Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 12/2022

11.05.2022 | Technical Article

As-Cast High Entropy Shape Memory Alloys of (TiHfX)50(NiCu)50 with Large Recoverable Strain and Good Mechanical Properties

verfasst von: Guangwei Zhao, Da Li, Guoxiong Xu, Dong Fang, Yongsheng Ye, Caihua Huang, Zengmin Shi

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 12/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The proposal of a high entropy shape memory alloy (HESMA) has opened a new field for the application of high-entropy alloys (HEAs) and the development of shape memory alloys (SMAs). However, to date, the recoverable strains of reported HESMAs have been generally modest, and their preparation processes have been complex. In this work, novel as-cast (TiHfX)50(NiCu)50 HESMAs with a very large recoverable strain (9.4%) and excellent mechanical properties were fabricated. A lower elastic modulus and lattice distortion strengthening effect were considered to contribute to the large recoverable strain characteristics of HESMAs. The strategy of finding HESMAs with good comprehensive properties by designing low Cv values may provide useful guidelines in this field.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat G.S. Firstov, T.A. Kosorukova, Y.N. Koval and V.V. Odnosum, High Entropy Shape Memory Alloys, Mater. Today Proc., 2015, 2S, p S499.CrossRef G.S. Firstov, T.A. Kosorukova, Y.N. Koval and V.V. Odnosum, High Entropy Shape Memory Alloys, Mater. Today Proc., 2015, 2S, p S499.CrossRef
2.
Zurück zum Zitat J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau and S.Y. Chang, Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes, Adv. Eng. Mater., 2004, 6(5), p 299–303.CrossRef
3.
Zurück zum Zitat C.H. Chen, Y.J. Chen and J.J. Shen, Microstructure and Mechanical Properties of (TiZrHf)50(NiCoCu)50 High Entropy Alloys, Met. Mater. Int., 2020, 26, p 617.CrossRef C.H. Chen, Y.J. Chen and J.J. Shen, Microstructure and Mechanical Properties of (TiZrHf)50(NiCoCu)50 High Entropy Alloys, Met. Mater. Int., 2020, 26, p 617.CrossRef
4.
Zurück zum Zitat X.C Ye, Z.H. Cheng, C. Liu, X. Wu, L.E. Yu, M.Y. Liu, D. Fang, G.W Zhao, and B. Li, The Microstructure And Properties of Fe55Cr15Ni(30-x)Nbx Eutectic High-Entropy Alloys, Mater. Sci. Eng. A, 2022, 844, p 143026. X.C Ye, Z.H. Cheng, C. Liu, X. Wu, L.E. Yu, M.Y. Liu, D. Fang, G.W Zhao, and B. Li, The Microstructure And Properties of Fe55Cr15Ni(30-x)Nbx Eutectic High-Entropy Alloys, Mater. Sci. Eng. A, 2022, 844, p 143026.
5.
Zurück zum Zitat T.A. Kosorukova, G. Gerstein, V.V. Odnosum, Y.N. Koval, H.J. Maier and G.S. Firstov, Microstructure Formation in Cast TiZrHfCoNiCu and CoNiCuAlGaIn High Entropy Shape Memory Alloys: A Comparison, Materials., 2019, 12, p 4227.CrossRef T.A. Kosorukova, G. Gerstein, V.V. Odnosum, Y.N. Koval, H.J. Maier and G.S. Firstov, Microstructure Formation in Cast TiZrHfCoNiCu and CoNiCuAlGaIn High Entropy Shape Memory Alloys: A Comparison, Materials., 2019, 12, p 4227.CrossRef
6.
