Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

27.06.2022 | Technical Article

Microstructure, Macrosegregation, and Mechanical Properties of NiTi to Ti6Al4V Dissimilar Laser Welds Using Co Interlayer

verfasst von: Fissha Biruke Teshome, Bei Peng, J. P. Oliveira, Sansan Ao, Wenchao Ke, Fuguo Ge, Zhi Zeng

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Joining alloys exhibiting individual superior properties could yield major benefits in terms of design and production flexibility. Nevertheless, differences in thermophysical properties between the materials to be joined complicate the formation of dissimilar combinations, thus limiting the potential applications of multiple engineering alloys. The formation of brittle Ti2Ni intermetallic (IMC) in the fusion zone (FZ) is the main challenge in joining NiTi to Ti6Al4V without an interlayer. Hence, the composition of the FZ needs to be changed to ideally suppress brittle IMC phases to form and decrease the likelihood of crack formation upon solidification. In this study, two strategies were used concurrently to reduce brittle Ti2Ni intermetallic compound: a cobalt interlayer was introduced in a butt joint configuration, and the laser was offset to the Ti6Al4V side. The use of a Co interlayer resulted in a joint free of brittle interaction layer susceptible to microcracks at the NiTi boundary by reducing the amount of brittle Ti2Ni intermetallic compound. A joint with a lower hardness of 438HV was attained, compared to 515HV for the conventional NiTi/Ti6Al4V joint. The maximum strength and fracture strain of the Co-interlayered joint were improved to 285MPa and 1.67%, respectively, compared to 148MPa and 0.8% for the Co-free joint.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Z.H. Wu, D. Vokoun, C.C. Leu and C.T. Hu, A Two-Way Shape Memory Study on Ni-Rich NiTi Shape Memory Alloy by Combination of the All-Round Treatment and the R-Phase Transformation, J. Mater. Eng. Perform., 2017, 26(12), p 5801–5810.CrossRef Z.H. Wu, D. Vokoun, C.C. Leu and C.T. Hu, A Two-Way Shape Memory Study on Ni-Rich NiTi Shape Memory Alloy by Combination of the All-Round Treatment and the R-Phase Transformation, J. Mater. Eng. Perform., 2017, 26(12), p 5801–5810.CrossRef
2.
Zurück zum Zitat M. Mehrpouya, A. Gisario and M. Elahinia, Laser Welding of NiTi Shape Memory Alloy: A Review, J. Manuf. Process The Society of Manufacturing Engineers, 2018, 31, p 162–186.CrossRef M. Mehrpouya, A. Gisario and M. Elahinia, Laser Welding of NiTi Shape Memory Alloy: A Review, J. Manuf. Process The Society of Manufacturing Engineers, 2018, 31, p 162–186.CrossRef
3.
Zurück zum Zitat S. Wu, X. Liu, K.W.K. Yeung, Z.S. Xu, C.Y. Chung and P.K. Chu, Wear Properties of Porous Niti Orthopedic Shape Memory Alloy, J. Mater. Eng. Perform., 2012, 21(12), p 2622–2627.CrossRef S. Wu, X. Liu, K.W.K. Yeung, Z.S. Xu, C.Y. Chung and P.K. Chu, Wear Properties of Porous Niti Orthopedic Shape Memory Alloy, J. Mater. Eng. Perform., 2012, 21(12), p 2622–2627.CrossRef
4.
Zurück zum Zitat Z. Zeng, M. Yang, J.P. Oliveira, D. Song and B. Peng, Laser Welding of NiTi Shape Memory Alloy Wires and Tubes for Multi-Functional Design Applications, Smart Mater. Struct., 2016, 25(8), p 1–10.CrossRef Z. Zeng, M. Yang, J.P. Oliveira, D. Song and B. Peng, Laser Welding of NiTi Shape Memory Alloy Wires and Tubes for Multi-Functional Design Applications, Smart Mater. Struct., 2016, 25(8), p 1–10.CrossRef
5.
Zurück zum Zitat J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, R.M. Miranda and F.M.B. Fernandes, Laser Joining of NiTi to Ti6Al4V Using a Niobium Interlayer, Acta Mater Elsevier Ltd, 2016, 105, p 9–15.CrossRef J.P. Oliveira, B. Panton, Z. Zeng, C.M. Andrei, Y. Zhou, R.M. Miranda and F.M.B. Fernandes, Laser Joining of NiTi to Ti6Al4V Using a Niobium Interlayer, Acta Mater Elsevier Ltd, 2016, 105, p 9–15.CrossRef
6.
