Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 3/2013

01.03.2013 | Review Article

Selective laser sintering in biomedical engineering

verfasst von: Alida Mazzoli

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 3/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Selective laser sintering (SLS) is a solid freeform fabrication technique, developed by Carl Deckard for his master’s thesis at the University of Texas, patented in 1989. SLS manufacturing is a technique that produces physical models through a selective solidification of a variety of fine powders. SLS technology is getting a great amount of attention in the clinical field. In this paper the characteristics features of SLS and the materials that have been developed for are reviewed together with a discussion on the principles of the above-mentioned manufacturing technique. The applications of SLS in tissue engineering, and at-large in the biomedical field, are reviewed and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anestiev LA, Froyen L (1999) Model of primary rearrangement processes at liquid phase sintering and selective laser sintering due to biparticle interactions. J Appl Phys 86:4008–4017CrossRef Anestiev LA, Froyen L (1999) Model of primary rearrangement processes at liquid phase sintering and selective laser sintering due to biparticle interactions. J Appl Phys 86:4008–4017CrossRef
2.
Zurück zum Zitat Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I (2007) Ceramic components manufacturing by selective laser sintering. Appl Surf Sci 254(4):989–992CrossRef Bertrand P, Bayle F, Combe C, Goeuriot P, Smurov I (2007) Ceramic components manufacturing by selective laser sintering. Appl Surf Sci 254(4):989–992CrossRef
3.
Zurück zum Zitat Berzins M, Childs THC, Ryder GR (1996) The selective laser sintering of polycarbonate. CIRP Ann Manuf Technol 45(1):187–190CrossRef Berzins M, Childs THC, Ryder GR (1996) The selective laser sintering of polycarbonate. CIRP Ann Manuf Technol 45(1):187–190CrossRef
4.
Zurück zum Zitat Bugeda G, Cervera M, Lombera G (1999) Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyp J 5:21–26CrossRef Bugeda G, Cervera M, Lombera G (1999) Numerical prediction of temperature and density distributions in selective laser sintering processes. Rapid Prototyp J 5:21–26CrossRef
5.
Zurück zum Zitat Bukharova TB, Antonov EN, Popov VK, Fatkhudinov TK, Popova AV, Volkov AV et al (2010) Biocompatibility of tissue engineering constructions from porous polylactide carriers obtained by the method of selective laser sintering and bone marrow-derived multipotent stromal cells. Bull Exp Biol Med 149(1):148–153PubMedCrossRef Bukharova TB, Antonov EN, Popov VK, Fatkhudinov TK, Popova AV, Volkov AV et al (2010) Biocompatibility of tissue engineering constructions from porous polylactide carriers obtained by the method of selective laser sintering and bone marrow-derived multipotent stromal cells. Bull Exp Biol Med 149(1):148–153PubMedCrossRef
6.
Zurück zum Zitat Cahill S, Lohfeld S, McHugh PE (2009) Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J Mater Sci Mater Med 20:1255–1262PubMedCrossRef Cahill S, Lohfeld S, McHugh PE (2009) Finite element predictions compared to experimental results for the effective modulus of bone tissue engineering scaffolds fabricated by selective laser sintering. J Mater Sci Mater Med 20:1255–1262PubMedCrossRef
7.
Zurück zum Zitat Cheah CM, Leong KF, Chua CK, Low KH, Quek HS (2002) Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H 216(6):369–383PubMedCrossRef Cheah CM, Leong KF, Chua CK, Low KH, Quek HS (2002) Characterization of microfeatures in selective laser sintered drug delivery devices. Proc Inst Mech Eng H 216(6):369–383PubMedCrossRef
8.
Zurück zum Zitat Choi KH, Kim HC, Doh YH, Kim DS (2009) Novel scan path generation method based on area division for SFFS. J Mech Sci Technol 23(4):1102–1111CrossRef Choi KH, Kim HC, Doh YH, Kim DS (2009) Novel scan path generation method based on area division for SFFS. J Mech Sci Technol 23(4):1102–1111CrossRef
9.
Zurück zum Zitat Chow LK, Cheung LK (2007) The usefulness of stereomodels in maxillofacial surgical management. J Oral Maxillofac Surg 65:2260–2268PubMedCrossRef Chow LK, Cheung LK (2007) The usefulness of stereomodels in maxillofacial surgical management. J Oral Maxillofac Surg 65:2260–2268PubMedCrossRef
10.
Zurück zum Zitat Chua CK, Leong KF, Tan KH, Wiria FE, Cheah CM (2004) Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med 15(10):1113–1121PubMedCrossRef Chua CK, Leong KF, Tan KH, Wiria FE, Cheah CM (2004) Development of tissue scaffolds using selective laser sintering of polyvinyl alcohol/hydroxyapatite biocomposite for craniofacial and joint defects. J Mater Sci Mater Med 15(10):1113–1121PubMedCrossRef
11.
Zurück zum Zitat Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N et al (2005) Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976PubMedCrossRef Ciardelli G, Chiono V, Vozzi G, Pracella M, Ahluwalia A, Barbani N et al (2005) Blends of poly-(epsilon-caprolactone) and polysaccharides in tissue engineering applications. Biomacromolecules 6(4):1961–1976PubMedCrossRef
12.
