Skip to main content
Erschienen in: Computational Mechanics 6/2023

03.05.2023 | Original Paper

Revealing aeroelastic effects on low-rise roof structures in turbulent winds via isogeometric fluid–structure interaction

verfasst von: Qiming Zhu, Xuguang Wang, Cristoforo Demartino, Jinhui Yan

Erschienen in: Computational Mechanics | Ausgabe 6/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Aeroelastic effects, which affect the dynamic responses of low-rise roof structures to extreme wind conditions, are often neglected or oversimplified in current wind engineering design standards and applications. However, it is crucial to understand the details of those aeroelastic effects for performance-based wind engineering. This paper presents an isogeometric fluid–structure interaction (FSI) tool to investigate the aeroelastic effects of wind pressure distributions on roof structures under different turbulent wind conditions. A representative low-rise roof structure is simulated with an FSI model using an Arbitrary Lagrange-Eulerian-based variational multi-scale formulation coupled with isogeometric Kirchhoff-Love shells. The simulation results are compared to the quasi-steady approach and wind load provisions from ASCE 7-22. It shows that the quasi-steady approach and the design standard underestimate the pressure fluctuations, indicating the necessity of using FSI simulations to capture the aeroelastic effect for the roof of low-rise structures. This paper also studies the impacts of different roof configurations, e.g., the number of roof panels and inflow turbulent intensity, on the distribution of pressure coefficients and roof deflections. For the given mean wind speed, the mean pressure coefficient remains almost the same regardless of the turbulent intensity and roof configuration. However, the pressure fluctuation (standard deviation) varies significantly with the turbulence intensity and roof configuration. The aeroelastic effect also leads to complicated roof deflections at the crucial location having the maximum pressure coefficient. The paper first describes the mathematical details of the FSI model and simulation setup. Then, the pressure coefficients by the FSI simulation and design code are compared. Finally, the roof deflection with different inlet turbulence intensities and roof configurations are presented and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Paulotto C, Ciampoli M, Augusti G (2004) Some proposals for a first step towards a performance based wind engineering. IFED Int Forum Eng Decis Mak Paulotto C, Ciampoli M, Augusti G (2004) Some proposals for a first step towards a performance based wind engineering. IFED Int Forum Eng Decis Mak
2.
Zurück zum Zitat ASCE/SEI 7-22 (2022) Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers ASCE/SEI 7-22 (2022) Minimum design loads and associated criteria for buildings and other structures. American Society of Civil Engineers
3.
Zurück zum Zitat Wood JN, Breuer M, De Nayer G (2018) Experimental studies on the instantaneous fluid-structure interaction of an air-inflated flexible membrane in turbulent flow. J Fluids Struct 80:405–440CrossRef Wood JN, Breuer M, De Nayer G (2018) Experimental studies on the instantaneous fluid-structure interaction of an air-inflated flexible membrane in turbulent flow. J Fluids Struct 80:405–440CrossRef
4.
Zurück zum Zitat Estephan J, Feng C, Chowdhury AG, Chavez M, Baskaran A, Moravej M (2021) Characterization of wind-induced pressure on membrane roofs based on full-scale wind tunnel testing. Eng Struct 235:112101CrossRef Estephan J, Feng C, Chowdhury AG, Chavez M, Baskaran A, Moravej M (2021) Characterization of wind-induced pressure on membrane roofs based on full-scale wind tunnel testing. Eng Struct 235:112101CrossRef
5.
Zurück zum Zitat Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetCrossRefMATH Bazilevs Y, Calo VM, Cottrell JA, Hughes TJR, Reali A, Scovazzi G (2007) Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput Methods Appl Mech Eng 197:173–201MathSciNetCrossRefMATH
6.
Zurück zum Zitat Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH Hughes TJR, Cottrell JA, Bazilevs Y (2005) Isogeometric analysis: CAD, finite elements, NURBS, exact geometry, and mesh refinement. Comput Methods Appl Mech Eng 194:4135–4195MathSciNetCrossRefMATH
7.
Zurück zum Zitat Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Wiley, Toward Integration of CAD and FEACrossRefMATH Cottrell JA, Hughes TJR, Bazilevs Y (2009) Isogeometric analysis. Wiley, Toward Integration of CAD and FEACrossRefMATH
8.
