properties of Solid Solutions. Chapter 23, Physical Metallurgy, Vol 3, 4th ed., R.W. Cahn, P. Haasen Ed., North-Holland, Amsterdam, 1996CrossRef
Metadaten
Titel
Microstructure and Mechanical Properties of Aluminum: Graphene Composites Produced by Powder Metallurgical Method
verfasst von
Rumyana Lazarova
Yana Mourjeva
Vesselin Petkov
Lubomir Anestiev
Marin Marinov
Rossitza Dimitrova
Daniela Shuleva
Publikationsdatum
25.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07012-y

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.