Skip to main content
Erschienen in: Environmental Earth Sciences 15/2016

01.08.2016 | Original Article

Modelling the root zone soil moisture using artificial neural networks, a case study

verfasst von: Mustafa Al-Mukhtar

Erschienen in: Environmental Earth Sciences | Ausgabe 15/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface soil moisture constitutes a major component in the Earth’s water cycle. In many cases, modelling and predicting soil moisture represent a serious problem in water resources field due to the problematic measurements or lack of measurements, etc. Data-driven models such as artificial neural networks (ANN) have been characterized as a robust tool to overcome these shortcomings. This study aims to identify the optimum ANNs to model the root zone soil moisture (up to 2 m depth) in the upper reach of the Spree River using the synthetic soil moisture data from SWAT model. Thus, three different approaches were developed and compared to determine the highest performing method. These networks can be broadly categorized into dynamic, static, and statistical neural networks, which are layer recurrent network (LRN), feedforward (FF), and radial basis networks, respectively. Data sets of precipitation and antecedent soil moisture were selected based on quantification of cross-, auto-, and partial autocorrelation coefficients to represent the best behaviour of root soil moisture. The time series data were subdivided into two subsets: one for network training and the second for network testing. The determination coefficient (R 2), root-mean-square error, and Nash–Sutcliffe efficiency were employed to test the goodness of fit between the actual and modelled data. Results show that, among the used methods, the LRN and FF networks have the top performance criteria, showing a reliable ability to be used as estimator for the soil moisture in this catchment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Al-Mukhtar M, Volkmar D, Merkel B (2013) Evaluation of the climate generator model CLIGEN for rainfall data simulation in Bautzen catchment area, Germany. Hydrol Res. doi:10.2166/nh.2013.073 Al-Mukhtar M, Volkmar D, Merkel B (2013) Evaluation of the climate generator model CLIGEN for rainfall data simulation in Bautzen catchment area, Germany. Hydrol Res. doi:10.​2166/​nh.​2013.​073
Zurück zum Zitat Al-Mukhtar M, Dunger V, Merkel B (2014) Assessing the impacts of climate change on hydrology of the upper reach of the spree river: Germany. Water Resour Manag 28(10):2731–2749. doi:10.1007/s11269-014-0675-2 CrossRef Al-Mukhtar M, Dunger V, Merkel B (2014) Assessing the impacts of climate change on hydrology of the upper reach of the spree river: Germany. Water Resour Manag 28(10):2731–2749. doi:10.​1007/​s11269-014-0675-2 CrossRef
Zurück zum Zitat Arnold J, Srinivasan R (1998) Large area hydrologic modeling and assessment part I: model development1. JAWRA 34(1):73–89 Arnold J, Srinivasan R (1998) Large area hydrologic modeling and assessment part I: model development1. JAWRA 34(1):73–89
Zurück zum Zitat ASCE Task Committee on Application of Artificial Neural Networks in hydrology (2000) Artificial neural networks in hydrology. II: hydrologic applications. J Hydrol Eng 5(2):124–137CrossRef ASCE Task Committee on Application of Artificial Neural Networks in hydrology (2000) Artificial neural networks in hydrology. II: hydrologic applications. J Hydrol Eng 5(2):124–137CrossRef
Zurück zum Zitat Beale MH, Hagen MT, Demuth HB (2012) Neural network toolbox: users guide. The MathWorks, Inc Beale MH, Hagen MT, Demuth HB (2012) Neural network toolbox: users guide. The MathWorks, Inc
Zurück zum Zitat Boden AG (2005) Bodenkundliche Kartieranleitung, 5. Auflage. Herausgeber: Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover Boden AG (2005) Bodenkundliche Kartieranleitung, 5. Auflage. Herausgeber: Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover
Zurück zum Zitat Collins DBG, Bras RL (2008) Climatic control of sediment yield in dry lands following climate and land cover change. Water Resour Res 44(10):357–367CrossRef Collins DBG, Bras RL (2008) Climatic control of sediment yield in dry lands following climate and land cover change. Water Resour Res 44(10):357–367CrossRef
Zurück zum Zitat Coppola E Jr, Poulton M, Charles E, Dustman J, Szidarovszky F (2003) Application of artificial neural networks to complex groundwater management problems. Nat Resour Res 12(4):303–320CrossRef Coppola E Jr, Poulton M, Charles E, Dustman J, Szidarovszky F (2003) Application of artificial neural networks to complex groundwater management problems. Nat Resour Res 12(4):303–320CrossRef
Zurück zum Zitat Coulibaly P, Anctil F, Aravena R, Bobée B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885–896CrossRef Coulibaly P, Anctil F, Aravena R, Bobée B (2001) Artificial neural network modeling of water table depth fluctuations. Water Resour Res 37(4):885–896CrossRef
Zurück zum Zitat Crow WT et al (2012) Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev Geophys 50:RG2002. doi:10.1029/2011RG000372 CrossRef Crow WT et al (2012) Upscaling sparse ground-based soil moisture observations for the validation of coarse-resolution satellite soil moisture products. Rev Geophys 50:RG2002. doi:10.​1029/​2011RG000372 CrossRef
Zurück zum Zitat DeBarry PA (2004) Watersheds: processes, assessment, and management. Wiley Hoboken, NJ DeBarry PA (2004) Watersheds: processes, assessment, and management. Wiley Hoboken, NJ
Zurück zum Zitat Dolling OR, Varas EA (2002) Artificial neural networks for streamflow prediction. J Hydraul Res 40(5):547–554CrossRef Dolling OR, Varas EA (2002) Artificial neural networks for streamflow prediction. J Hydraul Res 40(5):547–554CrossRef
Zurück zum Zitat Eltahir EAB (1998) A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour Res 34(4):765–776CrossRef Eltahir EAB (1998) A soil moisture–rainfall feedback mechanism: 1. Theory and observations. Water Resour Res 34(4):765–776CrossRef
Zurück zum Zitat Gao X, Wu P, Zhao X, Wang J, Shi Y, Zhang B, Tian L, Li H (2013) Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. J Hydrol 486:466–478. doi:10.1016/j.jhydrol.2013.02.026 CrossRef Gao X, Wu P, Zhao X, Wang J, Shi Y, Zhang B, Tian L, Li H (2013) Estimation of spatial soil moisture averages in a large gully of the Loess Plateau of China through statistical and modeling solutions. J Hydrol 486:466–478. doi:10.​1016/​j.​jhydrol.​2013.​02.​026 CrossRef
Zurück zum Zitat Haan CT (2002) Statistical methods in hydrology, 2nd edn. The Iowa State University Press, Iowa Haan CT (2002) Statistical methods in hydrology, 2nd edn. The Iowa State University Press, Iowa
Zurück zum Zitat Jackson TJ (1997) Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resour Res 33(6):1475–1484CrossRef Jackson TJ (1997) Soil moisture estimation using special satellite microwave/imager satellite data over a grassland region. Water Resour Res 33(6):1475–1484CrossRef
Zurück zum Zitat Jha M, Pan Z, Takle ES, Gu R (2004) Impacts of climate change on streamflow in the upper Mississippi river basin: a regional climate model perspective. J Geophys Res 109(D9):D09105. doi:10.1029/2003JD003686 CrossRef Jha M, Pan Z, Takle ES, Gu R (2004) Impacts of climate change on streamflow in the upper Mississippi river basin: a regional climate model perspective. J Geophys Res 109(D9):D09105. doi:10.​1029/​2003JD003686 CrossRef
Zurück zum Zitat Kisi Ö (2004) River flow modeling using artificial neural networks. J Hydrol Eng 9(1):60–63CrossRef Kisi Ö (2004) River flow modeling using artificial neural networks. J Hydrol Eng 9(1):60–63CrossRef
Zurück zum Zitat Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12(5):532–539CrossRef Kişi Ö (2007) Streamflow forecasting using different artificial neural network algorithms. J Hydrol Eng 12(5):532–539CrossRef
Zurück zum Zitat Kohonen T (2012) Self-organization and associative memory, vol 8. Springer, Berlin Kohonen T (2012) Self-organization and associative memory, vol 8. Springer, Berlin