Zurück zum Zitat Ciocca L, De Crescenzio F, Fantini M, Scotti R (2010) Rehabilitation of the nose using CAD/CAM and rapid prototyping technology after ablative surgery of squamous cell carcinoma: a pilot clinical report. Int J Oral Maxillofac Implants 25(4):808–812PubMed Ciocca L, De Crescenzio F, Fantini M, Scotti R (2010) Rehabilitation of the nose using CAD/CAM and rapid prototyping technology after ablative surgery of squamous cell carcinoma: a pilot clinical report. Int J Oral Maxillofac Implants 25(4):808–812PubMed
13.
Zurück zum Zitat Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R (2011) Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med Biol Eng Comput 49:1347–1352PubMedCrossRef Ciocca L, Fantini M, De Crescenzio F, Corinaldesi G, Scotti R (2011) Direct metal laser sintering (DMLS) of a customized titanium mesh for prosthetically guided bone regeneration of atrophic maxillary arches. Med Biol Eng Comput 49:1347–1352PubMedCrossRef
14.
Zurück zum Zitat Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J (2009) Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:661–666PubMedCrossRef Cohen A, Laviv A, Berman P, Nashef R, Abu-Tair J (2009) Mandibular reconstruction using stereolithographic 3-dimensional printing modeling technology. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 108:661–666PubMedCrossRef
15.
Zurück zum Zitat Deshmukh TR, Kuthe AM, Vaibhav B (2010) Preplanning and simulation of surgery using rapid modelling. J Med Eng Technol 34(4):291–294PubMedCrossRef Deshmukh TR, Kuthe AM, Vaibhav B (2010) Preplanning and simulation of surgery using rapid modelling. J Med Eng Technol 34(4):291–294PubMedCrossRef
16.
Zurück zum Zitat Drummer D, Rietzel D, Kühnlein F (2010) Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering. Phys Proced 5(Part B):533–542CrossRef Drummer D, Rietzel D, Kühnlein F (2010) Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering. Phys Proced 5(Part B):533–542CrossRef
17.
Zurück zum Zitat Duan B, Wang M (2010) Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface 7(5):S615–S629PubMedCrossRef Duan B, Wang M (2010) Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface 7(5):S615–S629PubMedCrossRef
18.
Zurück zum Zitat Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505PubMedCrossRef Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505PubMedCrossRef
19.
Zurück zum Zitat Duan B, Cheung WL, Wang M (2011) Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 3(1):015001PubMedCrossRef Duan B, Cheung WL, Wang M (2011) Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication 3(1):015001PubMedCrossRef
20.
Zurück zum Zitat Dupin S, Lame O, Barrès C, Charmeau JI (2012) Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur Polym J 48(9):1611–1621CrossRef Dupin S, Lame O, Barrès C, Charmeau JI (2012) Microstructural origin of physical and mechanical properties of polyamide 12 processed by laser sintering. Eur Polym J 48(9):1611–1621CrossRef
21.
Zurück zum Zitat Dyson JA, Genever PG, Dalgarno KW, Wood DJ (2007) Development of custom-built bone scaffolds using mesenchymal stem cells and apatite–wollastonite glass–ceramics. Tissue Eng 13(12):2891–2901PubMedCrossRef Dyson JA, Genever PG, Dalgarno KW, Wood DJ (2007) Development of custom-built bone scaffolds using mesenchymal stem cells and apatite–wollastonite glass–ceramics. Tissue Eng 13(12):2891–2901PubMedCrossRef
23.
Zurück zum Zitat Eosoly S, Brabazon D, Lohfeld S, Looney L (2010) Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds. Acta Biomater 6(7):2511–2517PubMedCrossRef Eosoly S, Brabazon D, Lohfeld S, Looney L (2010) Selective laser sintering of hydroxyapatite/poly-epsilon-caprolactone scaffolds. Acta Biomater 6(7):2511–2517PubMedCrossRef
24.
Zurück zum Zitat Erben C, Vitt KD, Wulf J (2000) First statistical analysis of data collected in the Phidias validation study of stereolithography models. Phidias Newsl 5:6–7 Erben C, Vitt KD, Wulf J (2000) First statistical analysis of data collected in the Phidias validation study of stereolithography models. Phidias Newsl 5:6–7
25.
Zurück zum Zitat Erben C, Vitt KD, Wulf J (2002) The Phidias validation study of stereolithographic models. Phidias Newsl 8:15–16 Erben C, Vitt KD, Wulf J (2002) The Phidias validation study of stereolithographic models. Phidias Newsl 8:15–16
26.
Zurück zum Zitat Eshraghi S, Das S (2010) Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6(7):2467–2476PubMedCrossRef Eshraghi S, Das S (2010) Mechanical and microstructural properties of polycaprolactone scaffolds with one-dimensional, two-dimensional, and three-dimensional orthogonally oriented porous architectures produced by selective laser sintering. Acta Biomater 6(7):2467–2476PubMedCrossRef
27.
