Skip to main content
Erschienen in: Journal of Computational Electronics 4/2023

27.05.2023

A high-performance doping-less tunnel FET with pocketed architecture: proposal and analysis

verfasst von: Nazia Haneef, Mohd Adil Raushan, Md Yasir Bashir, Mohammad Jawaid Siddiqui

Erschienen in: Journal of Computational Electronics | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a doping-less dual-material double-gate tunnel field-effect transistor with a P+ pocket (PP-DMG TFET). This gate-engineered technique is typically used in a MOSFET to improve device performance. The P+ pocket is embedded at the source side to enhance the performance of the pocket-engineered PP-DMG TFET device. This paper compares the performance of four DG-TFET-based devices, i.e. single-material gate (SMG), single-material gate with P+ pocket (PP-SMG), dual-material gate (DMG), and dual-material gate with P+ pocket (PP-DMG), by using 2D simulations. Electrostatic doping based on the charge plasma concept forms the requisite nip+ structure for tunneling formed on a thin intrinsic silicon layer. The proposed device (PP-DMG) has high ON-current capability, a high ON/OFF ratio and lower point subthreshold of 15.3 mV/dec, and an average subthreshold of 18.6 mV/dec. The analog parameters transconductance (gm) and cutoff frequency (fT) show impressive improvement. The device efficiency and transconductance frequency product (TFP) are also discussed. Finally, linearity and distortion analysis of parameters including VIP2, VIP3, IIP3, and IMD3 is carried out.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hueting, R.J.E., Rajasekharan, B., Salm, C., Schmitz, J.: The charge plasma P–N diode. IEEE Electron Device Lett. 29(12), 1367–1369 (2008)CrossRef Hueting, R.J.E., Rajasekharan, B., Salm, C., Schmitz, J.: The charge plasma P–N diode. IEEE Electron Device Lett. 29(12), 1367–1369 (2008)CrossRef
2.
Zurück zum Zitat Nigam, K., Pandey, S., Kondekar, P.N., Sharma, D., Kumar Parte, P.: A Barrier Controlled Charge Plasma-Based TFET with Gate Engineering for Ambipolar Suppression and RF/Linearity Performance Improvement. IEEE Trans. Electron Devices 64(6), 2751–2757 (2017)CrossRef Nigam, K., Pandey, S., Kondekar, P.N., Sharma, D., Kumar Parte, P.: A Barrier Controlled Charge Plasma-Based TFET with Gate Engineering for Ambipolar Suppression and RF/Linearity Performance Improvement. IEEE Trans. Electron Devices 64(6), 2751–2757 (2017)CrossRef
3.
Zurück zum Zitat Patel, J., et al.: Performance improvement of nano wire TFET by hetero-dielectric and hetero-material: at device and circuit level. Microelectron. J. 85, 72–82 (2019)CrossRef Patel, J., et al.: Performance improvement of nano wire TFET by hetero-dielectric and hetero-material: at device and circuit level. Microelectron. J. 85, 72–82 (2019)CrossRef
4.
Zurück zum Zitat Avci, U.E., Ian A.Y.: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length. In: 2013 IEEE International Electron Devices Meeting. IEEE, (2013) Avci, U.E., Ian A.Y.: Heterojunction TFET scaling and resonant-TFET for steep subthreshold slope at sub-9nm gate-length. In: 2013 IEEE International Electron Devices Meeting. IEEE, (2013)
5.
Zurück zum Zitat Raad, B.R., Tirkey, S., Sharma, D., Kondekar, P.: A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017)CrossRef Raad, B.R., Tirkey, S., Sharma, D., Kondekar, P.: A new design approach of dopingless tunnel FET for enhancement of device characteristics. IEEE Trans. Electron Devices 64(4), 1830–1836 (2017)CrossRef
6.
Zurück zum Zitat Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)CrossRef Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)CrossRef
7.
Zurück zum Zitat Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef Kumar, M.J., Janardhanan, S.: Doping-less tunnel field effect transistor: design and investigation. IEEE Trans. Electron Devices 60(10), 3285–3290 (2013)CrossRef
8.
Zurück zum Zitat Raushan, M.A., Naushad, A.: Dopinglesstunnel field-effect transistor with oversized back gate: proposal and investigation. IEEE Trans. Electron Devices 65(10), 4701–4708 (2018)CrossRef Raushan, M.A., Naushad, A.: Dopinglesstunnel field-effect transistor with oversized back gate: proposal and investigation. IEEE Trans. Electron Devices 65(10), 4701–4708 (2018)CrossRef
9.
Zurück zum Zitat Sahu, C., Singh, J.: Potential benefits and sensitivity analysis of dopingless transistor for low power applications. IEEE Trans. Electron Devices 62(3), 729–735 (2015)CrossRef Sahu, C., Singh, J.: Potential benefits and sensitivity analysis of dopingless transistor for low power applications. IEEE Trans. Electron Devices 62(3), 729–735 (2015)CrossRef
10.
Zurück zum Zitat Toh, E.-H., et al.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103(10), 104504 (2008)CrossRef Toh, E.-H., et al.: Device physics and design of germanium tunneling field-effect transistor with source and drain engineering for low power and high performance applications. J. Appl. Phys. 103(10), 104504 (2008)CrossRef
11.
