Skip to main content
Erschienen in: Wireless Personal Communications 3/2021

31.08.2020

A Time Granular Analysis of Software Defined Wireless Mesh Based IoT (SDWM-IoT) Network Traffic Using Supervised Learning

verfasst von: Rohit Kumar, U. Venkanna, Vivek Tiwari

Erschienen in: Wireless Personal Communications | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The ceaseless increase in the number of the wireless Internet of Things (IoT) devices has resulted in the need of different traffic engineering techniques to manage the massive network traffic. Wireless Mesh Networks (WMNs) are an important constituent part of the wireless IoT networks, and are helpful to route the IoT networks’ traffic over long distances. The WMN devices are powerful in comparison to the IoT sensor devices, and are suitable to run the traffic engineering algorithms. To further improve the performance of the WMNs, Software Defined Networking can be used. Its unique features like global visibility, agility, etc., guarantee the optimal network management. As granularity plays an important role in data analysis and none of the existing works has discussed a time granularity based network data analysis, this work tries to offer a time granular analysis of Software Defined Wireless Mesh based IoT (SDWM-IoT) network’s traffic using supervised learning approaches. A time granular analysis helps to explore the functional traits of the data at the Coarse, Medium, and Fine granularity levels. This assists in divulging and understanding the hidden characteristics and behaviour of the SDWM-IoT network’s data based on varying time granularity, respectively. Some well known supervised learning algorithms are used to offer an in-depth analysis of the traffic, and to draw the relevant conclusions. Different variants of Decision Tree, Support Vector Machine and K-Nearest Neighbour (KNN) are used to analyze the traffic and achieve a reliable accuracy rate of more than 90%. Among all the variants, fine-KNN produces the best accuracy for most of the traffic classes with a rate of more than 98%. In addition to this, a tenfold cross-validation technique is also used to prevent the the chances of over-fitting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Tomovic, S., Yoshigoe, K., Maljevic, I., & Radusinovic, I. (2017). Software-defined fog network architecture for IoT. Wireless Personal Communications, 92(1), 181–196.CrossRef Tomovic, S., Yoshigoe, K., Maljevic, I., & Radusinovic, I. (2017). Software-defined fog network architecture for IoT. Wireless Personal Communications, 92(1), 181–196.CrossRef
2.
Zurück zum Zitat Gardašević, G., Veletić, M., Maletić, N., Vasiljević, D., Radusinović, I., Tomović, S., et al. (2017). The IoT architectural framework, design issues and application domains. Wireless Personal Communications, 92(1), 127–148.CrossRef Gardašević, G., Veletić, M., Maletić, N., Vasiljević, D., Radusinović, I., Tomović, S., et al. (2017). The IoT architectural framework, design issues and application domains. Wireless Personal Communications, 92(1), 127–148.CrossRef
3.
Zurück zum Zitat Akyildiz, I. F., Lee, A., Wang, P., Luo, M., & Chou, W. (2016). Research challenges for traffic engineering in software defined networks. IEEE Network, 30(3), 52–58.CrossRef Akyildiz, I. F., Lee, A., Wang, P., Luo, M., & Chou, W. (2016). Research challenges for traffic engineering in software defined networks. IEEE Network, 30(3), 52–58.CrossRef
4.
Zurück zum Zitat Goudos, S. K., Dallas, P. I., Chatziefthymiou, S., & Kyriazakos, S. (2017). A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications. Wireless Personal Communications, 97(2), 1645–1675.CrossRef Goudos, S. K., Dallas, P. I., Chatziefthymiou, S., & Kyriazakos, S. (2017). A survey of IoT key enabling and future technologies: 5G, mobile IoT, sematic web and applications. Wireless Personal Communications, 97(2), 1645–1675.CrossRef
5.
Zurück zum Zitat Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60–67.CrossRef Centenaro, M., Vangelista, L., Zanella, A., & Zorzi, M. (2016). Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications, 23(5), 60–67.CrossRef
6.