Zurück zum Zitat Hsu M-C, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833CrossRefMATH Hsu M-C, Bazilevs Y (2012) Fluid-structure interaction modeling of wind turbines: simulating the full machine. Comput Mech 50:821–833CrossRefMATH
12.
Zurück zum Zitat Benson D, Bazilevs Y, Hsu M, Hughes T (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200(13–16):1367–1378MathSciNetCrossRefMATH Benson D, Bazilevs Y, Hsu M, Hughes T (2011) A large deformation, rotation-free, isogeometric shell. Comput Methods Appl Mech Eng 200(13–16):1367–1378MathSciNetCrossRefMATH
13.
Zurück zum Zitat Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetCrossRefMATH Brooks AN, Hughes TJR (1982) Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput Methods Appl Mech Eng 32:199–259MathSciNetCrossRefMATH
15.
Zurück zum Zitat Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173–189MathSciNetCrossRefMATH Hughes TJR, Franca LP, Hulbert GM (1989) A new finite element formulation for computational fluid dynamics: VIII. The Galerkin/least-squares method for advective-diffusive equations. Comput Methods Appl Mech Eng 73:173–189MathSciNetCrossRefMATH
16.
Zurück zum Zitat Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetCrossRefMATH Bazilevs Y, Hsu M-C, Scott MA (2012) Isogeometric fluid-structure interaction analysis with emphasis on non-matching discretizations, and with application to wind turbines. Comput Methods Appl Mech Eng 249–252:28–41MathSciNetCrossRefMATH
19.
20.
Zurück zum Zitat Cen H, Zhou Q, Korobenko A (2022) Wall-function-based weak imposition of Dirichlet boundary condition for stratified turbulent flows. Comput Fluids 234:105257MathSciNetCrossRefMATH Cen H, Zhou Q, Korobenko A (2022) Wall-function-based weak imposition of Dirichlet boundary condition for stratified turbulent flows. Comput Fluids 234:105257MathSciNetCrossRefMATH
21.
Zurück zum Zitat Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu M-C (2019) Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades. Comput Methods Appl Mech Eng 346:810–840MathSciNetCrossRefMATH Herrema AJ, Johnson EL, Proserpio D, Wu MCH, Kiendl J, Hsu M-C (2019) Penalty coupling of non-matching isogeometric Kirchhoff-Love shell patches with application to composite wind turbine blades. Comput Methods Appl Mech Eng 346:810–840MathSciNetCrossRefMATH
22.
Zurück zum Zitat Kamensky D, Xu F, Lee C, Yan J, Bazilevs Y, Hsu M (2018) A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546MathSciNetCrossRefMATH Kamensky D, Xu F, Lee C, Yan J, Bazilevs Y, Hsu M (2018) A contact formulation based on a volumetric potential: application to isogeometric simulations of atrioventricular valves. Comput Methods Appl Mech Eng 330:522–546MathSciNetCrossRefMATH
25.
Zurück zum Zitat Taniguchi Y, Takizawa K, Otoguro Y, Tezduyar T (2022) A hyperelastic extended Kirchhoff-Love shell model with out-of-plane normal stress: I. Out-of-plane deformation. Comput Mech 70(2):247–280MathSciNetCrossRefMATH Taniguchi Y, Takizawa K, Otoguro Y, Tezduyar T (2022) A hyperelastic extended Kirchhoff-Love shell model with out-of-plane normal stress: I. Out-of-plane deformation. Comput Mech 70(2):247–280MathSciNetCrossRefMATH
32.
Zurück zum Zitat Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetCrossRefMATH Bazilevs Y, Calo VM, Hughes TJR, Zhang Y (2008) Isogeometric fluid-structure interaction: theory, algorithms, and computations. Comput Mech 43:3–37MathSciNetCrossRefMATH
44.
