Skip to main content
Erschienen in: Microsystem Technologies 7/2015

01.07.2015 | Technical Paper

A microchannel neural interface with embedded microwires targeting the peripheral nervous system

verfasst von: Bongkyun Kim, Alejandro Reyes, Bernardo Garza, Yoonsu Choi

Erschienen in: Microsystem Technologies | Ausgabe 7/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The essential purpose of neural interfaces is to record and stimulate neural activity. Careful analysis of neural signals allows them to be used to control technologies such as prosthetics and muscle stimulators that restore lost functionality caused by injury. Designing interfaces advanced enough to restore full functionality, however, is a challenge. Presented here is an animal study using the Texas regenerative peripheral nerve interface (TxNI), a novel neural interface device for communicating with peripheral nerves. Small extracellular potentials and concentration of current at the nodes of Ranvier increases the complexity of recording from axons. The TxNI is designed to obtain weak neural signals which are difficult to acquire using other techniques. The TxNI combines a PDMS (polydimethylsiloxane) microchannel scaffold with microwires (used as recording electrodes) embedded within the microchannels. Axonal regeneration is confined to the microchannels and electrodes are long enough to record from the nodes of Ranvier. Although several types of electrodes for peripheral nerve interfaces have been reported, they typically record unwanted signals from surrounding musculature and are subject to crosstalk. To address this, neural regeneration is directed through the TxNI in sealed microfluidic channels. The TxNI was successfully implanted in the rat sciatic nerve in the animal facility at UTPA. The details regarding its fabrication and implantation are described here. The present result is to be used to evaluate the effectiveness of the TxNI for use in advanced prosthetics. In particular, it aims to be used in a noninvasive brain-machine interface for bidirectional prosthetic arms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bhandari R, Negi S, Solzbacher F (2010) Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed Microdevices 12:797–807CrossRef Bhandari R, Negi S, Solzbacher F (2010) Wafer-scale fabrication of penetrating neural microelectrode arrays. Biomed Microdevices 12:797–807CrossRef
Zurück zum Zitat Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, Stieglitz T (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26:62–69CrossRef Boretius T, Badia J, Pascual-Font A, Schuettler M, Navarro X, Yoshida K, Stieglitz T (2010) A transverse intrafascicular multichannel electrode (TIME) to interface with the peripheral nerve. Biosens Bioelectron 26:62–69CrossRef
Zurück zum Zitat Bossi S, Kammer S, Dorge T, Menciassi A, Hoffmann KP, Micera S (2009) An implantable microactuated intrafascicular electrode for peripheral nerves IEEE transactions on biomedical engineering 56:2701–2706 Bossi S, Kammer S, Dorge T, Menciassi A, Hoffmann KP, Micera S (2009) An implantable microactuated intrafascicular electrode for peripheral nerves IEEE transactions on biomedical engineering 56:2701–2706
Zurück zum Zitat Castro J, Negredo P, Avendaño C (2008) Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res 1190:65–77CrossRef Castro J, Negredo P, Avendaño C (2008) Fiber composition of the rat sciatic nerve and its modification during regeneration through a sieve electrode. Brain Res 1190:65–77CrossRef
Zurück zum Zitat Cheung KC (2007) Implantable microscale neural interfaces. Biomedical Microdevices 9:923–938CrossRef Cheung KC (2007) Implantable microscale neural interfaces. Biomedical Microdevices 9:923–938CrossRef
Zurück zum Zitat David-Pur M, Bareket-Keren L, Beit-Yaakov G, Raz-Prag D, Hanein Y (2014) All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed Microdevices 16:43–53CrossRef David-Pur M, Bareket-Keren L, Beit-Yaakov G, Raz-Prag D, Hanein Y (2014) All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation. Biomed Microdevices 16:43–53CrossRef
