Skip to main content
Erschienen in: Microsystem Technologies 4/2016

10.02.2015 | Technical Paper

Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester

verfasst von: Ping Li, Shiqiao Gao, Huatong Cai, Lisen Wu

Erschienen in: Microsystem Technologies | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A nonlinear hybrid piezoelectric (PE) and electromagnetic (EM) energy harvester is proposed, and its working model is established. Then the vibration response, output power, voltage and current of nonlinear hybrid energy harvester subjected to harmonic excitation are derived by the method of harmonic balance, and their normalized forms are obtained by the defined dimensionless parameters. Through numerical simulation and experimental test, the effects of nonlinear factor, load resistance, excitation frequency and the excitation acceleration on amplitude and electrical performances of hybrid energy harvester are studied, which shows that the numerical results are in agreement with that of experimental tests. Furthermore, it can be concluded that the bigger nonlinear factor, the lower resonant frequency; moreover, there is an optimal nonlinear factor that make the harvester output the maximum power. In addition, the output power of nonlinear hybrid energy harvester reaches the maximum at the optimal loads of PE and EM elements, which can be altered by the excitation acceleration. Meanwhile, the resonant frequency corresponding to the maximum power rises firstly and then falls with PE load enhancing, while it rises with EM load decreasing; furthermore, the frequency lowers with the acceleration increasing. Besides, the larger acceleration is, the bigger power output and the wider 3 dB bandwidth are. Compared with performances of linear hybrid energy harvester, the designed nonlinear energy harvester not only can reduce the resonant frequency and enlarger the bandwidth but also improve the output power.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Ashtari W, Hunstig M, Hemsel T (2012) Frequency tuning of piezoelectric energy harvesters by magnetic force. Smart Mater Struct 21:035019CrossRef Al-Ashtari W, Hunstig M, Hemsel T (2012) Frequency tuning of piezoelectric energy harvesters by magnetic force. Smart Mater Struct 21:035019CrossRef
Zurück zum Zitat Cammarano A, Neild SA, Burrow SG (2014) Optimum resistive loads for vibration-based electromagnetic energy harvesters with a stiffening nonlinearity. J Intell Mater Syst Struct. 1045389X14523854 Cammarano A, Neild SA, Burrow SG (2014) Optimum resistive loads for vibration-based electromagnetic energy harvesters with a stiffening nonlinearity. J Intell Mater Syst Struct. 1045389X14523854
Zurück zum Zitat Challa VR, Prasad MG, Shi Y (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17:015035CrossRef Challa VR, Prasad MG, Shi Y (2008) A vibration energy harvesting device with bidirectional resonance frequency tunability. Smart Mater Struct 17:015035CrossRef
Zurück zum Zitat Dhakar L, Liu H, Tay FEH (2013) A new energy harvester design for high power output at low frequencies. Sens Actuators A Phys 199:344–352CrossRef Dhakar L, Liu H, Tay FEH (2013) A new energy harvester design for high power output at low frequencies. Sens Actuators A Phys 199:344–352CrossRef
Zurück zum Zitat Erturk A, Inman DJ (2011a) Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J Sound Vib 330:2339–2353CrossRef Erturk A, Inman DJ (2011a) Broadband piezoelectric power generation on high-energy orbits of the bistable Duffing oscillator with electromechanical coupling. J Sound Vib 330:2339–2353CrossRef
Zurück zum Zitat Ferrari M, Ferrari V, Guizzetti M (2010) Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens Actuators A Phys 162:425–431CrossRef Ferrari M, Ferrari V, Guizzetti M (2010) Improved energy harvesting from wideband vibrations by nonlinear piezoelectric converters. Sens Actuators A Phys 162:425–431CrossRef
Zurück zum Zitat Foisal ARM, Hong C, Chung GS (2012) Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens Actuators A Phys 182:106–113CrossRef Foisal ARM, Hong C, Chung GS (2012) Multi-frequency electromagnetic energy harvester using a magnetic spring cantilever. Sens Actuators A Phys 182:106–113CrossRef
Zurück zum Zitat Ghandchi Tehrani M, Elliott SJ (2014) Extending the dynamic range of an energy harvester using nonlinear damping. J Sound Vib 333:623–629CrossRef Ghandchi Tehrani M, Elliott SJ (2014) Extending the dynamic range of an energy harvester using nonlinear damping. J Sound Vib 333:623–629CrossRef
Zurück zum Zitat Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22:1–12 Harne RL, Wang KW (2013) A review of the recent research on vibration energy harvesting via bistable systems. Smart Mater Struct 22:1–12