Zurück zum Zitat Jain, G., et al.: Analytical modeling analysis and simulation study of dual material gate underlap dopingless TFET. Superlatt. Microstruct. 153, 106866 (2021)CrossRef Jain, G., et al.: Analytical modeling analysis and simulation study of dual material gate underlap dopingless TFET. Superlatt. Microstruct. 153, 106866 (2021)CrossRef
12.
Zurück zum Zitat Transistor, N.T.F., Saurabh, S., Kumar, M.J., Member, S.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef Transistor, N.T.F., Saurabh, S., Kumar, M.J., Member, S.: Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans. Electron Devices 58(2), 404–410 (2011)CrossRef
13.
Zurück zum Zitat Cui, N., et al. Two-dimensional analytical model of hetero strained Ge/strained Si TFET. In: 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM) IEEE (2012) Cui, N., et al. Two-dimensional analytical model of hetero strained Ge/strained Si TFET. In: 2012 International Silicon-Germanium Technology and Device Meeting (ISTDM) IEEE (2012)
14.
Zurück zum Zitat Raushan, M.A., Alam, N., Akram, M.W., Siddiqui, M.J.: Impact of asymmetric dual-k spacers on tunnel field effect transistors. J. Comput. Electron. 17, 765 (2018)CrossRef Raushan, M.A., Alam, N., Akram, M.W., Siddiqui, M.J.: Impact of asymmetric dual-k spacers on tunnel field effect transistors. J. Comput. Electron. 17, 765 (2018)CrossRef
15.
Zurück zum Zitat Lee, G., Jung-Shik, J., Woo, Y.C.: Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors. Semicond. Sci. Technol. 28(5), 052001 (2013)CrossRef Lee, G., Jung-Shik, J., Woo, Y.C.: Dual-dielectric-constant spacer hetero-gate-dielectric tunneling field-effect transistors. Semicond. Sci. Technol. 28(5), 052001 (2013)CrossRef
16.
Zurück zum Zitat Raushan, M.A., et al.: Impact of pocket in a dopingless tunnel field effect transistor. In: Proceedings of 6th International Conference on Recent Trends in Computing. Springer, Singapore, (2021) Raushan, M.A., et al.: Impact of pocket in a dopingless tunnel field effect transistor. In: Proceedings of 6th International Conference on Recent Trends in Computing. Springer, Singapore, (2021)
17.
Zurück zum Zitat Raushan, M.A., Naushad A., Mohd J.S.: Pocket engineered electrostatically doped tunnel field effect transistor. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON) IEEE, (2019) Raushan, M.A., Naushad A., Mohd J.S.: Pocket engineered electrostatically doped tunnel field effect transistor. In: TENCON 2019–2019 IEEE Region 10 Conference (TENCON) IEEE, (2019)
18.
Zurück zum Zitat Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef Choi, W.Y., Park, B.G., Lee, J.D., Liu, T.J.K.: Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8), 743–745 (2007)CrossRef
19.
Zurück zum Zitat Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An investigateof linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron Devices 59(12), 3263–3268 (2012)CrossRef Ghosh, P., Haldar, S., Gupta, R.S., Gupta, M.: An investigateof linearity performance and intermodulation distortion of GME CGT MOSFET for RFIC design. IEEE Trans. Electron Devices 59(12), 3263–3268 (2012)CrossRef
20.
Zurück zum Zitat Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Rel. 16(2), 227–234 (2016)CrossRef Madan, J., Chaujar, R.: Interfacial charge analysis of heterogeneous gate dielectric-gate all around-tunnel FET for improved device reliability. IEEE Trans. Device Mater. Rel. 16(2), 227–234 (2016)CrossRef
21.
Zurück zum Zitat Chaujar, R., Kaur, R., Saxena, M., Gupta, M., Gupta, R.S.: Intermodulation distortion and linearity performance assessment of 50-nm gate length L-DUMGAC MOSFET for RFIC design. Superlatt. Microstruct. 44(2), 143–152 (2008)CrossRef Chaujar, R., Kaur, R., Saxena, M., Gupta, M., Gupta, R.S.: Intermodulation distortion and linearity performance assessment of 50-nm gate length L-DUMGAC MOSFET for RFIC design. Superlatt. Microstruct. 44(2), 143–152 (2008)CrossRef
22.
Zurück zum Zitat Anand, S., Intekhab Amin, S., Sarin, R.K.: Analog performance investigation of dual electrode based doping-less tunnel FET. J. Comput. Electron. 15(1), 94–103 (2016)CrossRef Anand, S., Intekhab Amin, S., Sarin, R.K.: Analog performance investigation of dual electrode based doping-less tunnel FET. J. Comput. Electron. 15(1), 94–103 (2016)CrossRef
23.
Zurück zum Zitat Bashir, M.D., Raushan, M., Ahmad, S., Siddiqui, M.J.: Investigation of gate material engineering in junctionless transistor for digital and analog applications. SILICON 14(6), 2851–2862 (2022)CrossRef Bashir, M.D., Raushan, M., Ahmad, S., Siddiqui, M.J.: Investigation of gate material engineering in junctionless transistor for digital and analog applications. SILICON 14(6), 2851–2862 (2022)CrossRef
Metadaten
Titel
A high-performance doping-less tunnel FET with pocketed architecture: proposal and analysis
verfasst von
Nazia Haneef
Mohd Adil Raushan
Md Yasir Bashir
Mohammad Jawaid Siddiqui
Publikationsdatum
27.05.2023
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 4/2023
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-023-02039-3

Weitere Artikel der Ausgabe 4/2023

Journal of Computational Electronics 4/2023 Zur Ausgabe

Neuer Inhalt