Zurück zum Zitat Feng Z, Zhao J, Zhou L, Dong Y, Zhao Y (2009) Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect. J Oral Maxillofac Surg 67(10):2266–2274PubMedCrossRef Feng Z, Zhao J, Zhou L, Dong Y, Zhao Y (2009) Modified animal model and computer-assisted approach for dentoalveolar distraction osteogenesis to reconstruct unilateral maxillectomy defect. J Oral Maxillofac Surg 67(10):2266–2274PubMedCrossRef
28.
Zurück zum Zitat Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y et al (2010) Computer-assisted technique for the design and manufacture of realistic facial prostheses. Br J Oral Maxillofac Surg 48(2):105–109PubMedCrossRef Feng Z, Dong Y, Zhao Y, Bai S, Zhou B, Bi Y et al (2010) Computer-assisted technique for the design and manufacture of realistic facial prostheses. Br J Oral Maxillofac Surg 48(2):105–109PubMedCrossRef
29.
Zurück zum Zitat Fisher P, Karapatis N, Romano V, Weber HP (2002) A model for the interaction of near infrared pulsed laser with metal powders in selective laser sintering. Appl Phys A 74(4):467–474CrossRef Fisher P, Karapatis N, Romano V, Weber HP (2002) A model for the interaction of near infrared pulsed laser with metal powders in selective laser sintering. Appl Phys A 74(4):467–474CrossRef
30.
Zurück zum Zitat Goodridge RD, Dalgarno KW, Wood DJ (2006) Indirect selective laser sintering of an apatite–mullite glass–ceramic for potential use in bone replacement applications. Proc Inst Mech Eng H 220(1):57–68PubMedCrossRef Goodridge RD, Dalgarno KW, Wood DJ (2006) Indirect selective laser sintering of an apatite–mullite glass–ceramic for potential use in bone replacement applications. Proc Inst Mech Eng H 220(1):57–68PubMedCrossRef
31.
Zurück zum Zitat Gusarova AV, Laouib T, Froyenc L, Titov VI (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46(6):1103–1109CrossRef Gusarova AV, Laouib T, Froyenc L, Titov VI (2003) Contact thermal conductivity of a powder bed in selective laser sintering. Int J Heat Mass Transf 46(6):1103–1109CrossRef
32.
Zurück zum Zitat Hao L, Savalani MM, Zhang Y, Tanner KE, Harris RA (2006) Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development. Proc Inst Mech Eng H 220(4):521–531PubMedCrossRef Hao L, Savalani MM, Zhang Y, Tanner KE, Harris RA (2006) Selective laser sintering of hydroxyapatite reinforced polyethylene composites for bioactive implants and tissue scaffold development. Proc Inst Mech Eng H 220(4):521–531PubMedCrossRef
33.
Zurück zum Zitat Hayashi T, Maekawa K, Tamura M, Hanyu K (2005) Selective laser sintering method using titanium powder sheet toward fabrication of porous bone substitutes. JSME Int J [A] 48:369–375CrossRef Hayashi T, Maekawa K, Tamura M, Hanyu K (2005) Selective laser sintering method using titanium powder sheet toward fabrication of porous bone substitutes. JSME Int J [A] 48:369–375CrossRef
34.
Zurück zum Zitat Huang H, Oizumi S, Kojima N, Niino T, Sakai Y (2007) Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials 28(26):3815–3823PubMedCrossRef Huang H, Oizumi S, Kojima N, Niino T, Sakai Y (2007) Avidin–biotin binding-based cell seeding and perfusion culture of liver-derived cells in a porous scaffold with a three-dimensional interconnected flow-channel network. Biomaterials 28(26):3815–3823PubMedCrossRef
35.
Zurück zum Zitat Hunt JA, Callaghan JT, Sutcliffe CJ, Morgan RH, Halford B, Black RA (2005) The design and production of Co–Cr alloy implants with controlled surface topography by CAD–CAM method and their effects on osseointegration. Biomaterials 26:5890–5897PubMedCrossRef Hunt JA, Callaghan JT, Sutcliffe CJ, Morgan RH, Halford B, Black RA (2005) The design and production of Co–Cr alloy implants with controlled surface topography by CAD–CAM method and their effects on osseointegration. Biomaterials 26:5890–5897PubMedCrossRef
36.
Zurück zum Zitat Hurson C, Tansey A, O’Donnchadha B, Nicholson P, Rice J, McElwain J (2007) Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38(10):1158–1162PubMedCrossRef Hurson C, Tansey A, O’Donnchadha B, Nicholson P, Rice J, McElwain J (2007) Rapid prototyping in the assessment, classification and preoperative planning of acetabular fractures. Injury 38(10):1158–1162PubMedCrossRef
37.
Zurück zum Zitat Jones JR, Atwood RC (2009) Quantifying the 3D macrostructure of tissue scaffolds. J Mater Sci Mater Med 20:463–471PubMedCrossRef Jones JR, Atwood RC (2009) Quantifying the 3D macrostructure of tissue scaffolds. J Mater Sci Mater Med 20:463–471PubMedCrossRef
38.