Zurück zum Zitat P. Gao, B. Fan, X. Yu, W. Liu, J. Wu, L. Shi, D. Yang, L. Tan, P. Wan, Y. Hao, S. Li, W. Hou, K. Yang, X. Li and Z. Guo, Bioactive Materials Biofunctional Magnesium Coated Ti6Al4V Scaffold Enhances Osteogenesis and Angiogenesis in Vitro and in Vivo for Orthopedic Application, Bioact. Mater., 2020, 5(3), p 680–693.CrossRef P. Gao, B. Fan, X. Yu, W. Liu, J. Wu, L. Shi, D. Yang, L. Tan, P. Wan, Y. Hao, S. Li, W. Hou, K. Yang, X. Li and Z. Guo, Bioactive Materials Biofunctional Magnesium Coated Ti6Al4V Scaffold Enhances Osteogenesis and Angiogenesis in Vitro and in Vivo for Orthopedic Application, Bioact. Mater., 2020, 5(3), p 680–693.CrossRef
8.
Zurück zum Zitat I. Tomashchuk, P. Sallamand, H. Andrzejewski and D. Grevey, The Formation of Intermetallics in Dissimilar Ti6Al4V/Copper/AISI 316 L Electron Beam and Nd:YAG Laser Joints, Intermetallics, Elsevier Ltd, 2011, 19(10), p 1466–1473.CrossRef I. Tomashchuk, P. Sallamand, H. Andrzejewski and D. Grevey, The Formation of Intermetallics in Dissimilar Ti6Al4V/Copper/AISI 316 L Electron Beam and Nd:YAG Laser Joints, Intermetallics, Elsevier Ltd, 2011, 19(10), p 1466–1473.CrossRef
9.
Zurück zum Zitat H. Baker and H. Okamoto, ASM Handbook. Vol. 3. Alloy Phase Diagrams, ASM Int. Mater. Park. Ohio 44073-0002, USA. 501, (1992). H. Baker and H. Okamoto, ASM Handbook. Vol. 3. Alloy Phase Diagrams, ASM Int. Mater. Park. Ohio 44073-0002, USA. 501, (1992).
10.
Zurück zum Zitat C. Li, S. Ao, J.P. Oliveira, M. Cheng, Z. Zeng, H. Cui and Z. Luo, Ultrasonic Spot Welded NiTi Joints Using an Aluminum Interlayer: Microstructure and Mechanical Behavior, J. Manuf. Process., 2020, 56, p 1201–1210.CrossRef C. Li, S. Ao, J.P. Oliveira, M. Cheng, Z. Zeng, H. Cui and Z. Luo, Ultrasonic Spot Welded NiTi Joints Using an Aluminum Interlayer: Microstructure and Mechanical Behavior, J. Manuf. Process., 2020, 56, p 1201–1210.CrossRef
11.
Zurück zum Zitat R.M. Miranda, E. Assunção, R.J.C. Silva, J.P. Oliveira and L. Quintino, Fiber Laser Welding of NiTi to Ti-6Al-4V, Int. J. Adv. Manuf. Technol., 2015, 81(9–12), p 1533–1538.CrossRef R.M. Miranda, E. Assunção, R.J.C. Silva, J.P. Oliveira and L. Quintino, Fiber Laser Welding of NiTi to Ti-6Al-4V, Int. J. Adv. Manuf. Technol., 2015, 81(9–12), p 1533–1538.CrossRef
12.
Zurück zum Zitat A. ShojaeiZoeram and S.A.A. Akbari Mousavi, Laser Welding of Ti-6Al-4V to Nitinol, Mater. Des., 2014, 61, p 185–190.CrossRef A. ShojaeiZoeram and S.A.A. Akbari Mousavi, Laser Welding of Ti-6Al-4V to Nitinol, Mater. Des., 2014, 61, p 185–190.CrossRef
13.
Zurück zum Zitat C. Yuhua, M. Yuqing, L. Weiwei and H. Peng, Investigation of Welding Crack in Micro Laser Welded NiTiNb Shape Memory Alloy and Ti6Al4V Alloy Dissimilar Metals Joints, Opt. Laser Technol., 2017, 91, p 197–202.CrossRef C. Yuhua, M. Yuqing, L. Weiwei and H. Peng, Investigation of Welding Crack in Micro Laser Welded NiTiNb Shape Memory Alloy and Ti6Al4V Alloy Dissimilar Metals Joints, Opt. Laser Technol., 2017, 91, p 197–202.CrossRef
14.
