Skip to main content
Erschienen in: Microsystem Technologies 1/2015

01.01.2015 | Technical Paper

Numerical study of the effect of microchannel geometry on temperature gradient focusing using the Joule heating effect

verfasst von: Taeheon Han, Sungjin Park, Tae-Joon Jeon, Sun Min Kim

Erschienen in: Microsystem Technologies | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We performed a numerical analysis to investigate the effect of microchannel geometry on the temperature gradient focusing (TGF) process using the Joule heating phenomenon. The governing equations were implemented into a quasi-one-dimensional (1-D) numerical model along a microchannel. The distributions of temperature, velocity, and concentration along the microchannel were predicted based on the numerical results. The narrower middle width and wider outside width of a channel with a fixed length improved the focusing performance. However, an excessively narrow middle width of the channel generates an improper high temperature that can cause problems, including sample denaturation and buffer solution boiling. Therefore, the geometry of the microchannel should be optimized to prevent these problems. We propose optimal microchannel widths for TGF using the ratio of the middle width and the outside width of the channel in order to improve focusing performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akbari M, Bahrami M, Sinton D (2012) Optothermal sample preconcentration and manipulation with temperature gradient focusing. Microfluid Nanofluid 12(1–4):221–228CrossRef Akbari M, Bahrami M, Sinton D (2012) Optothermal sample preconcentration and manipulation with temperature gradient focusing. Microfluid Nanofluid 12(1–4):221–228CrossRef
Zurück zum Zitat Allen MW (2007) Thermal denaturation of DNA in semimicro cells. Thermo Fisher Scientific Inc., Madison Allen MW (2007) Thermal denaturation of DNA in semimicro cells. Thermo Fisher Scientific Inc., Madison
Zurück zum Zitat Balss KM, Ross D, Begley HC, Olsen KG, Tarlov MJ (2004a) DNA hybridization assays using temperature gradient focusing and peptide nucleic acids. J Am Chem Soc 126(41):13474–13479CrossRef Balss KM, Ross D, Begley HC, Olsen KG, Tarlov MJ (2004a) DNA hybridization assays using temperature gradient focusing and peptide nucleic acids. J Am Chem Soc 126(41):13474–13479CrossRef
Zurück zum Zitat Balss KM, Vreeland WN, Howell PB, Henry AC, Ross D (2004b) Micellar affinity gradient focusing: a new method for electrokinetic focusing. J Am Chem Soc 126(7):1936–1937CrossRef Balss KM, Vreeland WN, Howell PB, Henry AC, Ross D (2004b) Micellar affinity gradient focusing: a new method for electrokinetic focusing. J Am Chem Soc 126(7):1936–1937CrossRef
Zurück zum Zitat Balss KM, Vreeland WN, Phinney KW, Ross D (2004c) Simultaneous concentration and separation of enantiomers with chiral temperature gradient focusing. Anal Chem 76(24):7243–7249CrossRef Balss KM, Vreeland WN, Phinney KW, Ross D (2004c) Simultaneous concentration and separation of enantiomers with chiral temperature gradient focusing. Anal Chem 76(24):7243–7249CrossRef
Zurück zum Zitat Gebauer P, Bocek P (2002) Recent progress in capillary isotachophoresis. Electrophoresis 23(22–23):3858–3864CrossRef Gebauer P, Bocek P (2002) Recent progress in capillary isotachophoresis. Electrophoresis 23(22–23):3858–3864CrossRef
Zurück zum Zitat Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal Chem 78(14):4976–4984CrossRef Hatch AV, Herr AE, Throckmorton DJ, Brennan JS, Singh AK (2006) Integrated preconcentration SDS-PAGE of proteins in microchips using photopatterned cross-linked polyacrylamide gels. Anal Chem 78(14):4976–4984CrossRef
Zurück zum Zitat Incropera FP, DeWitt DP (1996) Fundamentals of heat and mass transfer. John Wiley and Sons Inc, New York Incropera FP, DeWitt DP (1996) Fundamentals of heat and mass transfer. John Wiley and Sons Inc, New York
Zurück zum Zitat Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 71(9):1815–1819CrossRef Khandurina J, Jacobson SC, Waters LC, Foote RS, Ramsey JM (1999) Microfabricated porous membrane structure for sample concentration and electrophoretic analysis. Anal Chem 71(9):1815–1819CrossRef
