Skip to main content
Erschienen in: Physics of Metals and Metallography 6/2022

01.06.2022 | STRENGTH AND PLASTICITY

The Effects of Yttrium and Erbium on the Phase Composition and Aging of the Al–Zn–Mg–Cu–Zr Alloy with a High Copper Content

verfasst von: M. V. Glavatskikh, R. Yu. Barkov, M. G. Khomutov, A. V. Pozdniakov

Erschienen in: Physics of Metals and Metallography | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Thermodynamic calculations, scanning electron microscopy, X-ray diffraction analysis, and differential scanning calorimetry have been used to study the phase composition of a Al–Zn–Mg–Cu–Zr alloy that is rich in copper, which was additionally alloyed with yttrium or erbium. There are (Al), T, Al8Cu4Y, and AlMgY phases of solidification origin in the AlZnMgCuZrY alloy. The erbium-bearing AlZnMgCuZrEr alloy contains three additional intermetallic phases in addition to the T phase: two intermetallic phases with a composition close to the Al8Cu4Er phase and one of the Al3Er composition. One of the Al8Cu4Er-phase particles contains approximately 2 wt % Fe. Aging at 150°C led to a greater increment in the hardness of the erbium alloy, while the hardness level achieved is the same for all alloys under study. Overaging at 210 and 250°C takes place significantly earlier in the alloy without yttrium and erbium additives, given the same level of hardening. Taking the fact into account that the kinetics of aging depend mainly on the (Al) composition, the differences in kinetics in the alloys with additions can be explained by dispersoids formed during homogenization before quenching and the solid solution depleted of the main elements (zinc, magnesium, and copper). The yield strength of the alloys with yttrium and erbium additives is insignificantly lower at high temperatures, which is likely due to the lower alloying of the aluminum matrix. However, these alloys are of a better technological effectiveness at casting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, M. Guo, and L. Cao, “Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios,” J. Mater. Sci. Technol. 85, 106–117 (2021).CrossRef Y. Zou, X. Wu, S. Tang, Q. Zhu, H. Song, M. Guo, and L. Cao, “Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios,” J. Mater. Sci. Technol. 85, 106–117 (2021).CrossRef
2.
Zurück zum Zitat V. S. Zolotorevskii, Doctoral Dissertation in Engineering (MISiS, Moscow, 1978) [in Russian]. V. S. Zolotorevskii, Doctoral Dissertation in Engineering (MISiS, Moscow, 1978) [in Russian].
3.
Zurück zum Zitat N. S. Gerchikova, I. N. Fridlyander, N. I. Zaitseva, and N. N. Kirkina, “Change in the structure and properties of Al–Zn–Mg alloys,” Met. Sci. Heat Treat. 14 (3), 233–236 (1972).CrossRef N. S. Gerchikova, I. N. Fridlyander, N. I. Zaitseva, and N. N. Kirkina, “Change in the structure and properties of Al–Zn–Mg alloys,” Met. Sci. Heat Treat. 14 (3), 233–236 (1972).CrossRef
4.
Zurück zum Zitat I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian]. I. I. Novikov, Hot Brittleness of Non-Ferrous Metals and Alloys (Nauka, Moscow, 1966) [in Russian].
5.
Zurück zum Zitat V. V. Cheverikin Candidate’s Dissertation in Engineering (MISiS, Moscow, 2007) [in Russian]. V. V. Cheverikin Candidate’s Dissertation in Engineering (MISiS, Moscow, 2007) [in Russian].
6.
Zurück zum Zitat Y. Pan, D. Zhang, H. Liu, L. Zhuang, and J. Zhang, “Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(–Cu) alloys,” J. Alloys Compd. 853, 157199 (2021).CrossRef Y. Pan, D. Zhang, H. Liu, L. Zhuang, and J. Zhang, “Precipitation hardening and intergranular corrosion behavior of novel Al–Mg–Zn(–Cu) alloys,” J. Alloys Compd. 853, 157199 (2021).CrossRef
7.
Zurück zum Zitat V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Zn–Mg matrix using thermodynamic calculations and mathematic modeling,” Phys. Met. Metallogr. 115 (3), 286–294 (2014).CrossRef V. S. Zolotorevskiy, A. V. Pozdniakov, and A. Yu. Churyumov, “Search for promising compositions for developing new multiphase casting alloys based on Al–Zn–Mg matrix using thermodynamic calculations and mathematic modeling,” Phys. Met. Metallogr. 115 (3), 286–294 (2014).CrossRef
8.