Zurück zum Zitat Kuraishi T, Yamasaki S, Takizawa K, Tezduyar TE, Xu Z, Kaneko R (2022) Space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. Comput Mech 70(1):49–72MathSciNetCrossRefMATH Kuraishi T, Yamasaki S, Takizawa K, Tezduyar TE, Xu Z, Kaneko R (2022) Space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. Comput Mech 70(1):49–72MathSciNetCrossRefMATH
45.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar T (2022) Mesh moving methods in flow computations with the space-time and arbitrary Lagrangian–Eulerian methods. J Adv Eng Comput 6(85):112 Takizawa K, Bazilevs Y, Tezduyar T (2022) Mesh moving methods in flow computations with the space-time and arbitrary Lagrangian–Eulerian methods. J Adv Eng Comput 6(85):112
60.
Zurück zum Zitat Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed), Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty – 2018, Modeling and Simulation in Science, Engineering and Technology, Springer, pp. 253–336. https://doi.org/10.1007/978-3-319-96469-0_7 Korobenko A, Bazilevs Y, Takizawa K, Tezduyar TE (2018) Recent advances in ALE-VMS and ST-VMS computational aerodynamic and FSI analysis of wind turbines. In: Tezduyar TE (ed), Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty – 2018, Modeling and Simulation in Science, Engineering and Technology, Springer, pp. 253–336. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​7
64.
Zurück zum Zitat Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework. Comput Mech 68(1):113–130MathSciNetCrossRefMATH Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: I. Computational framework. Comput Mech 68(1):113–130MathSciNetCrossRefMATH
65.
Zurück zum Zitat Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution. Comput Mech 68(1):175–184 Kuraishi T, Zhang F, Takizawa K, Tezduyar TE (2021) Wind turbine wake computation with the ST-VMS method, isogeometric discretization and multidomain method: II. Spatial and temporal resolution. Comput Mech 68(1):175–184
66.
Zurück zum Zitat Ravensbergen M, Mohamed A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465MathSciNetCrossRefMATH Ravensbergen M, Mohamed A, Korobenko A (2020) The actuator line method for wind turbine modelling applied in a variational multiscale framework. Comput Fluids 201:104465MathSciNetCrossRefMATH
67.
Zurück zum Zitat Mohamed A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432MathSciNetCrossRefMATH Mohamed A, Bear C, Bear M, Korobenko A (2020) Performance analysis of two vertical-axis hydrokinetic turbines using variational multiscale method. Comput Fluids 200:104432MathSciNetCrossRefMATH
68.
Zurück zum Zitat Bayram A, Korobenko A (2020) Variational multiscale framework for cavitating flows. Comput Mech, pp 1–19 Bayram A, Korobenko A (2020) Variational multiscale framework for cavitating flows. Comput Mech, pp 1–19
70.
Zurück zum Zitat Zhu Q, Yan J (2021) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl 81:532–546MathSciNetCrossRefMATH Zhu Q, Yan J (2021) A moving-domain CFD solver in FEniCS with applications to tidal turbine simulations in turbulent flows. Comput Math Appl 81:532–546MathSciNetCrossRefMATH
72.
Zurück zum Zitat Bayram A, Korobenko A (2021) A numerical formulation for cavitating flows around marine propellers based on variational multiscale method. Comput Mech 68(2):405–432MathSciNetCrossRefMATH Bayram A, Korobenko A (2021) A numerical formulation for cavitating flows around marine propellers based on variational multiscale method. Comput Mech 68(2):405–432MathSciNetCrossRefMATH
76.
Zurück zum Zitat Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu M-C (2020) Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc Nat Acad Sci 117:19007–19016CrossRef Johnson EL, Wu MCH, Xu F, Wiese NM, Rajanna MR, Herrema AJ, Ganapathysubramanian B, Hughes TJR, Sacks MS, Hsu M-C (2020) Thinner biological tissues induce leaflet flutter in aortic heart valve replacements. Proc Nat Acad Sci 117:19007–19016CrossRef
78.
Zurück zum Zitat Kuraishi T, Terahara T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. J Mech 38:77–87 Kuraishi T, Terahara T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: I. Tire aerodynamics with road contact. J Mech 38:77–87
79.
Zurück zum Zitat Terahara T, Kuraishi T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact. J Mech 38:185–194 Terahara T, Kuraishi T, Takizawa K, Tezduyar T (2022) Computational flow analysis with boundary layer and contact representation: II. Heart valve flow with leaflet contact. J Mech 38:185–194
80.
