Skip to main content
Erschienen in: Colloid and Polymer Science 4/2019

16.01.2019 | Original Contribution

Investigation about validity of the Derjaguin approximation for electrostatic interactions for a sphere-sphere system

verfasst von: Shiqi Zhou

Erschienen in: Colloid and Polymer Science | Ausgabe 4/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Validity of the Derjaguin approximation for sphere-sphere electrostatic interactions is investigated by explicitly determining the interactions between two spherical colloids using classical density functional theory (CDFT) solved in bispherical coordinates. The validity rules are summarized as follows. (i) For 1:1 type electrolyte, the Derjaguin approximation is effective for colloid sphere having a diameter down to three times the ion diameter only if the bulk concentration is higher than 0.1 M. (ii) With presence of higher-valence counter-ion, the threshold value bulk concentration rises, and increasing the colloid sphere diameter can lower greatly the threshold value bulk concentration. Encouragingly, over the valid parameter region of the Derjaguin approximation a like-charge attraction can be reproduced accurately. (iii) Both too low and too high surface charge strengths contribute to lower the quality of the Derjaguin approximation; increasing the medium permittivity or system temperature improves the accuracy of the Derjaguin approximation. (iv) Based on the mechanism analysis on the above observations, it is concluded that what matters in determining the validity of the Derjaguin approximation is the potential range of the pure inter-surface electrostatic interactions and the local Debye length rather than the bulk Debye length. Besides, the different expressivity of the influencing factors causing the effective inter-surface electrostatic interactions at different conditions determines the behavior the Derjaguin approximation deviates from the full CDFT calculations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Valadez-Perez NE, Benavides AL, Schoell-Paschinger E, Castaneda-Priego R (2012). J Chem Phys 137:084905CrossRefPubMed Valadez-Perez NE, Benavides AL, Schoell-Paschinger E, Castaneda-Priego R (2012). J Chem Phys 137:084905CrossRefPubMed
2.
Zurück zum Zitat Piechowiak MA, Videcoq A, Ferrando R, Bochicchio D, Pagnoux C, Rossignol F (2012). PhysChemChemPhys 14:1431 Piechowiak MA, Videcoq A, Ferrando R, Bochicchio D, Pagnoux C, Rossignol F (2012). PhysChemChemPhys 14:1431
3.
5.
Zurück zum Zitat Jehannin M, Charton S, Corso B, Moehwald H, Riegler H, Zemb T (2017). Colloid Polym Sci 295:1817CrossRef Jehannin M, Charton S, Corso B, Moehwald H, Riegler H, Zemb T (2017). Colloid Polym Sci 295:1817CrossRef
8.
Zurück zum Zitat Huang Y, Yamaguchi A, Pham TD, Kobayashi M (2018). Colloid Polym Sci 296:145CrossRef Huang Y, Yamaguchi A, Pham TD, Kobayashi M (2018). Colloid Polym Sci 296:145CrossRef
12.
Zurück zum Zitat Gaspard P (2017) J Stat Mech-Theory E paper ID/:024003 Gaspard P (2017) J Stat Mech-Theory E paper ID/:024003
13.
14.
Zurück zum Zitat Shen CY, Li BG, Wang C, Huang YF, Jin Y (2011). Vadose Zone J 10:1071CrossRef Shen CY, Li BG, Wang C, Huang YF, Jin Y (2011). Vadose Zone J 10:1071CrossRef
16.
Zurück zum Zitat Galindo-Murillo R, Ruiz-Azuara L, Moreno-Esparza R, Cortes-Guzman F (2012). PhysChemChemPhys 14:15539 Galindo-Murillo R, Ruiz-Azuara L, Moreno-Esparza R, Cortes-Guzman F (2012). PhysChemChemPhys 14:15539
20.
Zurück zum Zitat Niranjani G, Murugan R (2016) J Stat Mech-Theory E Paper ID/:053501 Niranjani G, Murugan R (2016) J Stat Mech-Theory E Paper ID/:053501