Zurück zum Zitat Egeland BM et al (2010) In Vivo electrical conductivity across critical nerve gaps using Poly (3,4-Ethylenedioxythiophene)-coated neural interfaces. Plast Reconstr Surg 126:1865–1873CrossRef Egeland BM et al (2010) In Vivo electrical conductivity across critical nerve gaps using Poly (3,4-Ethylenedioxythiophene)-coated neural interfaces. Plast Reconstr Surg 126:1865–1873CrossRef
Zurück zum Zitat FitzGerald JJ et al (2012) A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo. J Neural Eng 9:1–13MathSciNet FitzGerald JJ et al (2012) A regenerative microchannel neural interface for recording from and stimulating peripheral axons in vivo. J Neural Eng 9:1–13MathSciNet
Zurück zum Zitat Garde K, Keefer E, Botterman B, Galvan P, Romero MI (2009) Early interfaced neural activity from chronic amputated nerves. Front Neuroeng 2:1–11CrossRef Garde K, Keefer E, Botterman B, Galvan P, Romero MI (2009) Early interfaced neural activity from chronic amputated nerves. Front Neuroeng 2:1–11CrossRef
Zurück zum Zitat Guo L, Guvanasen GS, Liu X, Tuthill C, Nichols TR, DeWeerth SP (2013) A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE Trans Biomed Circuits Syst 7:1–10CrossRef Guo L, Guvanasen GS, Liu X, Tuthill C, Nichols TR, DeWeerth SP (2013) A PDMS-based integrated stretchable microelectrode array (isMEA) for neural and muscular surface interfacing. IEEE Trans Biomed Circuits Syst 7:1–10CrossRef
Zurück zum Zitat Hassler C, Boretius T, Stieglitz T (2010) Polymers for Neural Implants. J Polym Sci Part B: Polym Phys 49:18–33CrossRef Hassler C, Boretius T, Stieglitz T (2010) Polymers for Neural Implants. J Polym Sci Part B: Polym Phys 49:18–33CrossRef
Zurück zum Zitat Hsu S-h LuPS, Ni H-C, Su C-H (2007) Fabrication and evaluation of microgrooved polymers as peripheral nerve conduits. Biomed Microdevices 9:665–674CrossRef Hsu S-h LuPS, Ni H-C, Su C-H (2007) Fabrication and evaluation of microgrooved polymers as peripheral nerve conduits. Biomed Microdevices 9:665–674CrossRef
Zurück zum Zitat Kim Y-t, Romero-Ortega MI (2012) Material considerations for peripheral nerve interfacing. MRS Bull 37:573–580CrossRef Kim Y-t, Romero-Ortega MI (2012) Material considerations for peripheral nerve interfacing. MRS Bull 37:573–580CrossRef
Zurück zum Zitat Kim S et al (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11:453–466CrossRef Kim S et al (2009) Integrated wireless neural interface based on the Utah electrode array. Biomed Microdevices 11:453–466CrossRef
Zurück zum Zitat Kloke A, Stetten Fv, Zengerle R, Kerzenmacher S (2011) Strategies for the Fabrication of Porous Platinum Electrodes. Adv Mater 23:4976–5008CrossRef Kloke A, Stetten Fv, Zengerle R, Kerzenmacher S (2011) Strategies for the Fabrication of Porous Platinum Electrodes. Adv Mater 23:4976–5008CrossRef
Zurück zum Zitat Lago N, Ceballos D, Rodriguez FJ, Stieglitz T, Navarro X (2005) Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 26:2021–2031CrossRef Lago N, Ceballos D, Rodriguez FJ, Stieglitz T, Navarro X (2005) Long term assessment of axonal regeneration through polyimide regenerative electrodes to interface the peripheral nerve. Biomaterials 26:2021–2031CrossRef
Zurück zum Zitat Lago N, Udina E, Ramachandran A, Navarro X (2007) Neurobiological assessment of regenerative electrodes for bidirectional interfacing injured peripheral nerves IEEE transactions on biomedical engineering 54:1129–1137 Lago N, Udina E, Ramachandran A, Navarro X (2007) Neurobiological assessment of regenerative electrodes for bidirectional interfacing injured peripheral nerves IEEE transactions on biomedical engineering 54:1129–1137
Zurück zum Zitat Lin H-L, Lin C-CK, Ju M-S, Liao J-D (2011) In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers. Biomed Microdevices 13:243–253CrossRef Lin H-L, Lin C-CK, Ju M-S, Liao J-D (2011) In vivo impedance evaluation of Au/PI microelectrode with surface modulated by alkanethiolate self-assembled monolayers. Biomed Microdevices 13:243–253CrossRef