Zurück zum Zitat Kim SM, Burns MA, Hasselbrink EF (2006a) Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal Chem 78(14):4779–4785CrossRef Kim SM, Burns MA, Hasselbrink EF (2006a) Electrokinetic protein preconcentration using a simple glass/poly(dimethylsiloxane) microfluidic chip. Anal Chem 78(14):4779–4785CrossRef
Zurück zum Zitat Kim SM, Sommer GJ, Burns MA, Hasselbrink EF (2006b) Low-power concentration and separation using temperature gradient focusing via Joule heating. Anal Chem 78(23):8028–8035CrossRef Kim SM, Sommer GJ, Burns MA, Hasselbrink EF (2006b) Low-power concentration and separation using temperature gradient focusing via Joule heating. Anal Chem 78(23):8028–8035CrossRef
Zurück zum Zitat Petsev DN, Lopez GP, Ivory CF, Sibbett SS (2005) Microchannel protein separation by electric field gradient focusing. Lab Chip 5(6):587–597CrossRef Petsev DN, Lopez GP, Ivory CF, Sibbett SS (2005) Microchannel protein separation by electric field gradient focusing. Lab Chip 5(6):587–597CrossRef
Zurück zum Zitat Probstein RF (2003) Physicochemical hydrodynamics. John Wiley and Sons Inc, New York Probstein RF (2003) Physicochemical hydrodynamics. John Wiley and Sons Inc, New York
Zurück zum Zitat Righetti PG, Bossi A (1998) Isoelectric focusing of proteins and peptides in gel slabs and in capillaries. Anal Chim Acta 372(1–2):1–19CrossRef Righetti PG, Bossi A (1998) Isoelectric focusing of proteins and peptides in gel slabs and in capillaries. Anal Chim Acta 372(1–2):1–19CrossRef
Zurück zum Zitat Ross D, Locascio LE (2002) Microfluidic temperature gradient focusing. Anal Chem 74(11):2556–2564CrossRef Ross D, Locascio LE (2002) Microfluidic temperature gradient focusing. Anal Chem 74(11):2556–2564CrossRef
Zurück zum Zitat Shameli SM, Glawdel T, Liu Z, Ren CL (2012) Bilinear temperature gradient focusing in a hybrid PDMS/glass microfluidic chip integrated with planar heaters for generating temperature gradients. Anal Chem 84(6):2968–2973CrossRef Shameli SM, Glawdel T, Liu Z, Ren CL (2012) Bilinear temperature gradient focusing in a hybrid PDMS/glass microfluidic chip integrated with planar heaters for generating temperature gradients. Anal Chem 84(6):2968–2973CrossRef
Zurück zum Zitat Sommer GJ, Kim SM, Littrell RJ, Hasselbrink EF (2007) Theoretical and numerical analysis of temperature gradient focusing via Joule heating. Lab Chip 7(7):898–907CrossRef Sommer GJ, Kim SM, Littrell RJ, Hasselbrink EF (2007) Theoretical and numerical analysis of temperature gradient focusing via Joule heating. Lab Chip 7(7):898–907CrossRef
Zurück zum Zitat Tang GY, Yan DG, Yang C, Gong HQ, Chai JC, Lam YC (2006a) Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Electrophoresis 27(3):628–639CrossRef Tang GY, Yan DG, Yang C, Gong HQ, Chai JC, Lam YC (2006a) Assessment of Joule heating and its effects on electroosmotic flow and electrophoretic transport of solutes in microfluidic channels. Electrophoresis 27(3):628–639CrossRef
Zurück zum Zitat Tang GY, Yang C, Gong HQ, Chai JC, Lam YC (2006b) Numerical simulation of Joule heating effect on sample band transport in capillary electrophoresis. Anal Chim Acta 561(1–2):138–149CrossRef Tang GY, Yang C, Gong HQ, Chai JC, Lam YC (2006b) Numerical simulation of Joule heating effect on sample band transport in capillary electrophoresis. Anal Chim Acta 561(1–2):138–149CrossRef
Zurück zum Zitat Wooding RA (1960) Instability of a viscous liquid of variable density in a vertical hele-shaw cell. J Fluid Mech 7(4):501–515CrossRefMATHMathSciNet Wooding RA (1960) Instability of a viscous liquid of variable density in a vertical hele-shaw cell. J Fluid Mech 7(4):501–515CrossRefMATHMathSciNet
Zurück zum Zitat Yu C, Davey MH, Svec F, Frechet JMJ (2001) Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem 73(21):5088–5096CrossRef Yu C, Davey MH, Svec F, Frechet JMJ (2001) Monolithic porous polymer for on-chip solid-phase extraction and preconcentration prepared by photoinitiated in situ polymerization within a microfluidic device. Anal Chem 73(21):5088–5096CrossRef
Metadaten
Titel
Numerical study of the effect of microchannel geometry on temperature gradient focusing using the Joule heating effect
verfasst von
Taeheon Han
Sungjin Park
Tae-Joon Jeon
Sun Min Kim
Publikationsdatum
01.01.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 1/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2208-6

Weitere Artikel der Ausgabe 1/2015

Microsystem Technologies 1/2015 Zur Ausgabe

Neuer Inhalt