22.
Zurück zum Zitat Antonietta M (2001). Int J Mol Med 8:S32 Antonietta M (2001). Int J Mol Med 8:S32
23.
Zurück zum Zitat Ukmar T, Gaberscek M, Merzel F, Godec A (2011). PhysChemChemPhys 13:15311 Ukmar T, Gaberscek M, Merzel F, Godec A (2011). PhysChemChemPhys 13:15311
24.
26.
Zurück zum Zitat Groenewald F, Esterhuysen C, Dillen J (2012). Theor Chem Accounts 131:1281CrossRef Groenewald F, Esterhuysen C, Dillen J (2012). Theor Chem Accounts 131:1281CrossRef
27.
28.
29.
Zurück zum Zitat Benavides AL, Portillo MA, Abascal JLF, Vega C (2017). Mol Phys 115:1301CrossRef Benavides AL, Portillo MA, Abascal JLF, Vega C (2017). Mol Phys 115:1301CrossRef
31.
Zurück zum Zitat Blocki J, Randrup J, Swiatecki WJ, Tsang CF (1977). Ann Phys – N Y 427:105 Blocki J, Randrup J, Swiatecki WJ, Tsang CF (1977). Ann Phys – N Y 427:105
32.
Zurück zum Zitat Hans-Jürgen Butt KG, Kappl M (2003) Physics and chemistry of interfaces. Wiley-VCH Verlag & Co. KGaA, Hans-Jürgen Butt KG, Kappl M (2003) Physics and chemistry of interfaces. Wiley-VCH Verlag & Co. KGaA,
33.
Zurück zum Zitat Israelachvili JN (1998) Intermolecular and Surface Forces. Academic, London Israelachvili JN (1998) Intermolecular and Surface Forces. Academic, London
34.
Zurück zum Zitat Parsegian VA, der Waals V (2006) Forces. Cambridge University Press, Cambridge Parsegian VA, der Waals V (2006) Forces. Cambridge University Press, Cambridge
41.
Zurück zum Zitat Wennerstrom H (2017). PhysChemChemPhys 19:23849 Wennerstrom H (2017). PhysChemChemPhys 19:23849
42.
44.
Zurück zum Zitat Todd BA, Eppell SJ (2004) Probing the Limits of the Derjaguin Approximation with Scanning Force Microscopy, 4897. Langmuir 20:4892CrossRefPubMed Todd BA, Eppell SJ (2004) Probing the Limits of the Derjaguin Approximation with Scanning Force Microscopy, 4897. Langmuir 20:4892CrossRefPubMed
45.
Zurück zum Zitat Rentsch S, Pericet-Camara R, Papastavrou G, Borkovec M (2006). PhysChemChemPhys 8:2531 Rentsch S, Pericet-Camara R, Papastavrou G, Borkovec M (2006). PhysChemChemPhys 8:2531
47.
48.
Zurück zum Zitat Stankovich, Carnie SL (1999). J Colloid Interface Sci 329:216 Stankovich, Carnie SL (1999). J Colloid Interface Sci 329:216
49.
Zurück zum Zitat Gotzelmann B, Evans R, Dietrich S (1998) Depletion forces in fluids, 6800. Phys Rev E 57:6785CrossRef Gotzelmann B, Evans R, Dietrich S (1998) Depletion forces in fluids, 6800. Phys Rev E 57:6785CrossRef
50.
Zurück zum Zitat Forsman J, Woodward CE (2010) Limitations of the Derjaguin Approximation and the Lorentz−Berthelot Mixing Rule, 4558. Langmuir 26:4555CrossRefPubMed Forsman J, Woodward CE (2010) Limitations of the Derjaguin Approximation and the Lorentz−Berthelot Mixing Rule, 4558. Langmuir 26:4555CrossRefPubMed
51.
Zurück zum Zitat Quesada-Perez E, Gonzalez-Tovar A, Martin-Molina, Lozada-Cassou M, Hidalgo-Alvarez R (2003). ChemPhysChem 4:235CrossRef Quesada-Perez E, Gonzalez-Tovar A, Martin-Molina, Lozada-Cassou M, Hidalgo-Alvarez R (2003). ChemPhysChem 4:235CrossRef
54.
56.
Zurück zum Zitat Hansen JP, McDonald IR (2006) Theory of simple liquids3rd edn. Academic, London Hansen JP, McDonald IR (2006) Theory of simple liquids3rd edn. Academic, London
59.
Zurück zum Zitat Valiev GN, Chuev J (2018) Stat. Mech.-Theory E, Paper ID/:093201 Valiev GN, Chuev J (2018) Stat. Mech.-Theory E, Paper ID/:093201
61.
Zurück zum Zitat Patrykiejew A (2017) J Stat Mech-Theory E, Paper ID/:123208 Patrykiejew A (2017) J Stat Mech-Theory E, Paper ID/:123208
62.
Zurück zum Zitat Zhou S (2018) J Stat Mech-Theory E, Paper ID/:103203 Zhou S (2018) J Stat Mech-Theory E, Paper ID/:103203