Zurück zum Zitat Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M, Terahara T (2022) Computational cardiovascular medicine with isogeometric analysis. J Adv Eng Comput 6(3):167–199CrossRef Takizawa K, Bazilevs Y, Tezduyar TE, Hsu M, Terahara T (2022) Computational cardiovascular medicine with isogeometric analysis. J Adv Eng Comput 6(3):167–199CrossRef
85.
Zurück zum Zitat Kuraishi T, Takizawa K, Tabata S, Asada S, Tezduyar TE (2014) Multiscale thermo-fluid analysis of a tire. In: Proceedings of the 19th Japan society of computational engineering and science conference, Hiroshima, Japan Kuraishi T, Takizawa K, Tabata S, Asada S, Tezduyar TE (2014) Multiscale thermo-fluid analysis of a tire. In: Proceedings of the 19th Japan society of computational engineering and science conference, Hiroshima, Japan
86.
Zurück zum Zitat Kuraishi T, Takizawa K, Tezduyar TE (2018) Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformationIn: Tezduyar TE (ed.), Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018, Modeling and Simulation in Science, Engineering and Technology, Springer, pp 337–376. https://doi.org/10.1007/978-3-319-96469-0_8 Kuraishi T, Takizawa K, Tezduyar TE (2018) Space–time computational analysis of tire aerodynamics with actual geometry, road contact and tire deformationIn: Tezduyar TE (ed.), Frontiers in computational fluid–structure interaction and flow simulation: research from lead investigators under forty—2018, Modeling and Simulation in Science, Engineering and Technology, Springer, pp 337–376. https://​doi.​org/​10.​1007/​978-3-319-96469-0_​8
89.
Zurück zum Zitat Kuraishi T, Xu Z, Takizawa K, Tezduyar T, Yamasaki S (2022) High-resolution multi-domain space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. Comput Mech 70(6):1257–1279CrossRefMATH Kuraishi T, Xu Z, Takizawa K, Tezduyar T, Yamasaki S (2022) High-resolution multi-domain space-time isogeometric analysis of car and tire aerodynamics with road contact and tire deformation and rotation. Comput Mech 70(6):1257–1279CrossRefMATH
90.
Zurück zum Zitat Chung YM, Sung HJ (1997) Comparative study of inflow conditions for spatially evolving simulation. AIAA J 35(2):269–274CrossRefMATH Chung YM, Sung HJ (1997) Comparative study of inflow conditions for spatially evolving simulation. AIAA J 35(2):269–274CrossRefMATH
91.
Zurück zum Zitat Yang XI, Meneveau C (2016) Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces. J Turbulence 17(1):75–93MathSciNetCrossRef Yang XI, Meneveau C (2016) Recycling inflow method for simulations of spatially evolving turbulent boundary layers over rough surfaces. J Turbulence 17(1):75–93MathSciNetCrossRef
92.
Zurück zum Zitat Stolz S, Adams NA (2003) Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys Fluids 15(8):2398–2412CrossRefMATH Stolz S, Adams NA (2003) Large-eddy simulation of high-Reynolds-number supersonic boundary layers using the approximate deconvolution model and a rescaling and recycling technique. Phys Fluids 15(8):2398–2412CrossRefMATH
93.
Zurück zum Zitat Morgan B, Larsson J, Kawai S, Lele SK (2011) Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J 49(3):582–597CrossRef Morgan B, Larsson J, Kawai S, Lele SK (2011) Improving low-frequency characteristics of recycling/rescaling inflow turbulence generation. AIAA J 49(3):582–597CrossRef
94.
Zurück zum Zitat Pamiès M, Weiss P-E, Garnier E, Deck S, Sagaut P (2009) Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys Fluids 21(4):045103CrossRefMATH Pamiès M, Weiss P-E, Garnier E, Deck S, Sagaut P (2009) Generation of synthetic turbulent inflow data for large eddy simulation of spatially evolving wall-bounded flows. Phys Fluids 21(4):045103CrossRefMATH
95.