Zurück zum Zitat Kanczler JM, Mirmalek-Sani SH, Hanley NA, Ivanov AL, Barry JJ, Upton C et al (2009) Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater 5(6):2063–2071PubMedCrossRef Kanczler JM, Mirmalek-Sani SH, Hanley NA, Ivanov AL, Barry JJ, Upton C et al (2009) Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater 5(6):2063–2071PubMedCrossRef
39.
Zurück zum Zitat Kandis M, Bergman TL (2000) A simulation-based correlation of the density and thermal conductivity of objects produced by laser sintering of polymer powders. J Manuf Sci Eng 122(3):439–444CrossRef Kandis M, Bergman TL (2000) A simulation-based correlation of the density and thermal conductivity of objects produced by laser sintering of polymer powders. J Manuf Sci Eng 122(3):439–444CrossRef
40.
Zurück zum Zitat Kingery WD (1960) Introduction to ceramics. Wiley, New York Kingery WD (1960) Introduction to ceramics. Wiley, New York
41.
Zurück zum Zitat Kolan KC, Leu MC, Hilmas GE, Velez M (2012) Effect of material, process parameters, and simulated body fluids on mechanical properties of 13–93 bioactive glass porous constructs made by selective laser sintering. Mech Behav Biomed Mater 9(13C):14–24CrossRef Kolan KC, Leu MC, Hilmas GE, Velez M (2012) Effect of material, process parameters, and simulated body fluids on mechanical properties of 13–93 bioactive glass porous constructs made by selective laser sintering. Mech Behav Biomed Mater 9(13C):14–24CrossRef
42.
Zurück zum Zitat Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prot J 11(1):26–36CrossRef Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prot J 11(1):26–36CrossRef
43.
Zurück zum Zitat Kruth JP, Vandenbroucke B, Van Vaerenbergh J, Naert I (2005) Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM. In: Proceedings of VRAP, Leiria, pp 139–146 Kruth JP, Vandenbroucke B, Van Vaerenbergh J, Naert I (2005) Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM. In: Proceedings of VRAP, Leiria, pp 139–146
44.
Zurück zum Zitat Kumar S (2010) Selective laser sintering: recent advances. In: Proceedings 4th Pacific international conference on applications of lasers and optics, Wuhan (PRC), 23–25 March 2010, pp 8–16 Kumar S (2010) Selective laser sintering: recent advances. In: Proceedings 4th Pacific international conference on applications of lasers and optics, Wuhan (PRC), 23–25 March 2010, pp 8–16
46.
Zurück zum Zitat Lee G, Barlow JW, Fox WC, Aufdermorte TB (1996) Biocompatibility of SLS-formed calcium phosphate implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 12–14 August, pp 15–22 Lee G, Barlow JW, Fox WC, Aufdermorte TB (1996) Biocompatibility of SLS-formed calcium phosphate implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 12–14 August, pp 15–22
47.
Zurück zum Zitat Lee G, Barlow JW (1993) Selective laser sintering of bioceramic materials for implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 9–11 August, pp 376–380 Lee G, Barlow JW (1993) Selective laser sintering of bioceramic materials for implants. In: Proceedings of solid freeform fabrication symposium, Austin, TX, 9–11 August, pp 376–380
48.
Zurück zum Zitat Lee SJ, Jang KA, Spangberg LSW, Kim E, Jung Y, Lee CY et al (2006) Three-dimensional visualization of a mandibular first molar with three distal roots using computer-aided rapid prototyping. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:668–674PubMedCrossRef Lee SJ, Jang KA, Spangberg LSW, Kim E, Jung Y, Lee CY et al (2006) Three-dimensional visualization of a mandibular first molar with three distal roots using computer-aided rapid prototyping. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 101:668–674PubMedCrossRef
49.
Zurück zum Zitat Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM (2009) A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg 38(2):187–192PubMedCrossRef Leiggener C, Messo E, Thor A, Zeilhofer HF, Hirsch JM (2009) A selective laser sintering guide for transferring a virtual plan to real time surgery in composite mandibular reconstruction with free fibula osseous flaps. Int J Oral Maxillofac Surg 38(2):187–192PubMedCrossRef
50.
Zurück zum Zitat Leong KF, Chua CK, Gui WS (2006) Verani. Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int J Adv Manuf Technol 31:483–489CrossRef Leong KF, Chua CK, Gui WS (2006) Verani. Building porous biopolymeric microstructures for controlled drug delivery devices using selective laser sintering. Int J Adv Manuf Technol 31:483–489CrossRef
51.
Zurück zum Zitat Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRef Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRef
52.
Zurück zum Zitat Marafon PG, Mattos BS, Sabóia AC, Noritomi PY (2010) Dimensional accuracy of computer-aided design/computer-assisted manufactured orbital prostheses. Int J Prosthodont 23(3):271–276PubMed Marafon PG, Mattos BS, Sabóia AC, Noritomi PY (2010) Dimensional accuracy of computer-aided design/computer-assisted manufactured orbital prostheses. Int J Prosthodont 23(3):271–276PubMed
53.
Zurück zum Zitat Mazzoli A, Germani M, Moriconi G (2007) Application of optical digitizing techniques to evaluate the shape accuracy of anatomical models derived from CT data. J Oral Maxillofac Surg 65(7):1410–1418PubMedCrossRef Mazzoli A, Germani M, Moriconi G (2007) Application of optical digitizing techniques to evaluate the shape accuracy of anatomical models derived from CT data. J Oral Maxillofac Surg 65(7):1410–1418PubMedCrossRef
54.