Zurück zum Zitat A. V. Pozdniakov, V. S. Zolotorevskiy, and O. I. Mamzurina, “Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 28 (5), 318–321 (2015).CrossRef A. V. Pozdniakov, V. S. Zolotorevskiy, and O. I. Mamzurina, “Determining the hot cracking index of Al–Mg–Zn casting alloys calculated using the effective solidification range,” Int. J. Cast Met. Res. 28 (5), 318–321 (2015).CrossRef
9.
Zurück zum Zitat P. K. Shurkin, T. K. Akopyan, S. P. Galkin, and A. S. Aleshchenko, “Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al–Zn–Mg–Ni–Fe system,” Met. Sci. Heat Treat. 60, 764–769 (2019).CrossRef P. K. Shurkin, T. K. Akopyan, S. P. Galkin, and A. S. Aleshchenko, “Effect of radial shear rolling on the structure and mechanical properties of a new-generation high-strength aluminum alloy based on the Al–Zn–Mg–Ni–Fe system,” Met. Sci. Heat Treat. 60, 764–769 (2019).CrossRef
10.
Zurück zum Zitat N. Ryum, “Precipitation and recrystallization in an Al–0.5 wt % Zr-alloy,” Acta Metall. 17, 269–278 (1969).CrossRef N. Ryum, “Precipitation and recrystallization in an Al–0.5 wt % Zr-alloy,” Acta Metall. 17, 269–278 (1969).CrossRef
11.
Zurück zum Zitat E. Nes and H. Billdal, “The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al-Zr solid solution,” Acta Metall. 25, 1039–1046 (1977).CrossRef E. Nes and H. Billdal, “The mechanism of discontinuous precipitation of the metastable Al3Zr phase from an Al-Zr solid solution,” Acta Metall. 25, 1039–1046 (1977).CrossRef
12.
Zurück zum Zitat K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Nucleation and precipitation strengthening in dilute Al–Ti and Al–Zr alloys,” Metall. Mater. Trans. A 38, 2552–2563 (2007).CrossRef K. E. Knipling, D. C. Dunand, and D. N. Seidman, “Nucleation and precipitation strengthening in dilute Al–Ti and Al–Zr alloys,” Metall. Mater. Trans. A 38, 2552–2563 (2007).CrossRef
13.
Zurück zum Zitat N. A. Belov, A. N. Alabin, and A. Yu. Prokhorov, “The influence that a zirconium additive has on the strength and electrical resistance of cold-rolled aluminum sheets,” Russ. J. Non-Ferrous Met. 50, 357–362 (2009).CrossRef N. A. Belov, A. N. Alabin, and A. Yu. Prokhorov, “The influence that a zirconium additive has on the strength and electrical resistance of cold-rolled aluminum sheets,” Russ. J. Non-Ferrous Met. 50, 357–362 (2009).CrossRef
14.
Zurück zum Zitat N. A. Belov, A. N. Alabin, and A. Yu. Prokhorov, “Annealing effect on electrical resistance and mechanical properties of cold + worked alloy Al–0.6% (wt) Zr,” Tsvetn. Met., No. 10, 65–68 (2009). N. A. Belov, A. N. Alabin, and A. Yu. Prokhorov, “Annealing effect on electrical resistance and mechanical properties of cold + worked alloy Al–0.6% (wt) Zr,” Tsvetn. Met., No. 10, 65–68 (2009).
15.
Zurück zum Zitat P. H. L. Souza, C. A. S. de Oliveira, and J. M. do Vale Quaresma, “Precipitation hardening in dilute Al–Zr alloys,” J. Mater. Res. Technol. 7, 66–72 (2018).CrossRef P. H. L. Souza, C. A. S. de Oliveira, and J. M. do Vale Quaresma, “Precipitation hardening in dilute Al–Zr alloys,” J. Mater. Res. Technol. 7, 66–72 (2018).CrossRef
16.
Zurück zum Zitat V. V. Zakharov and I. A. Fisenko, “Effect of homogenization on the structure and properties of alloy of the Al–Zn–Mg–Sc–Zr system,” Met. Sci. Heat Treat. 60, 354–359 (2018).CrossRef V. V. Zakharov and I. A. Fisenko, “Effect of homogenization on the structure and properties of alloy of the Al–Zn–Mg–Sc–Zr system,” Met. Sci. Heat Treat. 60, 354–359 (2018).CrossRef
17.
Zurück zum Zitat A. V. Mikhaylovskaya, A. D. Kotov, A. V. Pozdniakov, and V. K. Portnoy, “A high-strength aluminium-based alloy with advanced superplasticity,” J. Alloys Compd. 599, 139–144 (2014).CrossRef A. V. Mikhaylovskaya, A. D. Kotov, A. V. Pozdniakov, and V. K. Portnoy, “A high-strength aluminium-based alloy with advanced superplasticity,” J. Alloys Compd. 599, 139–144 (2014).CrossRef
18.