Zurück zum Zitat Sahni, Y., Cao, J., Zhang, S., & Yang, L. (2017). Edge mesh: A new paradigm to enable distributed intelligence in Internet of Things. IEEE Access, 5, 16441–16458.CrossRef Sahni, Y., Cao, J., Zhang, S., & Yang, L. (2017). Edge mesh: A new paradigm to enable distributed intelligence in Internet of Things. IEEE Access, 5, 16441–16458.CrossRef
7.
Zurück zum Zitat Conti, M., Boldrini, C., Kanhere, S. S., Mingozzi, E., Pagani, E., Ruiz, P. M., et al. (2015). From MANET to people-centric networking: Milestones and open research challenges. Computer Communications, 71, 1–21.CrossRef Conti, M., Boldrini, C., Kanhere, S. S., Mingozzi, E., Pagani, E., Ruiz, P. M., et al. (2015). From MANET to people-centric networking: Milestones and open research challenges. Computer Communications, 71, 1–21.CrossRef
8.
Zurück zum Zitat Ojo, M., Adami, D., & Giordano, S. (2016, December). A SDN-IoT architecture with NFV implementation. In 2016 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). IEEE. Ojo, M., Adami, D., & Giordano, S. (2016, December). A SDN-IoT architecture with NFV implementation. In 2016 IEEE Globecom Workshops (GC Wkshps) (pp. 1–6). IEEE.
9.
Zurück zum Zitat Rademacher, M., Jonas, K., Siebertz, F., Rzyska, A., Schlebusch, M., & Kessel, M. (2017). Software-defined wireless mesh networking: Current status and challenges. The Computer Journal, 60(10), 1520–1535.MathSciNetCrossRef Rademacher, M., Jonas, K., Siebertz, F., Rzyska, A., Schlebusch, M., & Kessel, M. (2017). Software-defined wireless mesh networking: Current status and challenges. The Computer Journal, 60(10), 1520–1535.MathSciNetCrossRef
10.
Zurück zum Zitat Jayakumar, H., Raha, A., Kim, Y., Sutar, S., Lee, W. S., & Raghunathan, V. (2016, January). Energy-efficient system design for IoT devices. In 2016 21st Asia and South Pacific design automation conference (ASP-DAC) (pp. 298–301). IEEE. Jayakumar, H., Raha, A., Kim, Y., Sutar, S., Lee, W. S., & Raghunathan, V. (2016, January). Energy-efficient system design for IoT devices. In 2016 21st Asia and South Pacific design automation conference (ASP-DAC) (pp. 298–301). IEEE.
11.
Zurück zum Zitat Aljawarneh, S., Radhakrishna, V., Kumar, P. V., & Janaki, V. (2016, September). A similarity measure for temporal pattern discovery in time series data generated by IoT. In 2016 International conference on engineering and MIS (ICEMIS) (pp. 1–4). IEEE. Aljawarneh, S., Radhakrishna, V., Kumar, P. V., & Janaki, V. (2016, September). A similarity measure for temporal pattern discovery in time series data generated by IoT. In 2016 International conference on engineering and MIS (ICEMIS) (pp. 1–4). IEEE.
12.
Zurück zum Zitat Thupae, R., Isong, B., Gasela, N., & Abu-Mahfouz, A. M. (2018, October). Machine learning techniques for traffic identification and classifiacation in SDWSN: A survey. In IECON 2018-44th annual conference of the IEEE industrial electronics society (pp. 4645–4650). IEEE. Thupae, R., Isong, B., Gasela, N., & Abu-Mahfouz, A. M. (2018, October). Machine learning techniques for traffic identification and classifiacation in SDWSN: A survey. In IECON 2018-44th annual conference of the IEEE industrial electronics society (pp. 4645–4650). IEEE.
13.
Zurück zum Zitat Wang, W., Zhu, M., Zeng, X., Ye, X., & Sheng, Y. (2017, January). Malware traffic classification using convolutional neural network for representation learning. In 2017 International conference on information networking (ICOIN) (pp. 712–717). IEEE. Wang, W., Zhu, M., Zeng, X., Ye, X., & Sheng, Y. (2017, January). Malware traffic classification using convolutional neural network for representation learning. In 2017 International conference on information networking (ICOIN) (pp. 712–717). IEEE.