Zurück zum Zitat Karami MA, Inman DJ (2011) Electromechanical Modeling of the Low-Frequency Zigzag Micro-Energy Harvester. J Intell Mater Syst Struct 22:271–282CrossRef Karami MA, Inman DJ (2011) Electromechanical Modeling of the Low-Frequency Zigzag Micro-Energy Harvester. J Intell Mater Syst Struct 22:271–282CrossRef
Zurück zum Zitat Li P, Gao S, Cai H (2015) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21(2):401–414CrossRef Li P, Gao S, Cai H (2015) Modeling and analysis of hybrid piezoelectric and electromagnetic energy harvesting from random vibrations. Microsyst Technol 21(2):401–414CrossRef
Zurück zum Zitat Liu H, Lee C, Kobayashi T (2012) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18:497–506CrossRef Liu H, Lee C, Kobayashi T (2012) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18:497–506CrossRef
Zurück zum Zitat Mann BP, Owens BA (2010) Investigations of a nonlinear energy harvester with a bistable potential well. J Sound Vib 329:1215–1226CrossRef Mann BP, Owens BA (2010) Investigations of a nonlinear energy harvester with a bistable potential well. J Sound Vib 329:1215–1226CrossRef
Zurück zum Zitat Marzencki M, Defosseux M, Basrour S (2009) MEMS vibration energy harvesting devices with passive resonance frequency adaptation capability. Microelectromech Syst J 18:1444–1453CrossRef Marzencki M, Defosseux M, Basrour S (2009) MEMS vibration energy harvesting devices with passive resonance frequency adaptation capability. Microelectromech Syst J 18:1444–1453CrossRef
Zurück zum Zitat Owens BAM, Mann BP (2012) Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. J Sound Vib 331:922–937CrossRef Owens BAM, Mann BP (2012) Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting. J Sound Vib 331:922–937CrossRef
Zurück zum Zitat Pellegrini SP, Tolou N, Schenk M (2013) Bistable vibration energy harvesters: a review. J Intell Mater Syst Struct 24:1303–1312CrossRef Pellegrini SP, Tolou N, Schenk M (2013) Bistable vibration energy harvesters: a review. J Intell Mater Syst Struct 24:1303–1312CrossRef
Zurück zum Zitat Sebald G, Kuwano H, Guyomar D (2011a) Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater Struct 20:102001CrossRef Sebald G, Kuwano H, Guyomar D (2011a) Experimental Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater Struct 20:102001CrossRef
Zurück zum Zitat Sebald G, Kuwano H, Guyomar D (2011b) Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater Struct 20:075022CrossRef Sebald G, Kuwano H, Guyomar D (2011b) Simulation of a Duffing oscillator for broadband piezoelectric energy harvesting. Smart Mater Struct 20:075022CrossRef
Zurück zum Zitat Shan X, Guan S, Liu Z (2013) A new energy harvester using a piezoelectric and suspension electromagnetic mechanism. J Zhejiang Univ Sci A 14:890–897CrossRef Shan X, Guan S, Liu Z (2013) A new energy harvester using a piezoelectric and suspension electromagnetic mechanism. J Zhejiang Univ Sci A 14:890–897CrossRef
Zurück zum Zitat Spreemann D, Manoli Y (2012) Electromagnetic vibration energy harvesting devices. Springer, GermanyCrossRef Spreemann D, Manoli Y (2012) Electromagnetic vibration energy harvesting devices. Springer, GermanyCrossRef
Zurück zum Zitat Tiwari R, Buch N, Garcia E (2014) Energy balance for peak detection method in piezoelectric energy harvester. J Intell Mater Syst Struct 25:1024–1035CrossRef Tiwari R, Buch N, Garcia E (2014) Energy balance for peak detection method in piezoelectric energy harvester. J Intell Mater Syst Struct 25:1024–1035CrossRef
Zurück zum Zitat Tongji University, Department of Mathematics (2007) Higher Mathematics. High Education Press, China Tongji University, Department of Mathematics (2007) Higher Mathematics. High Education Press, China
Zurück zum Zitat Vinod RC, Shuo C, David PA (2013) The role of coupling strength in the performance of electrodynamic vibrational energy harvesters. Smart Mater Struct 22:1–15 Vinod RC, Shuo C, David PA (2013) The role of coupling strength in the performance of electrodynamic vibrational energy harvesters. Smart Mater Struct 22:1–15
Zurück zum Zitat Yang X, Wang Y, Cao Y (2014) A new hybrid piezoelectric-electromagnetic vibration-powered generator and its model and experiment research. Appl Supercond IEEE Trans 24:1–4 Yang X, Wang Y, Cao Y (2014) A new hybrid piezoelectric-electromagnetic vibration-powered generator and its model and experiment research. Appl Supercond IEEE Trans 24:1–4
Metadaten
Titel
Theoretical analysis and experimental study for nonlinear hybrid piezoelectric and electromagnetic energy harvester
verfasst von
Ping Li
Shiqiao Gao
Huatong Cai
Lisen Wu
Publikationsdatum
10.02.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Microsystem Technologies / Ausgabe 4/2016
Print ISSN: 0946-7076
Elektronische ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-015-2440-8

Weitere Artikel der Ausgabe 4/2016

Microsystem Technologies 4/2016 Zur Ausgabe

Neuer Inhalt