Zurück zum Zitat H.C. Chen, A.J. Pinkerton and L. Li, Fibre Laser Welding of Dissimilar Alloys of Ti-6Al-4V and Inconel 718 for Aerospace Applications, Int. J. Adv. Manuf. Technol., 2011, 52(9–12), p 977–987.CrossRef H.C. Chen, A.J. Pinkerton and L. Li, Fibre Laser Welding of Dissimilar Alloys of Ti-6Al-4V and Inconel 718 for Aerospace Applications, Int. J. Adv. Manuf. Technol., 2011, 52(9–12), p 977–987.CrossRef
15.
Zurück zum Zitat G. Thirunavukarasu and S. Kundu, High-Strength Diffusion-Bonded Joints of 17–4 Stainless Steel and T64 Alloy Using Nickel and Copper Bilayer, J. Mater. Eng. Perform., 2020, 29(1), p 515–528.CrossRef G. Thirunavukarasu and S. Kundu, High-Strength Diffusion-Bonded Joints of 17–4 Stainless Steel and T64 Alloy Using Nickel and Copper Bilayer, J. Mater. Eng. Perform., 2020, 29(1), p 515–528.CrossRef
16.
Zurück zum Zitat A. Shamsolhodaei, Q. Sun, X. Wang, B. Panton, H. Di and Y.N. Zhou, Effect of Laser Positioning on the Microstructure and Properties of NiTi-Copper Dissimilar Laser Welds, J. Mater. Eng. Perform., 2020, 29(2), p 849–857.CrossRef A. Shamsolhodaei, Q. Sun, X. Wang, B. Panton, H. Di and Y.N. Zhou, Effect of Laser Positioning on the Microstructure and Properties of NiTi-Copper Dissimilar Laser Welds, J. Mater. Eng. Perform., 2020, 29(2), p 849–857.CrossRef
17.
Zurück zum Zitat R.H. Shiue and S.K. Wu, Infrared Brazing Ti50Ni50 and Ti-6Al-4V Using the BAg-8 Braze Alloy, Mater. Trans., 2005, 46(9), p 2057–2066.CrossRef R.H. Shiue and S.K. Wu, Infrared Brazing Ti50Ni50 and Ti-6Al-4V Using the BAg-8 Braze Alloy, Mater. Trans., 2005, 46(9), p 2057–2066.CrossRef
18.
Zurück zum Zitat A.J. Cavaleiro, A.S. Ramos, F.M. BrazFernandes, N. Schell and M.T. Vieira, Follow-up Structural Evolution of Ni/Ti Reactive Nano and Microlayers during Diffusion Bonding of NiTi to Ti6Al4V in a Synchrotron Beamline, J. Mater. Process. Technol., 2020, 275, p 116354.CrossRef A.J. Cavaleiro, A.S. Ramos, F.M. BrazFernandes, N. Schell and M.T. Vieira, Follow-up Structural Evolution of Ni/Ti Reactive Nano and Microlayers during Diffusion Bonding of NiTi to Ti6Al4V in a Synchrotron Beamline, J. Mater. Process. Technol., 2020, 275, p 116354.CrossRef
19.
Zurück zum Zitat J. Xie, Y. Chen, L. Yin, T. Zhang, S. Wang and L. Wang, Microstructure and Mechanical Properties of Ultrasonic Spot Welding TiNi/Ti6Al4V Dissimilar Materials Using Pure Al Coating, J. Manuf. Process, 2021, 64, p 473–480.CrossRef J. Xie, Y. Chen, L. Yin, T. Zhang, S. Wang and L. Wang, Microstructure and Mechanical Properties of Ultrasonic Spot Welding TiNi/Ti6Al4V Dissimilar Materials Using Pure Al Coating, J. Manuf. Process, 2021, 64, p 473–480.CrossRef
20.
Zurück zum Zitat H. Deng, Y. Chen, Y. Jia, Y. Pang, T. Zhang, S. Wang and L. Yin, Microstructure and Mechanical Properties of Dissimilar NiTi/Ti6Al4V Joints via Back-Heating Assisted Friction Stir Welding, J. Manuf. Process., 2021, 64, p 379–391.CrossRef H. Deng, Y. Chen, Y. Jia, Y. Pang, T. Zhang, S. Wang and L. Yin, Microstructure and Mechanical Properties of Dissimilar NiTi/Ti6Al4V Joints via Back-Heating Assisted Friction Stir Welding, J. Manuf. Process., 2021, 64, p 379–391.CrossRef
21.