64.
Zurück zum Zitat Zhou S (2011) J Stat Mech-Theory E Paper ID/:P05023 Zhou S (2011) J Stat Mech-Theory E Paper ID/:P05023
65.
Zurück zum Zitat Fantoni R (2018) J Stat Mech-Theory E, Paper ID/:043103 Fantoni R (2018) J Stat Mech-Theory E, Paper ID/:043103
66.
Zurück zum Zitat Zhou S (2011) J Stat Mech-Theory E Paper ID/:P09001 Zhou S (2011) J Stat Mech-Theory E Paper ID/:P09001
67.
Zurück zum Zitat Henderson D (1992) Fundamentals of inhomogeneous fluids. Marcel Dekker, New York Henderson D (1992) Fundamentals of inhomogeneous fluids. Marcel Dekker, New York
68.
Zurück zum Zitat B. Modak, C. N. Patra, S. K. Ghosh, and J. Vijayasundar, Mol Phys 109, 639(2011) B. Modak, C. N. Patra, S. K. Ghosh, and J. Vijayasundar, Mol Phys 109, 639(2011)
70.
Zurück zum Zitat Zhou S, Lamperski S, Zydorczak M (2014) Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations. J Chem Phys 141:064701CrossRefPubMed Zhou S, Lamperski S, Zydorczak M (2014) Properties of a planar electric double layer under extreme conditions investigated by classical density functional theory and Monte Carlo simulations. J Chem Phys 141:064701CrossRefPubMed
71.
Zurück zum Zitat Zhou S, Lamperski S, Sokołowska M (2017) J Stat Mech-Theory E, Paper ID/:073207 Zhou S, Lamperski S, Sokołowska M (2017) J Stat Mech-Theory E, Paper ID/:073207
72.
Zurück zum Zitat Zhou S (2013) Novel anomalies for like-charged attraction between curved surfaces and formulation of a hydrogen bonding style mechanism. AIP Adv 3:032109CrossRef Zhou S (2013) Novel anomalies for like-charged attraction between curved surfaces and formulation of a hydrogen bonding style mechanism. AIP Adv 3:032109CrossRef
74.
Zurück zum Zitat Zhou S (2015) J Stat Mech-Theory E Paper ID/:P11030 Zhou S (2015) J Stat Mech-Theory E Paper ID/:P11030
76.
Zurück zum Zitat Zhou S (2017) Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale, 1037. J Stat Phys 169:1019CrossRef Zhou S (2017) Effective Electrostatic Interactions Between Two Overall Neutral Surfaces with Quenched Charge Heterogeneity Over Atomic Length Scale, 1037. J Stat Phys 169:1019CrossRef
78.
Zurück zum Zitat Zhou S (2018) Wetting Transition of Nonpolar Neutral Molecule System on a Neutral and Atomic Length Scale Roughness Substrate, 998. J Stat Phys 170:979CrossRef Zhou S (2018) Wetting Transition of Nonpolar Neutral Molecule System on a Neutral and Atomic Length Scale Roughness Substrate, 998. J Stat Phys 170:979CrossRef
79.
Zurück zum Zitat Zhou S (2011) Enhanced KR-Fundamental Measure Functional for Inhomogeneous Binary and Ternary Hard Sphere Mixtures, 58. Commun Theor Phys 55:46CrossRef Zhou S (2011) Enhanced KR-Fundamental Measure Functional for Inhomogeneous Binary and Ternary Hard Sphere Mixtures, 58. Commun Theor Phys 55:46CrossRef
80.
Zurück zum Zitat Zhou S (2014) Effects of discreteness of surface charges on the effective electrostatic interactions. J Chem Phys 140:234704CrossRefPubMed Zhou S (2014) Effects of discreteness of surface charges on the effective electrostatic interactions. J Chem Phys 140:234704CrossRefPubMed
Metadaten
Titel
Investigation about validity of the Derjaguin approximation for electrostatic interactions for a sphere-sphere system
verfasst von
Shiqi Zhou
Publikationsdatum
16.01.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Colloid and Polymer Science / Ausgabe 4/2019
Print ISSN: 0303-402X
Elektronische ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-019-04469-7

Weitere Artikel der Ausgabe 4/2019

Colloid and Polymer Science 4/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.