Zurück zum Zitat Mazzoli A, Germani M, Raffaeli R (2009) Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Mater Design 30:3186–3192CrossRef Mazzoli A, Germani M, Raffaeli R (2009) Direct fabrication through electron beam melting technology of custom cranial implants designed in a PHANToM-based haptic environment. Mater Design 30:3186–3192CrossRef
55.
Zurück zum Zitat Meakin JR, Shepherd DE, Hukins DW (2004) Short communication: fused deposition models from CT scans. Br J Radiol 77(918):504–507PubMedCrossRef Meakin JR, Shepherd DE, Hukins DW (2004) Short communication: fused deposition models from CT scans. Br J Radiol 77(918):504–507PubMedCrossRef
56.
Zurück zum Zitat Melchels FP, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130PubMedCrossRef Melchels FP, Feijen J, Grijpma DW (2010) A review on stereolithography and its applications in biomedical engineering. Biomaterials 31(24):6121–6130PubMedCrossRef
57.
Zurück zum Zitat Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27:183–189PubMedCrossRef Mikos AG, Bao Y, Cima LG, Ingber DE, Vacanti JP, Langer R (1993) Preparation of poly(glycolic acid) bonded fiber structures for cell attachment and transplantation. J Biomed Mater Res 27:183–189PubMedCrossRef
58.
Zurück zum Zitat Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN et al (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef Mikos AG, Thorsen AJ, Czerwonka LA, Bao Y, Langer R, Winslow DN et al (1994) Preparation and characterization of poly(l-lactic acid) foams. Polymer 35:1068–1077CrossRef
59.
Zurück zum Zitat Mori K, Yamamoto T, Oyama K, Ueno H, Nakao Y, Honma K (2008) Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol Med Chir (Tokyo) 48(12):582–587CrossRef Mori K, Yamamoto T, Oyama K, Ueno H, Nakao Y, Honma K (2008) Modified three-dimensional skull base model with artificial dura mater, cranial nerves, and venous sinuses for training in skull base surgery: technical note. Neurol Med Chir (Tokyo) 48(12):582–587CrossRef
60.
Zurück zum Zitat Muller A, Krishnan KG, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 14(6):899–914PubMedCrossRef Muller A, Krishnan KG, Uhl E, Mast G (2003) The application of rapid prototyping techniques in cranial reconstruction and preoperative planning in neurosurgery. J Craniofac Surg 14(6):899–914PubMedCrossRef
61.
Zurück zum Zitat Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8–17PubMedCrossRef Nam YS, Park TG (1999) Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J Biomed Mater Res 47:8–17PubMedCrossRef
62.
Zurück zum Zitat Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res A 53:1–7CrossRef Nam YS, Yoon JJ, Park TG (2000) A novel fabrication method of macroporous biodegradable polymer scaffolds using gas foaming salt as a porogen additive. J Biomed Mater Res A 53:1–7CrossRef
63.
Zurück zum Zitat Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki N et al (2011) Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater 7(3):1398–1406PubMedCrossRef Pattanayak DK, Fukuda A, Matsushita T, Takemoto M, Fujibayashi S, Sasaki N et al (2011) Bioactive Ti metal analogous to human cancellous bone: fabrication by selective laser melting and chemical treatments. Acta Biomater 7(3):1398–1406PubMedCrossRef
64.
Zurück zum Zitat Peltola SM, Melchels FP, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280PubMedCrossRef Peltola SM, Melchels FP, Grijpma DW, Kellomäki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280PubMedCrossRef
65.
Zurück zum Zitat Petzold R, Zeilhofer HF, Kalender WA (1999) Rapid prototyping technology in medicine—basics and applications. Comput Med Imaging Graph 23:277–284PubMedCrossRef Petzold R, Zeilhofer HF, Kalender WA (1999) Rapid prototyping technology in medicine—basics and applications. Comput Med Imaging Graph 23:277–284PubMedCrossRef
66.
Zurück zum Zitat Pressel T, Max S, Pfeifer R, Ostermeier S, Windhagen H, Hurschler C (2008) A rapid prototyping model for biomechanical evaluation of pelvic osteotomies. Biomed Tech (Berl) 53(2):65–69CrossRef Pressel T, Max S, Pfeifer R, Ostermeier S, Windhagen H, Hurschler C (2008) A rapid prototyping model for biomechanical evaluation of pelvic osteotomies. Biomed Tech (Berl) 53(2):65–69CrossRef
67.
Zurück zum Zitat Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440CrossRef Puppi D, Chiellini F, Piras AM, Chiellini E (2010) Polymeric materials for bone and cartilage repair. Prog Polym Sci 35:403–440CrossRef
68.
Zurück zum Zitat Qian T, Wang Y (2010) Micro/nano-fabrication technologies for cell biology. Med Biol Eng Comput 48:1023–1032PubMedCrossRef Qian T, Wang Y (2010) Micro/nano-fabrication technologies for cell biology. Med Biol Eng Comput 48:1023–1032PubMedCrossRef
69.