Zurück zum Zitat A. D. Kotov, A. V. Mikhaylovskaya, A. A. Borisov, O. A. Yakovtseva, and V. K. Portnoy, “High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni additions,” Phys. Met. Metallogr. 118, 913–921 (2017).CrossRef A. D. Kotov, A. V. Mikhaylovskaya, A. A. Borisov, O. A. Yakovtseva, and V. K. Portnoy, “High-strain-rate superplasticity of the Al–Zn–Mg–Cu alloys with Fe and Ni additions,” Phys. Met. Metallogr. 118, 913–921 (2017).CrossRef
19.
Zurück zum Zitat A. D. Kotov, A. V. Mikhaylovskaya, and V. K. Portnoy, “Effect of the solid-solution composition on the superplasticity characteristics of Al–Zn–Mg–Cu–Ni–Zr alloys,” Phys. Met. Metallogr. 115, 730–735 (2014).CrossRef A. D. Kotov, A. V. Mikhaylovskaya, and V. K. Portnoy, “Effect of the solid-solution composition on the superplasticity characteristics of Al–Zn–Mg–Cu–Ni–Zr alloys,” Phys. Met. Metallogr. 115, 730–735 (2014).CrossRef
20.
Zurück zum Zitat A. N. Petrova, I. G. Brodova, S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, 1221–1227 (2019).CrossRef A. N. Petrova, I. G. Brodova, S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, 1221–1227 (2019).CrossRef
21.
Zurück zum Zitat I. G. Brodova, I. G. Shirinkina, D. Yu. Rasposienko, and T. K. Akopyan, “Structural evolution in the quenched Al–Zn–Mg–Fe–Ni alloy during severe plastic deformation and annealing,” Phys. Met. Metallogr. 121, 899–905 (2020).CrossRef I. G. Brodova, I. G. Shirinkina, D. Yu. Rasposienko, and T. K. Akopyan, “Structural evolution in the quenched Al–Zn–Mg–Fe–Ni alloy during severe plastic deformation and annealing,” Phys. Met. Metallogr. 121, 899–905 (2020).CrossRef
22.
Zurück zum Zitat I. G. Shirinkina and I. G. Brodova, “Annealing-induced structural–phase transformations in an Al–Zn–Mg–Fe–Ni Alloy after high pressure torsion,” Phys. Met. Metallogr. 121, 344–351 (2020).CrossRef I. G. Shirinkina and I. G. Brodova, “Annealing-induced structural–phase transformations in an Al–Zn–Mg–Fe–Ni Alloy after high pressure torsion,” Phys. Met. Metallogr. 121, 344–351 (2020).CrossRef
23.
Zurück zum Zitat A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterization of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34 (12), 1489–1496 (2018).CrossRef A. V. Pozdniakov and R. Y. Barkov, “Microstructure and materials characterization of the novel Al–Cu–Y alloy,” Mater. Sci. Technol. 34 (12), 1489–1496 (2018).CrossRef
24.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121 (5), 476–482 (2020).CrossRef S. M. Amer, R. Y. Barkov, O. A. Yakovtseva, and A. V. Pozdniakov, “Comparative analysis of structure and properties of quasibinary Al–6.5Cu–2.3Y and Al–6Cu–4.05Er alloys,” Phys. Met. Metallogr. 121 (5), 476–482 (2020).CrossRef
25.
Zurück zum Zitat A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a New Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120 (6), 614–619 (2019).CrossRef A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a New Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120 (6), 614–619 (2019).CrossRef
26.
Zurück zum Zitat A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef A. V. Pozdniakov, R. Yu. Barkov, S. M. Amer, V. S. Levchenko, A. D. Kotov, and A. V. Mikhaylovskaya, “Microstructure, mechanical properties and superplasticity of the Al–Cu–Y–Zr alloy,” Mater. Sci. Eng., A 758, 28–35 (2019).CrossRef
27.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36 (4), 453–459 (2020).CrossRef S. M. Amer, R. Yu. Barkov, O. A. Yakovtseva, I. S. Loginova, and A. V. Pozdniakov, “Effect of Zr on microstructure and mechanical properties of the Al–Cu–Er alloy,” Mater. Sci. Technol. 36 (4), 453–459 (2020).CrossRef
28.