Zurück zum Zitat A. ShojaeiZoeram and S.A.A. Akbari Mousavi, Effect of Interlayer Thickness on Microstructure and Mechanical Properties of as Welded Ti6Al4V/Cu/NiTi Joints, Mater. Lett., 2014, 133, p 5–8.CrossRef A. ShojaeiZoeram and S.A.A. Akbari Mousavi, Effect of Interlayer Thickness on Microstructure and Mechanical Properties of as Welded Ti6Al4V/Cu/NiTi Joints, Mater. Lett., 2014, 133, p 5–8.CrossRef
22.
Zurück zum Zitat X.L. Gao, J. Liu and L.J. Zhang, Dissimilar Metal Welding of Ti6Al4V and Inconel 718 through Pulsed Laser Welding-Induced Eutectic Reaction Technology, Int. J. Adv. Manuf. Technol, 2018, 96, p 1061–1071.CrossRef X.L. Gao, J. Liu and L.J. Zhang, Dissimilar Metal Welding of Ti6Al4V and Inconel 718 through Pulsed Laser Welding-Induced Eutectic Reaction Technology, Int. J. Adv. Manuf. Technol, 2018, 96, p 1061–1071.CrossRef
23.
Zurück zum Zitat M.M. Quazi, M. Ishak, M.A. Fazal, A. Arslan, S. Rubaiee, A. Qaban, M.H. Aiman, T. Sultan, M.M. Ali and S.M. Manladan, Current Research and Development Status of Dissimilar Materials Laser Welding of Titanium and Its Alloys, Opt. Laser Technol., 2020, 126, p 106090.CrossRef M.M. Quazi, M. Ishak, M.A. Fazal, A. Arslan, S. Rubaiee, A. Qaban, M.H. Aiman, T. Sultan, M.M. Ali and S.M. Manladan, Current Research and Development Status of Dissimilar Materials Laser Welding of Titanium and Its Alloys, Opt. Laser Technol., 2020, 126, p 106090.CrossRef
24.
Zurück zum Zitat J.P. Oliveira, R.M. Miranda and F.M. BrazFernandes, Welding and Joining of NiTi Shape Memory Alloys: A Review, Prog. Mater. Sci., 2017, 88, p 412–466.CrossRef J.P. Oliveira, R.M. Miranda and F.M. BrazFernandes, Welding and Joining of NiTi Shape Memory Alloys: A Review, Prog. Mater. Sci., 2017, 88, p 412–466.CrossRef
25.
Zurück zum Zitat P. Disegi John A, Richard Kennedy, Robert, Cobalt-Base Alloys for Biomedical Applications, Cobalt-Base Alloys for Biomedical Applications, J. Disegi, R. Kennedy, and R. Pilliar, Eds., (Danvers), ASTM International, (1999) P. Disegi John A, Richard Kennedy, Robert, Cobalt-Base Alloys for Biomedical Applications, Cobalt-Base Alloys for Biomedical Applications, J. Disegi, R. Kennedy, and R. Pilliar, Eds., (Danvers), ASTM International, (1999)
26.
Zurück zum Zitat K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678.CrossRef K. Otsuka and X. Ren, Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys, Prog. Mater. Sci., 2005, 50(5), p 511–678.CrossRef
27.
Zurück zum Zitat H. Li, D. Sun, X. Cai, P. Dong and X. Gu, Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Co Filler Metal, Opt. Laser Technol., 2013, 45(1), p 453–460.CrossRef H. Li, D. Sun, X. Cai, P. Dong and X. Gu, Laser Welding of TiNi Shape Memory Alloy and Stainless Steel Using Co Filler Metal, Opt. Laser Technol., 2013, 45(1), p 453–460.CrossRef
28.
Zurück zum Zitat N. El-Bagoury, Microstructure and Martensitic Transformation and Mechanical Properties of Cast Ni Rich NiTiCo Shape Memory Alloys, Mater. Sci. Technol. (United Kingdom), 2014, 30(14), p 1795–1800.CrossRef N. El-Bagoury, Microstructure and Martensitic Transformation and Mechanical Properties of Cast Ni Rich NiTiCo Shape Memory Alloys, Mater. Sci. Technol. (United Kingdom), 2014, 30(14), p 1795–1800.CrossRef
30.