Zurück zum Zitat Langevin CD, Panday S (2012) Future of groundwater modeling. Groundwater 50(3):334–339CrossRef Langevin CD, Panday S (2012) Future of groundwater modeling. Groundwater 50(3):334–339CrossRef
Zurück zum Zitat Machiwal D, Jha MK (2008) Comparative evaluation of statistical tests for time series analysis: application to hydrological time series/evaluation comparative de tests statistiques pour l’analyse de s{é}ries temporelles: application à des s{é}ries temporelles hydrologiques. Hydrol Sci J 53(2):353–366CrossRef Machiwal D, Jha MK (2008) Comparative evaluation of statistical tests for time series analysis: application to hydrological time series/evaluation comparative de tests statistiques pour l’analyse de s{é}ries temporelles: application à des s{é}ries temporelles hydrologiques. Hydrol Sci J 53(2):353–366CrossRef
Zurück zum Zitat Machiwal D, Jha MK (2012) Hydrologic time series analysis: theory and practice. Springer, BerlinCrossRef Machiwal D, Jha MK (2012) Hydrologic time series analysis: theory and practice. Springer, BerlinCrossRef
Zurück zum Zitat Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022CrossRef Maier HR, Dandy GC (1996) The use of artificial neural networks for the prediction of water quality parameters. Water Resour Res 32(4):1013–1022CrossRef
Zurück zum Zitat Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417CrossRef Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417CrossRef
Zurück zum Zitat Moriasi DN, Arnold JG, Van Liew MV, Binger RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50(3):885–900 Moriasi DN, Arnold JG, Van Liew MV, Binger RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Am Soc Agric Biol Eng 50(3):885–900
Zurück zum Zitat Mutlu E, Chaubey I, Hexmoor H, Bajwa SG (2008) Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol Process. doi:10.1002/hyp.7136 Mutlu E, Chaubey I, Hexmoor H, Bajwa SG (2008) Comparison of artificial neural network models for hydrologic predictions at multiple gauging stations in an agricultural watershed. Hydrol Process. doi:10.​1002/​hyp.​7136
Zurück zum Zitat Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part1-A discussion of principles. J Hydrol 10(3):282–290CrossRef Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models part1-A discussion of principles. J Hydrol 10(3):282–290CrossRef
Zurück zum Zitat Pan F, Peters-Lidard CD, Sale MJ (2003) An analytical method for predicting surface soil moisture from rainfall observations. Water Resour Res 39(11), Article No. 1314. doi:10.1029/2003WR002142 Pan F, Peters-Lidard CD, Sale MJ (2003) An analytical method for predicting surface soil moisture from rainfall observations. Water Resour Res 39(11), Article No. 1314. doi:10.​1029/​2003WR002142
Zurück zum Zitat Rodriguez-Iturbe I, D’odorico P, Porporato A, Ridolfi L (1999) On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour Res 35(12):3709–3722CrossRef Rodriguez-Iturbe I, D’odorico P, Porporato A, Ridolfi L (1999) On the spatial and temporal links between vegetation, climate, and soil moisture. Water Resour Res 35(12):3709–3722CrossRef
Zurück zum Zitat Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3):232–239CrossRef Tokar AS, Johnson PA (1999) Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4(3):232–239CrossRef
Zurück zum Zitat Wetzel PJ, Atlas D, Woodward RH (1984) Determining soil moisture from geosynchronous satellite infrared data: a feasibility study. J Clim Appl Meteorol 23(3):375–391CrossRef Wetzel PJ, Atlas D, Woodward RH (1984) Determining soil moisture from geosynchronous satellite infrared data: a feasibility study. J Clim Appl Meteorol 23(3):375–391CrossRef
Metadaten
Titel
Modelling the root zone soil moisture using artificial neural networks, a case study
verfasst von
Mustafa Al-Mukhtar
Publikationsdatum
01.08.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Environmental Earth Sciences / Ausgabe 15/2016
Print ISSN: 1866-6280
Elektronische ISSN: 1866-6299
DOI
https://doi.org/10.1007/s12665-016-5929-2

Weitere Artikel der Ausgabe 15/2016

Environmental Earth Sciences 15/2016 Zur Ausgabe