14.
Zurück zum Zitat Ducange, P., Mannarà, G., Marcelloni, F., Pecori, R., & Vecchio, M. (2017, July). A novel approach for internet traffic classification based on multi-objective evolutionary fuzzy classifiers. In 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 1–6). IEEE. Ducange, P., Mannarà, G., Marcelloni, F., Pecori, R., & Vecchio, M. (2017, July). A novel approach for internet traffic classification based on multi-objective evolutionary fuzzy classifiers. In 2017 IEEE international conference on fuzzy systems (FUZZ-IEEE) (pp. 1–6). IEEE.
15.
Zurück zum Zitat Mir, F. G., Brunner, M., Winter, R., & Kutscher, D. (2016). U.S. Patent No. 9,231,876. Washington, DC: U.S. Patent and Trademark Office. Mir, F. G., Brunner, M., Winter, R., & Kutscher, D. (2016). U.S. Patent No. 9,231,876. Washington, DC: U.S. Patent and Trademark Office.
16.
Zurück zum Zitat Vlăduţu, A., Comăneci, D., & Dobre, C. (2017). Internet traffic classification based on flows’ statistical properties with machine learning. International Journal of Network Management, 27(3), e1929.CrossRef Vlăduţu, A., Comăneci, D., & Dobre, C. (2017). Internet traffic classification based on flows’ statistical properties with machine learning. International Journal of Network Management, 27(3), e1929.CrossRef
17.
Zurück zum Zitat Ding, T., AlEroud, A., & Karabatis, G. (2015, May). Multi-granular aggregation of network flows for security analysis. In 2015 IEEE international conference on intelligence and security informatics (ISI) (pp. 173–175). IEEE. Ding, T., AlEroud, A., & Karabatis, G. (2015, May). Multi-granular aggregation of network flows for security analysis. In 2015 IEEE international conference on intelligence and security informatics (ISI) (pp. 173–175). IEEE.
18.
Zurück zum Zitat Bartos, K. & Michal S. (2017). Identifying threats based on hierarchical classification. U.S. Patent 9,800,597, issued October 24, 2017. Bartos, K. & Michal S. (2017). Identifying threats based on hierarchical classification. U.S. Patent 9,800,597, issued October 24, 2017.
19.
Zurück zum Zitat Dong, Y. N., Zhao, J. J., & Jin, J. (2017). Novel feature selection and classification of Internet video traffic based on a hierarchical scheme. Computer Networks, 119, 102–111.CrossRef Dong, Y. N., Zhao, J. J., & Jin, J. (2017). Novel feature selection and classification of Internet video traffic based on a hierarchical scheme. Computer Networks, 119, 102–111.CrossRef
21.
Zurück zum Zitat Elzain, H., & Wu, Y. (2019). Software defined wireless mesh network flat distribution control plane. Future Internet, 11(8), 166.CrossRef Elzain, H., & Wu, Y. (2019). Software defined wireless mesh network flat distribution control plane. Future Internet, 11(8), 166.CrossRef
22.
Zurück zum Zitat Elzain, H., & Yang, W. (2018). QoS-aware topology discovery in decentralized software defined wireless mesh network (D-SDWMN) architecture. In Proceedings of the 2018 2nd international conference on computer science and artificial intelligence (pp. 158–162). ACM Elzain, H., & Yang, W. (2018). QoS-aware topology discovery in decentralized software defined wireless mesh network (D-SDWMN) architecture. In Proceedings of the 2018 2nd international conference on computer science and artificial intelligence (pp. 158–162). ACM
23.
Zurück zum Zitat Jiménez, A., Botero, J. F., & Urrea, J. P. (2018). Admission control implementation for QoS performance evaluation over SDWN. In 2018 IEEE Colombian conference on communications and computing (COLCOM) pp. 1–6. IEEE Jiménez, A., Botero, J. F., & Urrea, J. P. (2018). Admission control implementation for QoS performance evaluation over SDWN. In 2018 IEEE Colombian conference on communications and computing (COLCOM) pp. 1–6. IEEE
24.