Zurück zum Zitat S. Tabaie, F. Rézaï-Aria, B.C.D. Flipo and M. Jahazi, Dissimilar Linear Friction Welding of Selective Laser Melted Inconel 718 to Forged Ni-Based Superalloy AD730TM: Evolution of Strengthening Phases, J. Mater. Sci. Technol., 2021, 96, p 248–261.CrossRef S. Tabaie, F. Rézaï-Aria, B.C.D. Flipo and M. Jahazi, Dissimilar Linear Friction Welding of Selective Laser Melted Inconel 718 to Forged Ni-Based Superalloy AD730TM: Evolution of Strengthening Phases, J. Mater. Sci. Technol., 2021, 96, p 248–261.CrossRef
31.
Zurück zum Zitat K. Wang, B. Chang, Y. Lei, H. Fu and Y. Lin, Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding, Metals (Basel), 2017, 7(12), p 551.CrossRef K. Wang, B. Chang, Y. Lei, H. Fu and Y. Lin, Effect of Cobalt on Microstructure and Wear Resistance of Ni-Based Alloy Coating Fabricated by Laser Cladding, Metals (Basel), 2017, 7(12), p 551.CrossRef
32.
Zurück zum Zitat P. Balakrishnan, M.S. Sreekala, and S. Thomas, Fundamental Biomaterials: Metals, Elsevier, (2018) P. Balakrishnan, M.S. Sreekala, and S. Thomas, Fundamental Biomaterials: Metals, Elsevier, (2018)
33.
Zurück zum Zitat Z. Zeng, B. Panton, J.P. Oliveira, A. Han and Y.N. Zhou, Dissimilar Laser Welding of NiTi Shape Memory Alloy and Copper, Smart Mater. Struct., 2015, 24(12), p 125036.CrossRef Z. Zeng, B. Panton, J.P. Oliveira, A. Han and Y.N. Zhou, Dissimilar Laser Welding of NiTi Shape Memory Alloy and Copper, Smart Mater. Struct., 2015, 24(12), p 125036.CrossRef
34.
Zurück zum Zitat M. Meazza and R. Rios, Merging Transition-Metal Activation and Aminocatalysis, Synth., 2016, 48(7), p 960–973.CrossRef M. Meazza and R. Rios, Merging Transition-Metal Activation and Aminocatalysis, Synth., 2016, 48(7), p 960–973.CrossRef
35.
Zurück zum Zitat S. Simões, F. Viana, A.S. Ramos, M.T. Vieira and M.F. Vieira, Reaction Zone Formed during Diffusion Bonding of TiNi to Ti6Al4V Using Ni/Ti Nanolayers, J. Mater. Sci., 2013, 48(21), p 7718–7727.CrossRef S. Simões, F. Viana, A.S. Ramos, M.T. Vieira and M.F. Vieira, Reaction Zone Formed during Diffusion Bonding of TiNi to Ti6Al4V Using Ni/Ti Nanolayers, J. Mater. Sci., 2013, 48(21), p 7718–7727.CrossRef
36.
Zurück zum Zitat J.P. Oliveira, Z. Zeng, C. Andrei, F.M.B. Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori and N. Zhou, Dissimilar Laser Welding of Superelastic NiTi and CuAlMn Shape Memory Alloys, Mater. Des, 2017, 128, p 166–175.CrossRef J.P. Oliveira, Z. Zeng, C. Andrei, F.M.B. Fernandes, R.M. Miranda, A.J. Ramirez, T. Omori and N. Zhou, Dissimilar Laser Welding of Superelastic NiTi and CuAlMn Shape Memory Alloys, Mater. Des, 2017, 128, p 166–175.CrossRef
37.
Zurück zum Zitat X. Gao, H. Liu, J. Liu and H. Yu, Laser Welding of Ti6Al4V to Cu Using a Niobium Interlayer, J. Mater. Process. Tech., 2019, 270, p 293–305.CrossRef X. Gao, H. Liu, J. Liu and H. Yu, Laser Welding of Ti6Al4V to Cu Using a Niobium Interlayer, J. Mater. Process. Tech., 2019, 270, p 293–305.CrossRef
38.
Zurück zum Zitat Y.K. Yang and S. Kou, Macrosegregation in Al-Si Welds Made with Dissimilar Filler Metals, Sci. Technol. Weld. Join., 2010, 15(1), p 1–14.CrossRef Y.K. Yang and S. Kou, Macrosegregation in Al-Si Welds Made with Dissimilar Filler Metals, Sci. Technol. Weld. Join., 2010, 15(1), p 1–14.CrossRef
39.