Zurück zum Zitat Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341PubMedCrossRef Rengier F, Mehndiratta A, von Tengg-Kobligk H, Zechmann CM, Unterhinninghofen R, Kauczor HU et al (2010) 3D printing based on imaging data: review of medical applications. Int J Comput Assist Radiol Surg 5(4):335–341PubMedCrossRef
70.
Zurück zum Zitat Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431PubMedCrossRef Rezwan K, Chen QZ, Blaker JJ, Boccaccini AR (2006) Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27:3413–3431PubMedCrossRef
71.
Zurück zum Zitat Rimell JT, Marquis PM (2000) Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53(4):414–420PubMedCrossRef Rimell JT, Marquis PM (2000) Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53(4):414–420PubMedCrossRef
72.
Zurück zum Zitat Robiony M, Salvo I, Costa F, Zerman N, Bazzocchi M, Toso F et al (2007) Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work. J Oral Maxillofac Surg 65(6):1198–1208PubMedCrossRef Robiony M, Salvo I, Costa F, Zerman N, Bazzocchi M, Toso F et al (2007) Virtual reality surgical planning for maxillofacial distraction osteogenesis: the role of reverse engineering rapid prototyping and cooperative work. J Oral Maxillofac Surg 65(6):1198–1208PubMedCrossRef
73.
Zurück zum Zitat Rogers B, Bosker GW, Crawford RH, Faustini MC, Neptune RR, Walden G et al (2007) Advanced trans-tibial socket fabrication using selective laser sintering. Prosthet Orthot Int 31(1):88–100PubMedCrossRef Rogers B, Bosker GW, Crawford RH, Faustini MC, Neptune RR, Walden G et al (2007) Advanced trans-tibial socket fabrication using selective laser sintering. Prosthet Orthot Int 31(1):88–100PubMedCrossRef
74.
Zurück zum Zitat Sabadin Bertol L, Kindlein W Jr, da Silva FP, Aumund-Kopp C (2010) Medical design: direct metal laser sintering of Ti–6Al–4V. Mater Des 31:3982–3988CrossRef Sabadin Bertol L, Kindlein W Jr, da Silva FP, Aumund-Kopp C (2010) Medical design: direct metal laser sintering of Ti–6Al–4V. Mater Des 31:3982–3988CrossRef
75.
Zurück zum Zitat Sannomiya EK, Silva JV, Brito AA, Saez DM, Angelieri F, Dalben Gda S (2008) Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(1):e36–e40PubMedCrossRef Sannomiya EK, Silva JV, Brito AA, Saez DM, Angelieri F, Dalben Gda S (2008) Surgical planning for resection of an ameloblastoma and reconstruction of the mandible using a selective laser sintering 3D biomodel. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 106(1):e36–e40PubMedCrossRef
76.
Zurück zum Zitat Schmachtenberg E, Schoenfeld M, Seul T (2006) Material optimization of PA12 laser-sintering powder to improve surface quality. In: Antec 2006. Society of Plastic Engineers, Charlotte Schmachtenberg E, Schoenfeld M, Seul T (2006) Material optimization of PA12 laser-sintering powder to improve surface quality. In: Antec 2006. Society of Plastic Engineers, Charlotte
77.
Zurück zum Zitat Schmidt M, Pohle D, Rechtenwald T (2007) Selective laser sintering of PEEK. CIRP Ann Manuf Technol 56(1):205–208CrossRef Schmidt M, Pohle D, Rechtenwald T (2007) Selective laser sintering of PEEK. CIRP Ann Manuf Technol 56(1):205–208CrossRef
78.
Zurück zum Zitat Shi YS, Li ZC (2004) Effect of the properties of polymer materials on the quality of selective laser sintering parts. Proc Inst Mech Eng L J Mater 218(L3):247–252 Shi YS, Li ZC (2004) Effect of the properties of polymer materials on the quality of selective laser sintering parts. Proc Inst Mech Eng L J Mater 218(L3):247–252
79.
Zurück zum Zitat Shi Y, Zhang W, Cheng Y, Huang S (2007) Compound scan mode developed from subarea and contour scan mode for selective laser sintering. Int J Mach Tool Manuf 47:873–883CrossRef Shi Y, Zhang W, Cheng Y, Huang S (2007) Compound scan mode developed from subarea and contour scan mode for selective laser sintering. Int J Mach Tool Manuf 47:873–883CrossRef
80.
Zurück zum Zitat Simpson RL, Wiria FE, Amis AA, Chua CK, Leong KF, Hansen UN et al (2008) Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater 84(1):17–25PubMed Simpson RL, Wiria FE, Amis AA, Chua CK, Leong KF, Hansen UN et al (2008) Development of a 95/5 poly(l-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B Appl Biomater 84(1):17–25PubMed
81.
Zurück zum Zitat Skalak R, Fox CF (eds) (1988) Tissue engineering. In: Proceedings of a workshop held at Granlibakken, Lake Tahoe, CA, 26–29 February, 1988. Alan Liss, New York Skalak R, Fox CF (eds) (1988) Tissue engineering. In: Proceedings of a workshop held at Granlibakken, Lake Tahoe, CA, 26–29 February, 1988. Alan Liss, New York
82.