Zurück zum Zitat Yu, C., Yang, Z., Chen, X., & Yang, J. (2018). Scalable video transmission in software defined wireless mesh network. In 2018 4th IEEE conference on network softwarization and workshops (NetSoft) (pp. 456–461). IEEE. Yu, C., Yang, Z., Chen, X., & Yang, J. (2018). Scalable video transmission in software defined wireless mesh network. In 2018 4th IEEE conference on network softwarization and workshops (NetSoft) (pp. 456–461). IEEE.
25.
Zurück zum Zitat Orrego, J. F. G., & Duque, J. P. U. (2017). Throughput and delay evaluation framework integrating SDN and IEEE 802.11 s WMN. In 2017 IEEE 9th Latin-American conference on communications (LATINCOM) (pp. 1–6). IEEE Orrego, J. F. G., & Duque, J. P. U. (2017). Throughput and delay evaluation framework integrating SDN and IEEE 802.11 s WMN. In 2017 IEEE 9th Latin-American conference on communications (LATINCOM) (pp. 1–6). IEEE
26.
Zurück zum Zitat Mamidi, A. V., Babu, S., & Manoj, B. S. (2015). Dynamic multi-hop switch handoffs in software defined wireless mesh networks. In 2015 IEEE international conference on advanced networks and telecommuncations systems (ANTS) (pp. 1–6). IEEE Mamidi, A. V., Babu, S., & Manoj, B. S. (2015). Dynamic multi-hop switch handoffs in software defined wireless mesh networks. In 2015 IEEE international conference on advanced networks and telecommuncations systems (ANTS) (pp. 1–6). IEEE
27.
Zurück zum Zitat Sriramulu, R. K. (2018). Constructing dynamic ad-hoc emergency networks using software-defined wireless mesh networks. Sriramulu, R. K. (2018). Constructing dynamic ad-hoc emergency networks using software-defined wireless mesh networks.
28.
Zurück zum Zitat Pinyoanuntapong, P. (2017). Software defined wireless mesh networks: from theory to practice. PhD diss. Wichita State University. Pinyoanuntapong, P. (2017). Software defined wireless mesh networks: from theory to practice. PhD diss. Wichita State University.
29.
Zurück zum Zitat Brini, O., Deslandes, D., & Nabki, F. (2019). A system-level methodology for the design of reliable low-power wireless sensor networks. Sensors, 19(8), 1800.CrossRef Brini, O., Deslandes, D., & Nabki, F. (2019). A system-level methodology for the design of reliable low-power wireless sensor networks. Sensors, 19(8), 1800.CrossRef
30.
Zurück zum Zitat Charan, P., Usmani, T., Paulus, R., & Saeed, S. H. (2017). Cooperative caching in IEEE802. 15.4 based WSNs. International Journal of Applied Engineering Research, 12(21), 11409–11416. Charan, P., Usmani, T., Paulus, R., & Saeed, S. H. (2017). Cooperative caching in IEEE802. 15.4 based WSNs. International Journal of Applied Engineering Research, 12(21), 11409–11416.
31.
Zurück zum Zitat Saboor, A., Mustafa, A., Ahmad, R., Khan, M. A., Haris, M., & Hameed, R. (2019, March). Evolution of wireless standards for health monitoring. In 2019 9th annual information technology, electromechanical engineering and microelectronics conference (IEMECON) (pp. 268–272). IEEE. Saboor, A., Mustafa, A., Ahmad, R., Khan, M. A., Haris, M., & Hameed, R. (2019, March). Evolution of wireless standards for health monitoring. In 2019 9th annual information technology, electromechanical engineering and microelectronics conference (IEMECON) (pp. 268–272). IEEE.
32.
Zurück zum Zitat Kulper, R. R., Parikh, V., Moloney, D., Jonathan, P. A. N. G., Toll, D., Mulligan, J., & Szela, M. (2018). U.S. Patent Application No. 15/483,145. Kulper, R. R., Parikh, V., Moloney, D., Jonathan, P. A. N. G., Toll, D., Mulligan, J., & Szela, M. (2018). U.S. Patent Application No. 15/483,145.