Zurück zum Zitat M. Ghods, M. Lauer, R.N. Grugel, S.N. Tewari and D.R. Poirier, Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si, J. Mater. Eng. Perform., 2017, 26(10), p 4876–4889.CrossRef M. Ghods, M. Lauer, R.N. Grugel, S.N. Tewari and D.R. Poirier, Macrosegregation Due to Convection in Al-19Cu Alloy Directionally Solidified Through an Abrupt Expansion in Cross-Section: A Comparison with Al-7Si, J. Mater. Eng. Perform., 2017, 26(10), p 4876–4889.CrossRef
40.
Zurück zum Zitat B. Kumar, S. Bag, C.P. Paul, C.R. Das, R. Ravikumar and K.S. Bindra, Influence of the Mode of Laser Welding Parameters on Microstructural Morphology in Thin Sheet Ti6Al4V Alloy, Opt. Laser Technol., 2020, 131, p 106456.CrossRef B. Kumar, S. Bag, C.P. Paul, C.R. Das, R. Ravikumar and K.S. Bindra, Influence of the Mode of Laser Welding Parameters on Microstructural Morphology in Thin Sheet Ti6Al4V Alloy, Opt. Laser Technol., 2020, 131, p 106456.CrossRef
41.
Zurück zum Zitat T. Soysal, S. Kou, D. Tat and T. Pasang, Macrosegregation in Dissimilar-Metal Fusion Welding, Acta Mater., 2016, 110, p 149–160.CrossRef T. Soysal, S. Kou, D. Tat and T. Pasang, Macrosegregation in Dissimilar-Metal Fusion Welding, Acta Mater., 2016, 110, p 149–160.CrossRef
42.
Zurück zum Zitat B. Huneau, P. Rogl, K. Zeng, R. Schmid-fetzer, M. Bohn and J. Bauer, The Ternary System Al-Ni-Ti Part I: Isothermal Section at 900 ° C, Exp Invest Thermodynam Calculation, Intermetall, 1999, 7(12), p 1337–1345. B. Huneau, P. Rogl, K. Zeng, R. Schmid-fetzer, M. Bohn and J. Bauer, The Ternary System Al-Ni-Ti Part I: Isothermal Section at 900 ° C, Exp Invest Thermodynam Calculation, Intermetall, 1999, 7(12), p 1337–1345.
43.
Zurück zum Zitat W. Predki, A. Knopik and B. Bauer, Engineering Applications of NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2008, 481, p 598–601.CrossRef W. Predki, A. Knopik and B. Bauer, Engineering Applications of NiTi Shape Memory Alloys, Mater. Sci. Eng. A, 2008, 481, p 598–601.CrossRef
44.
Zurück zum Zitat X. Yi, H. Wang, B. Sun, K. Sun, C. Huang, Z. Gao, X. Meng, W. Cai and L. Zhao, The Microstructural Characteristics and High Temperature Mechanical Properties of Quaternary Ti–V–Al–Co Shape Memory Alloys, J. Alloys Compd., 2020, 835, p 155416.CrossRef X. Yi, H. Wang, B. Sun, K. Sun, C. Huang, Z. Gao, X. Meng, W. Cai and L. Zhao, The Microstructural Characteristics and High Temperature Mechanical Properties of Quaternary Ti–V–Al–Co Shape Memory Alloys, J. Alloys Compd., 2020, 835, p 155416.CrossRef
45.
Zurück zum Zitat A. Wadood and Y. Yamabe-Mitarai, TiPt-Co and TiPt-Ru High Temperature Shape Memory Alloys, Sci Eng. A, 2014, 601, p 106–110.CrossRef A. Wadood and Y. Yamabe-Mitarai, TiPt-Co and TiPt-Ru High Temperature Shape Memory Alloys, Sci Eng. A, 2014, 601, p 106–110.CrossRef
Metadaten
Titel
Microstructure, Macrosegregation, and Mechanical Properties of NiTi to Ti6Al4V Dissimilar Laser Welds Using Co Interlayer
verfasst von
Fissha Biruke Teshome
Bei Peng
J. P. Oliveira
Sansan Ao
Wenchao Ke
Fuguo Ge
Zhi Zeng
Publikationsdatum
27.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-07064-0

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.