Zurück zum Zitat Smith MH, Flanagan CL, Kemppainen JM, Sack JA, Chung H, Das S et al (2007) Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot 3(3):207–216PubMedCrossRef Smith MH, Flanagan CL, Kemppainen JM, Sack JA, Chung H, Das S et al (2007) Computed tomography-based tissue-engineered scaffolds in craniomaxillofacial surgery. Int J Med Robot 3(3):207–216PubMedCrossRef
83.
Zurück zum Zitat Strub JR, Dianne Rekow E, Witkowski S (2006) Computer-aided design and fabrication of dental restorations. Current systems and future possibilities. J Am Dent Assoc 137(9):1289–1296PubMed Strub JR, Dianne Rekow E, Witkowski S (2006) Computer-aided design and fabrication of dental restorations. Current systems and future possibilities. J Am Dent Assoc 137(9):1289–1296PubMed
84.
Zurück zum Zitat Sudarmadji N, Tan JY, Leong KF, Chua CK, Loh YT (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7(2):530–537PubMedCrossRef Sudarmadji N, Tan JY, Leong KF, Chua CK, Loh YT (2011) Investigation of the mechanical properties and porosity relationships in selective laser-sintered polyhedral for functionally graded scaffolds. Acta Biomater 7(2):530–537PubMedCrossRef
85.
Zurück zum Zitat Suzuki M, Hagiwara A, Ogawa Y, Ono H (2007) Rapid-prototyped temporal bone and inner-ear models replicated by adjusting computed tomography thresholds. J Laryngol Otol 121(11):1025–1028PubMedCrossRef Suzuki M, Hagiwara A, Ogawa Y, Ono H (2007) Rapid-prototyped temporal bone and inner-ear models replicated by adjusting computed tomography thresholds. J Laryngol Otol 121(11):1025–1028PubMedCrossRef
86.
Zurück zum Zitat Sykes LM, Parrott AM, Owen CP, Snaddon DR (2004) Applications of rapid prototyping technology in maxillofacial prosthetics. Int J Prosthodont 17(4):454–459PubMed Sykes LM, Parrott AM, Owen CP, Snaddon DR (2004) Applications of rapid prototyping technology in maxillofacial prosthetics. Int J Prosthodont 17(4):454–459PubMed
87.
Zurück zum Zitat Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS et al (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123PubMedCrossRef Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS et al (2003) Scaffold development using selective laser sintering of polyetheretherketone–hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123PubMedCrossRef
88.
Zurück zum Zitat Tan KH, Chua CK, Leong KF, Naing MW, Cheah CM (2005) Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/hydroxyapatite biocomposite scaffolds using laser sintering. Proc Inst Mech Eng H 219(3):183–194PubMedCrossRef Tan KH, Chua CK, Leong KF, Naing MW, Cheah CM (2005) Fabrication and characterization of three-dimensional poly(ether-ether-ketone)/hydroxyapatite biocomposite scaffolds using laser sintering. Proc Inst Mech Eng H 219(3):183–194PubMedCrossRef
89.
Zurück zum Zitat Tan KH, Chua CK, Leong KF, Cheah CM, Gui WS, Tan WS et al (2005) Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 15(1–2):113–124PubMed Tan KH, Chua CK, Leong KF, Cheah CM, Gui WS, Tan WS et al (2005) Selective laser sintering of biocompatible polymers for applications in tissue engineering. Biomed Mater Eng 15(1–2):113–124PubMed
90.
Zurück zum Zitat Thomas RG, John NW, Delieu JM (2010) Augmented reality for anatomical education. J Vis Commun Med 33(1):6–15PubMedCrossRef Thomas RG, John NW, Delieu JM (2010) Augmented reality for anatomical education. J Vis Commun Med 33(1):6–15PubMedCrossRef
91.
Zurück zum Zitat Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533PubMedCrossRef Traini T, Mangano C, Sammons RL, Mangano F, Macchi A, Piattelli A (2008) Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 24(11):1525–1533PubMedCrossRef
92.
Zurück zum Zitat Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, Vander Sloten J (2006) Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Biol Eng Comput 44:517–525PubMedCrossRef Van Cleynenbreugel T, Schrooten J, Van Oosterwyck H, Vander Sloten J (2006) Micro-CT-based screening of biomechanical and structural properties of bone tissue engineering scaffolds. Med Biol Eng Comput 44:517–525PubMedCrossRef
93.
Zurück zum Zitat Wanibuchi M, Ohtaki M, Fukushima T, Friedman AH, Houkin K (2010) Skull base training and education using an artificial skull model created by selective laser sintering. Acta Neurochir (Wien) 152(6):1055–1059CrossRef Wanibuchi M, Ohtaki M, Fukushima T, Friedman AH, Houkin K (2010) Skull base training and education using an artificial skull model created by selective laser sintering. Acta Neurochir (Wien) 152(6):1055–1059CrossRef
94.
Zurück zum Zitat Webb PA (2000) A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol 24(4):149–153PubMedCrossRef Webb PA (2000) A review of rapid prototyping (RP) techniques in the medical and biomedical sector. J Med Eng Technol 24(4):149–153PubMedCrossRef
95.