33.
Zurück zum Zitat Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef Kobo, H. I., Abu-Mahfouz, A. M., & Hancke, G. P. (2017). A survey on software-defined wireless sensor networks: Challenges and design requirements. IEEE Access, 5, 1872–1899.CrossRef
34.
Zurück zum Zitat Kamaruddin, A. F. (2017). Experimentation on dynamic congestion control in software defined networking (SDN) and network function virtualisation (NFV). Doctoral dissertation, Brunel University London. Kamaruddin, A. F. (2017). Experimentation on dynamic congestion control in software defined networking (SDN) and network function virtualisation (NFV). Doctoral dissertation, Brunel University London.
35.
Zurück zum Zitat ElDefrawy, K., & Kaczmarek, T. (2016, June). Byzantine fault tolerant software-defined networking (SDN) controllers. In 2016 IEEE 40th annual computer software and applications conference (COMPSAC) (Vol. 2, pp. 208–213). IEEE. ElDefrawy, K., & Kaczmarek, T. (2016, June). Byzantine fault tolerant software-defined networking (SDN) controllers. In 2016 IEEE 40th annual computer software and applications conference (COMPSAC) (Vol. 2, pp. 208–213). IEEE.
36.
Zurück zum Zitat Haque, I. T., & Abu-Ghazaleh, N. (2016). Wireless software defined networking: A survey and taxonomy. IEEE Communications Surveys and Tutorials, 18(4), 2713–2737.CrossRef Haque, I. T., & Abu-Ghazaleh, N. (2016). Wireless software defined networking: A survey and taxonomy. IEEE Communications Surveys and Tutorials, 18(4), 2713–2737.CrossRef
37.
Zurück zum Zitat Dang, H. T. (2019). Consensus protocols exploiting network programmability. PhD diss., Università della Svizzera Italiana Dang, H. T. (2019). Consensus protocols exploiting network programmability. PhD diss., Università della Svizzera Italiana
38.
Zurück zum Zitat Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in internet of things: Taxonomies and open challenges. Mobile Networks and Applications, 24(3), 796–809.CrossRef Noura, M., Atiquzzaman, M., & Gaedke, M. (2019). Interoperability in internet of things: Taxonomies and open challenges. Mobile Networks and Applications, 24(3), 796–809.CrossRef
40.
Zurück zum Zitat Guleria, P., Thakur, N., & Sood, M. (2014, December). Predicting student performance using decision tree classifiers and information gain. In 2014 International conference on parallel, distributed and grid computing (pp. 126–129). IEEE. Guleria, P., Thakur, N., & Sood, M. (2014, December). Predicting student performance using decision tree classifiers and information gain. In 2014 International conference on parallel, distributed and grid computing (pp. 126–129). IEEE.
41.
Zurück zum Zitat Bao, K., Matyjas, J. D., Hu, F., & Kumar, S. (2018). Intelligent software-defined mesh networks with link-failure adaptive traffic balancing. IEEE Transactions on Cognitive Communications and Networking, 4(2), 266–276.CrossRef Bao, K., Matyjas, J. D., Hu, F., & Kumar, S. (2018). Intelligent software-defined mesh networks with link-failure adaptive traffic balancing. IEEE Transactions on Cognitive Communications and Networking, 4(2), 266–276.CrossRef
42.
Zurück zum Zitat Pillai, I., Fumera, G., & Roli, F. (2017). Designing multi-label classifiers that maximize F measures: State of the art. Pattern Recognition, 61, 394–404.CrossRef Pillai, I., Fumera, G., & Roli, F. (2017). Designing multi-label classifiers that maximize F measures: State of the art. Pattern Recognition, 61, 394–404.CrossRef
43.