Zurück zum Zitat S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy, O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM 73 (10), 3092–3101 (2021).CrossRef S. M. Amer, A. V. Mikhaylovskaya, R. Yu. Barkov, A. D. Kotov, A. G. Mochugovskiy, O. A. Yakovtseva, M. V. Glavatskikh, I. S. Loginova, S. V. Medvedeva, and A. V. Pozdniakov, “Effect of homogenization treatment regime on microstructure, recrystallization behavior, mechanical properties, and superplasticity of Al–Cu–Er–Zr alloy,” JOM 73 (10), 3092–3101 (2021).CrossRef
29.
Zurück zum Zitat S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, Al. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020).CrossRef S. Amer, O. Yakovtseva, I. Loginova, S. Medvedeva, Al. Prosviryakov, A. Bazlov, R. Barkov, and A. Pozdniakov, “The phase composition and mechanical properties of the novel precipitation-strengthening Al–Cu–Er–Mn–Zr alloy,” Appl. Sci. 10, 5345 (2020).CrossRef
30.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121 (2), 1227–1232 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of Mn on the phase composition and properties of Al–Cu–Y–Zr alloy,” Phys. Met. Metallogr. 121 (2), 1227–1232 (2020).CrossRef
31.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Phys. Met. Metallogr. 122, 908–914 (2021).CrossRef S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new heat-resistant cast alloys based on the Al–Cu–Y and Al–Cu–Er systems,” Phys. Met. Metallogr. 122, 908–914 (2021).CrossRef
32.
Zurück zum Zitat S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys,” Phys. Met. Metallogr. 122, 915–922 (2021).CrossRef S. M. Amer, R. Y. Barkov, A. S. Prosviryakov, and A. V. Pozdniakov, “Structure and properties of new wrought Al–Cu–Y and Al–Cu–Er based alloys,” Phys. Met. Metallogr. 122, 915–922 (2021).CrossRef
33.
Zurück zum Zitat R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef R. Yu. Barkov, A. V. Pozdniakov, E. Tkachuk, and V. S. Zolotorevskiy, “Effect of Y on microstructure and mechanical properties of Al–Mg–Mn–Zr–Sc alloy with low Sc content,” Mater. Lett. 217, 135–138 (2018).CrossRef
34.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121 (10), 1002–1007 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of iron and silicon impurities on phase composition and mechanical properties of Al–6.3Cu–3.2Y alloy,” Phys. Met. Metallogr. 121 (10), 1002–1007 (2020).CrossRef
35.
Zurück zum Zitat S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121 (5), 495–499 (2020).CrossRef S. M. Amer, R. Yu. Barkov, and A. V. Pozdniakov, “Effect of impurities on the phase composition and properties of a wrought Al–6% Cu–4.05% Er alloy,” Phys. Met. Metallogr. 121 (5), 495–499 (2020).CrossRef
36.
Zurück zum Zitat A. Lotfy, A. V. Pozdniakov, V. S. Zolotorevskiy, E. Mohamed, M. T. Abou El-Khair, A. Daoud, and F. Fairouz, “Microstructure, compression and creep properties of Al–5% Cu–0.8Mn/5% B4C composites,” Mater. Res. Express 6, 095530 (2019).CrossRef A. Lotfy, A. V. Pozdniakov, V. S. Zolotorevskiy, E. Mohamed, M. T. Abou El-Khair, A. Daoud, and F. Fairouz, “Microstructure, compression and creep properties of Al–5% Cu–0.8Mn/5% B4C composites,” Mater. Res. Express 6, 095530 (2019).CrossRef
37.
Zurück zum Zitat D. R. Manca, A. Yu. Churyumov, A. V. Pozdniakov, A. S. Prosviryakov, D. K. Ryabov, A. Yu. Krokhin, V. A. Korolev, and D. K. Daubarayte, “Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing,” Met. Mater. Int. 25 (3), 633–640 (2019).CrossRef D. R. Manca, A. Yu. Churyumov, A. V. Pozdniakov, A. S. Prosviryakov, D. K. Ryabov, A. Yu. Krokhin, V. A. Korolev, and D. K. Daubarayte, “Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing,” Met. Mater. Int. 25 (3), 633–640 (2019).CrossRef
Metadaten
Titel
The Effects of Yttrium and Erbium on the Phase Composition and Aging of the Al–Zn–Mg–Cu–Zr Alloy with a High Copper Content
verfasst von
M. V. Glavatskikh
R. Yu. Barkov
M. G. Khomutov
A. V. Pozdniakov
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 6/2022
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X22060060

Weitere Artikel der Ausgabe 6/2022

Physics of Metals and Metallography 6/2022 Zur Ausgabe