Zurück zum Zitat Werner H, dos Santos JR, Fontes R, Gasparetto EL, Daltro PA, Kuroki Y, Domingues RC (2008) The use of rapid prototyping didactic models in the study of fetal malformations. Ultrasound Obstet Gynecol 32(7):955–956PubMedCrossRef Werner H, dos Santos JR, Fontes R, Gasparetto EL, Daltro PA, Kuroki Y, Domingues RC (2008) The use of rapid prototyping didactic models in the study of fetal malformations. Ultrasound Obstet Gynecol 32(7):955–956PubMedCrossRef
96.
Zurück zum Zitat Williams JV, Revington PJ (2010) Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral Maxillofac Surg 39(2):182–184PubMedCrossRef Williams JV, Revington PJ (2010) Novel use of an aerospace selective laser sintering machine for rapid prototyping of an orbital blowout fracture. Int J Oral Maxillofac Surg 39(2):182–184PubMedCrossRef
97.
Zurück zum Zitat Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827PubMedCrossRef Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE et al (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827PubMedCrossRef
98.
Zurück zum Zitat Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015PubMedCrossRef Winder J, Bibb R (2005) Medical rapid prototyping technologies: state of the art and current limitations for application in oral and maxillofacial surgery. J Oral Maxillofac Surg 63:1006–1015PubMedCrossRef
99.
Zurück zum Zitat Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3(1):1–12PubMedCrossRef Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3(1):1–12PubMedCrossRef
100.
Zurück zum Zitat Wiria FE, Chua CK, Leong KF, Quah ZY, Chandrasekaran M, Lee MW (2008) Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J Mater Sci Mater Med 19(3):989–996PubMedCrossRef Wiria FE, Chua CK, Leong KF, Quah ZY, Chandrasekaran M, Lee MW (2008) Improved biocomposite development of poly(vinyl alcohol) and hydroxyapatite for tissue engineering scaffold fabrication using selective laser sintering. J Mater Sci Mater Med 19(3):989–996PubMedCrossRef
102.
Zurück zum Zitat Wu G, Zhou B, Bi Y, Zhao Y (2008) Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent 100(1):56–60PubMedCrossRef Wu G, Zhou B, Bi Y, Zhao Y (2008) Selective laser sintering technology for customized fabrication of facial prostheses. J Prosthet Dent 100(1):56–60PubMedCrossRef
103.
Zurück zum Zitat Wu G, Bi Y, Zhou B, Zemnick C, Han Y, Kong L et al (2009) Computer-aided design and rapid manufacture of an orbital prosthesis. Int J Prosthodont 22(3):293–295PubMed Wu G, Bi Y, Zhou B, Zemnick C, Han Y, Kong L et al (2009) Computer-aided design and rapid manufacture of an orbital prosthesis. Int J Prosthodont 22(3):293–295PubMed
104.
Zurück zum Zitat Ye L, Zeng X, Li H, Yi A (2010) Fabrication and biocompatibility of nano non-stoichiometric apatite and poly(ε-caprolactone) composite scaffold by using prototyping controlled process. J Mater Sci Mater Med 21:753–760PubMedCrossRef Ye L, Zeng X, Li H, Yi A (2010) Fabrication and biocompatibility of nano non-stoichiometric apatite and poly(ε-caprolactone) composite scaffold by using prototyping controlled process. J Mater Sci Mater Med 21:753–760PubMedCrossRef
105.
Zurück zum Zitat Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS et al (2010) Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6(6):2028–2034PubMedCrossRef Yeong WY, Sudarmadji N, Yu HY, Chua CK, Leong KF, Venkatraman SS et al (2010) Porous polycaprolactone scaffold for cardiac tissue engineering fabricated by selective laser sintering. Acta Biomater 6(6):2028–2034PubMedCrossRef
106.
Zurück zum Zitat Zhong Li W, Zhang MC, Ping Li S, Zhang LT, Huang Y (2009) Application of computer-aided three dimensional skull model with rapid prototyping technique in repair of zygomatico-orbito-maxillary complex fracture. Int J Med Robot Comput Assist Surg 5:158–163CrossRef Zhong Li W, Zhang MC, Ping Li S, Zhang LT, Huang Y (2009) Application of computer-aided three dimensional skull model with rapid prototyping technique in repair of zygomatico-orbito-maxillary complex fracture. Int J Med Robot Comput Assist Surg 5:158–163CrossRef
107.
Zurück zum Zitat Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY (2008) Selective laser sintering of porous tissue engineering scaffolds from poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med 19(7):2535–2540PubMedCrossRef Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY (2008) Selective laser sintering of porous tissue engineering scaffolds from poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med 19(7):2535–2540PubMedCrossRef
Metadaten
Titel
Selective laser sintering in biomedical engineering
verfasst von
Alida Mazzoli
Publikationsdatum
01.03.2013
Verlag
Springer-Verlag
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 3/2013
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-012-1001-x

Weitere Artikel der Ausgabe 3/2013

Medical & Biological Engineering & Computing 3/2013 Zur Ausgabe

Premium Partner