Zurück zum Zitat von Sperling, T. L., de Caldas Filho, F. L., de Sousa, R. T., e Martins, L. M., & Rocha, R. L. (2017, November). Tracking intruders in IoT networks by means of DNS traffic analysis. In 2017 Workshop on communication networks and power systems (WCNPS) (pp. 1–4). IEEE. von Sperling, T. L., de Caldas Filho, F. L., de Sousa, R. T., e Martins, L. M., & Rocha, R. L. (2017, November). Tracking intruders in IoT networks by means of DNS traffic analysis. In 2017 Workshop on communication networks and power systems (WCNPS) (pp. 1–4). IEEE.
44.
Zurück zum Zitat Hoang, D. H., & Nguyen, H. D. (2018, February). A PCA-based method for IoT network traffic anomaly detection. In 2018 20th International conference on advanced communication technology (ICACT) (pp. 381–386). IEEE. Hoang, D. H., & Nguyen, H. D. (2018, February). A PCA-based method for IoT network traffic anomaly detection. In 2018 20th International conference on advanced communication technology (ICACT) (pp. 381–386). IEEE.
45.
Zurück zum Zitat Leite, J. R., Ursini, E. L., & Martins, P. S. (2018, July). Performance analysis of IoT networks with mobility via modeling and simulation. In 2018 International symposium on performance evaluation of computer and telecommunication systems (SPECTS) (pp. 1–13). IEEE. Leite, J. R., Ursini, E. L., & Martins, P. S. (2018, July). Performance analysis of IoT networks with mobility via modeling and simulation. In 2018 International symposium on performance evaluation of computer and telecommunication systems (SPECTS) (pp. 1–13). IEEE.
46.
Zurück zum Zitat Bai, L., Yao, L., Kanhere, S. S., Wang, X., & Yang, Z. (2018, October). Automatic device classification from network traffic streams of Internet of Things. In 2018 IEEE 43rd conference on local computer networks (LCN) (pp. 1–9). IEEE. Bai, L., Yao, L., Kanhere, S. S., Wang, X., & Yang, Z. (2018, October). Automatic device classification from network traffic streams of Internet of Things. In 2018 IEEE 43rd conference on local computer networks (LCN) (pp. 1–9). IEEE.
47.
Zurück zum Zitat Msadek, N., Soua, R., & Engel, T. (2019, April). IoT device fingerprinting: machine learning based encrypted traffic analysis. In 2019 IEEE wireless communications and networking conference (WCNC) (pp. 1–8). IEEE. Msadek, N., Soua, R., & Engel, T. (2019, April). IoT device fingerprinting: machine learning based encrypted traffic analysis. In 2019 IEEE wireless communications and networking conference (WCNC) (pp. 1–8). IEEE.
48.
Zurück zum Zitat Sanabria-Russo, L., Pubill, D., Serra, J., & Verikoukis, C. (2019). IoT data analytics as a network edge service. In IEEE INFOCOM 2019—IEEE conference on computer communications workshops (INFOCOM WKSHPS), Paris, France (pp. 969–970). Sanabria-Russo, L., Pubill, D., Serra, J., & Verikoukis, C. (2019). IoT data analytics as a network edge service. In IEEE INFOCOM 2019—IEEE conference on computer communications workshops (INFOCOM WKSHPS), Paris, France (pp. 969–970).
49.
Zurück zum Zitat Hoang, D. H., & Nguyen, H. D. (2019, February). Detecting anomalous network traffic in IoT networks. In 2019 21st international conference on advanced communication technology (ICACT) (pp. 1143–1152). IEEE. Hoang, D. H., & Nguyen, H. D. (2019, February). Detecting anomalous network traffic in IoT networks. In 2019 21st international conference on advanced communication technology (ICACT) (pp. 1143–1152). IEEE.
Metadaten
Titel
A Time Granular Analysis of Software Defined Wireless Mesh Based IoT (SDWM-IoT) Network Traffic Using Supervised Learning
verfasst von
Rohit Kumar
U. Venkanna
Vivek Tiwari
Publikationsdatum
31.08.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07781-6

Weitere Artikel der Ausgabe 3/2021

Wireless Personal Communications 3/2021 Zur Ausgabe

Neuer Inhalt