Zurück zum Zitat Shur ML, Spalart PR, Strelets MK, Travin AK (2014) Synthetic turbulence generators for rans-les interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbulence Combustion 93(1):63–92 Shur ML, Spalart PR, Strelets MK, Travin AK (2014) Synthetic turbulence generators for rans-les interfaces in zonal simulations of aerodynamic and aeroacoustic problems. Flow Turbulence Combustion 93(1):63–92
96.
Zurück zum Zitat Poletto R, Craft T, Revell A (2013) A new divergence free synthetic eddy method for the reproduction of inlet flow conditions for LES. Flow Turbulence Combustion 91(3):519–539 Poletto R, Craft T, Revell A (2013) A new divergence free synthetic eddy method for the reproduction of inlet flow conditions for LES. Flow Turbulence Combustion 91(3):519–539
97.
98.
Zurück zum Zitat Bechara W, Bailly C, Lafon P, Candel SM (1994) Stochastic approach to noise modeling for free turbulent flows. AIAA J 32(3):455–463CrossRefMATH Bechara W, Bailly C, Lafon P, Candel SM (1994) Stochastic approach to noise modeling for free turbulent flows. AIAA J 32(3):455–463CrossRefMATH
99.
Zurück zum Zitat Jarrin N, Benhamadouche S, Laurence D, Prosser R (2006) A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int J Heat Fluid Flow 27(4):585–593CrossRef Jarrin N, Benhamadouche S, Laurence D, Prosser R (2006) A synthetic-eddy-method for generating inflow conditions for large-eddy simulations. Int J Heat Fluid Flow 27(4):585–593CrossRef
100.
Zurück zum Zitat Jarrin N, Prosser R, Uribe J-C, Benhamadouche S, Laurence D (2009) Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method. Int J Heat Fluid Flow 30(3):435–442CrossRef Jarrin N, Prosser R, Uribe J-C, Benhamadouche S, Laurence D (2009) Reconstruction of turbulent fluctuations for hybrid RANS/LES simulations using a synthetic-eddy method. Int J Heat Fluid Flow 30(3):435–442CrossRef
101.
Zurück zum Zitat Li T, Yang Q, Ishihara T (2018) Unsteady aerodynamic characteristics of long-span roofs under forced excitation. J Wind Eng Ind Aerodyn 181:46–60CrossRef Li T, Yang Q, Ishihara T (2018) Unsteady aerodynamic characteristics of long-span roofs under forced excitation. J Wind Eng Ind Aerodyn 181:46–60CrossRef
102.
Zurück zum Zitat Kawai H (1983) Pressure fluctuations on square prisms-applicability of strip and quasi-steady theories. J Wind Eng Ind Aerodyn 13(1–3):197–208CrossRef Kawai H (1983) Pressure fluctuations on square prisms-applicability of strip and quasi-steady theories. J Wind Eng Ind Aerodyn 13(1–3):197–208CrossRef
103.
Zurück zum Zitat Letchford CW, Iverson RE, McDonald JR (1993) The application of the quasi-steady theory to full scale measurements on the texas tech building. J Wind Eng Ind Aerodyn 48(1):111–132CrossRef Letchford CW, Iverson RE, McDonald JR (1993) The application of the quasi-steady theory to full scale measurements on the texas tech building. J Wind Eng Ind Aerodyn 48(1):111–132CrossRef
104.
Zurück zum Zitat Richards PJ, Hoxey RP, Wanigaratne BS (1995) The effect of directional variations on the observed mean and rms pressure coefficients. J Wind Eng Ind Aerodyn 54:359–367CrossRef Richards PJ, Hoxey RP, Wanigaratne BS (1995) The effect of directional variations on the observed mean and rms pressure coefficients. J Wind Eng Ind Aerodyn 54:359–367CrossRef
Metadaten
Titel
Revealing aeroelastic effects on low-rise roof structures in turbulent winds via isogeometric fluid–structure interaction
verfasst von
Qiming Zhu
Xuguang Wang
Cristoforo Demartino
Jinhui Yan
Publikationsdatum
03.05.2023
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 6/2023
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-023-02341-8

Weitere Artikel der Ausgabe 6/2023

Computational Mechanics 6/2023 Zur Ausgabe

Neuer Inhalt