Zurück zum Zitat Loeb GE, Peck RA, Singh J, Kim Y-H, Deshpande S, Baker LL, Bryant JT (2007) Mechanical loading of rigid intramuscular implants. Biomed Microdevices 9:901–910CrossRef Loeb GE, Peck RA, Singh J, Kim Y-H, Deshpande S, Baker LL, Bryant JT (2007) Mechanical loading of rigid intramuscular implants. Biomed Microdevices 9:901–910CrossRef
Zurück zum Zitat McClain MA, Clements IP, Shafer RH, Bellamkonda RV, LaPlaca MC, Allen MG (2011) Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS. Biomed Microdevices 13:361–373CrossRef McClain MA, Clements IP, Shafer RH, Bellamkonda RV, LaPlaca MC, Allen MG (2011) Highly-compliant, microcable neuroelectrodes fabricated from thin-film gold and PDMS. Biomed Microdevices 13:361–373CrossRef
Zurück zum Zitat Meacham KW, Giuly RJ, Guo L, Hochman S, DeWeerth SP (2008) A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed Microdevices 10:259–269CrossRef Meacham KW, Giuly RJ, Guo L, Hochman S, DeWeerth SP (2008) A lithographically-patterned, elastic multi-electrode array for surface stimulation of the spinal cord. Biomed Microdevices 10:259–269CrossRef
Zurück zum Zitat Mehenti NZ, Tsien GS, Leng T, Fishman HA, Bent SF (2006) A model retinal interface based on directed neuronal growth for single cell stimulation. Biomed Microdevices 8:141–150CrossRef Mehenti NZ, Tsien GS, Leng T, Fishman HA, Bent SF (2006) A model retinal interface based on directed neuronal growth for single cell stimulation. Biomed Microdevices 8:141–150CrossRef
Zurück zum Zitat Mehenti NZ, Fishman HA, Bent SF (2007) A model neural interface based on functional chemical stimulation. Biomed Microdevices 9:579–586CrossRef Mehenti NZ, Fishman HA, Bent SF (2007) A model neural interface based on functional chemical stimulation. Biomed Microdevices 9:579–586CrossRef
Zurück zum Zitat Meng C, Gall OZ, Irazoqui PP (2013) A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomed Microdevices 15:973–983CrossRef Meng C, Gall OZ, Irazoqui PP (2013) A flexible super-capacitive solid-state power supply for miniature implantable medical devices. Biomed Microdevices 15:973–983CrossRef
Zurück zum Zitat Micera S, Carpaneto J, Raspopovic S (2010) Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng 3:48–68CrossRef Micera S, Carpaneto J, Raspopovic S (2010) Control of hand prostheses using peripheral information. IEEE Rev Biomed Eng 3:48–68CrossRef
Zurück zum Zitat Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10:229–258CrossRef Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P (2005) A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J Peripher Nerv Syst 10:229–258CrossRef
Zurück zum Zitat Noolandi J, Peterman MC, Huie P, Lee C, Blumenkranz MS, Fishman HA (2003) Towards a neurotransmitter-based retinal prosthesis using an inkjet print-head. Biomed Microdevices 5:195–199CrossRef Noolandi J, Peterman MC, Huie P, Lee C, Blumenkranz MS, Fishman HA (2003) Towards a neurotransmitter-based retinal prosthesis using an inkjet print-head. Biomed Microdevices 5:195–199CrossRef
Zurück zum Zitat Nyberg T, Inganäs O, Jerregård H (2002) Polymer hydrogel microelectrodes for neural communication. Biomed Microdevices 4:43–52CrossRef Nyberg T, Inganäs O, Jerregård H (2002) Polymer hydrogel microelectrodes for neural communication. Biomed Microdevices 4:43–52CrossRef
Zurück zum Zitat Ortiz-Catalan M, Brånemark R, Håkansson B, Delbeke J (2012) On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online 11:1–24CrossRef Ortiz-Catalan M, Brånemark R, Håkansson B, Delbeke J (2012) On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed Eng Online 11:1–24CrossRef
Zurück zum Zitat Raffa V, Pensabene V, Menciassi A, Dario P (2007) Design criteria of neuron/electrode interface. The focused ion beam technology as an analytical method to investigate the effect of electrode surface morphology on neurocompatibility. Biomed Microdevices 9:371–383CrossRef Raffa V, Pensabene V, Menciassi A, Dario P (2007) Design criteria of neuron/electrode interface. The focused ion beam technology as an analytical method to investigate the effect of electrode surface morphology on neurocompatibility. Biomed Microdevices 9:371–383CrossRef
Zurück zum Zitat Rossini PM et al (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121:777–783CrossRef Rossini PM et al (2010) Double nerve intraneural interface implant on a human amputee for robotic hand control. Clin Neurophysiol 121:777–783CrossRef
Zurück zum Zitat Seymour JP, Langhals NB, Anderson DJ, Kipke DR (2011) Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed Microdevices 13:441–451CrossRef Seymour JP, Langhals NB, Anderson DJ, Kipke DR (2011) Novel multi-sided, microelectrode arrays for implantable neural applications. Biomed Microdevices 13:441–451CrossRef
Zurück zum Zitat Song S-H, Gillies GT, MAH III, Kuhnley B, Utz M (2013) Power and signal transmission protocol for a contactless subdural spinal cord stimulation device. Biomed Microdevices 15:27–36CrossRef Song S-H, Gillies GT, MAH III, Kuhnley B, Utz M (2013) Power and signal transmission protocol for a contactless subdural spinal cord stimulation device. Biomed Microdevices 15:27–36CrossRef
Zurück zum Zitat Stieglitz T, Beutel H, Meyer J-U (1997) A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sens Actuators 60:240–243CrossRef Stieglitz T, Beutel H, Meyer J-U (1997) A flexible, light-weight multichannel sieve electrode with integrated cables for interfacing regenerating peripheral nerves. Sens Actuators 60:240–243CrossRef
Zurück zum Zitat Stieglitz T, Beutel Hr, Schuettler M, Meyer J-U (2000) Micromachined, polyimide-based devices for flexible neural interfaces. Biomed Microdevices 2:283–294CrossRef Stieglitz T, Beutel Hr, Schuettler M, Meyer J-U (2000) Micromachined, polyimide-based devices for flexible neural interfaces. Biomed Microdevices 2:283–294CrossRef
Zurück zum Zitat Takei K, Kawano T, Kawashima T, Sawada K, Kaneko H, Ishida M (2010) Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio. Biomed Microdevices 12:41–48CrossRef Takei K, Kawano T, Kawashima T, Sawada K, Kaneko H, Ishida M (2010) Microtube-based electrode arrays for low invasive extracellular recording with a high signal-to-noise ratio. Biomed Microdevices 12:41–48CrossRef
Zurück zum Zitat Tansey KE, Seifert JL, Botterman B, Delgado MR, Romero MI (2011) Peripheral nerve repair through multi-luminal biosynthetic implants. Ann Biomed Eng 39:1815–1828CrossRef Tansey KE, Seifert JL, Botterman B, Delgado MR, Romero MI (2011) Peripheral nerve repair through multi-luminal biosynthetic implants. Ann Biomed Eng 39:1815–1828CrossRef
Zurück zum Zitat Wallman L, Zhang Y, Laurell T, Danielsen N (2001) The geometric design of micromachined silicon sieve electrodes influences functional nerve regeneration. Biomaterials 22:1187–1193CrossRef Wallman L, Zhang Y, Laurell T, Danielsen N (2001) The geometric design of micromachined silicon sieve electrodes influences functional nerve regeneration. Biomaterials 22:1187–1193CrossRef
Zurück zum Zitat Wieringa PA, Wiertz RWF, Weerd Ed, Rutten WLC (2010) Bifurcating microchannels as a scaffold to induce separation of regenerating neurites. J Neural Eng 7:1–8CrossRef Wieringa PA, Wiertz RWF, Weerd Ed, Rutten WLC (2010) Bifurcating microchannels as a scaffold to induce separation of regenerating neurites. J Neural Eng 7:1–8CrossRef
Zurück zum Zitat Zhao Q et al (1997) Rat sciatic nerve regeneration through a micromachined silicon chip. Biomaterials 18:75–80CrossRef Zhao Q et al (1997) Rat sciatic nerve regeneration through a micromachined silicon chip. Biomaterials 18:75–80CrossRef
Metadaten
Titel
A microchannel neural interface with embedded microwires targeting the peripheral nervous system
verfasst von
Bongkyun Kim
Alejandro Reyes
Bernardo Garza
Yoonsu Choi
Publikationsdatum
01.07.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 7/2015
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-014-2340-3

Weitere Artikel der Ausgabe 7/2015

Microsystem Technologies 7/2015 Zur Ausgabe

Neuer Inhalt