Zurück zum Zitat G.S. Firstov, T.A. Kosorukova, Y.N. Koval and P.A. Verhovlyuk, Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials?, Shap. Mem. Superelasticity., 2015, 1, p 400.CrossRef G.S. Firstov, T.A. Kosorukova, Y.N. Koval and P.A. Verhovlyuk, Directions for High-Temperature Shape Memory Alloys’ Improvement: Straight Way to High-Entropy Materials?, Shap. Mem. Superelasticity., 2015, 1, p 400.CrossRef
7.
Zurück zum Zitat J. Yaacoub, W. Abuzaid, F. Brenne and H. Sehitoglu, Superelasticity of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy, Scr. Mater., 2020, 186, p 43–47.CrossRef J. Yaacoub, W. Abuzaid, F. Brenne and H. Sehitoglu, Superelasticity of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy, Scr. Mater., 2020, 186, p 43–47.CrossRef
8.
Zurück zum Zitat H.C. Lee, Y.J. Chen, and C.H. Chen, Effect of Solution Treatment on the Shape Memory Functions of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy., Entropy, 2019, 21, p 1027. H.C. Lee, Y.J. Chen, and C.H. Chen, Effect of Solution Treatment on the Shape Memory Functions of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy., Entropy, 2019, 21, p 1027.
9.
Zurück zum Zitat C.H. Chen and Y.J. Chen, Shape Memory Characteristics of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy, Scr. Mater., 2019, 162, p 185–189.CrossRef C.H. Chen and Y.J. Chen, Shape Memory Characteristics of (TiZrHf)50Ni25Co10Cu15 High Entropy Shape Memory Alloy, Scr. Mater., 2019, 162, p 185–189.CrossRef
10.
Zurück zum Zitat S.H. Chang, P.T. Lin and C.W. Tsai, High-Temperature Martensitic Transformation of CuNiHfTiZr High-Entropy Alloys, Sci. Rep., 2019, 9, p 19598.CrossRef S.H. Chang, P.T. Lin and C.W. Tsai, High-Temperature Martensitic Transformation of CuNiHfTiZr High-Entropy Alloys, Sci. Rep., 2019, 9, p 19598.CrossRef
11.
Zurück zum Zitat S.H. Li, D.Y. Cong, Z. Chen, S.W. Li, C. Song, Y.X. Cao, Z.H. Nie and Y.D. Wang, A High-Entropy High-Temperature Shape Memory Alloy with Large and Complete Superelastic Recovery, Mater. Res. Lett., 2021, 9, p 263–269.CrossRef S.H. Li, D.Y. Cong, Z. Chen, S.W. Li, C. Song, Y.X. Cao, Z.H. Nie and Y.D. Wang, A High-Entropy High-Temperature Shape Memory Alloy with Large and Complete Superelastic Recovery, Mater. Res. Lett., 2021, 9, p 263–269.CrossRef
12.
Zurück zum Zitat S.H. Li, D.Y. Cong, X.M. Sun, Y. Zhang, Z. Chen, Z.H. Nie, R.G. Li, F.Q. Li, Y. Ren and Y.D. Wang, Wide-Temperature-Range Perfect Superelasticity and Giant Elastocaloric Effect in a High Entropy Alloy, Mater. Res. Lett., 2019, 7, p 482–498.CrossRef S.H. Li, D.Y. Cong, X.M. Sun, Y. Zhang, Z. Chen, Z.H. Nie, R.G. Li, F.Q. Li, Y. Ren and Y.D. Wang, Wide-Temperature-Range Perfect Superelasticity and Giant Elastocaloric Effect in a High Entropy Alloy, Mater. Res. Lett., 2019, 7, p 482–498.CrossRef
13.
Zurück zum Zitat D. Canadinc, W. Trehern, J. Ma, I. Karaman, F.P. Su and Z. Chaudhry, Ultra-High Temperature Multi-Component Shape Memory Alloys, Scr. Mater., 2019, 158, p 83–87.CrossRef D. Canadinc, W. Trehern, J. Ma, I. Karaman, F.P. Su and Z. Chaudhry, Ultra-High Temperature Multi-Component Shape Memory Alloys, Scr. Mater., 2019, 158, p 83–87.CrossRef
14.
Zurück zum Zitat D. Piorunek, J. Frenzel, N. Jöns, C. Somsen and G. Eggeler, Chemical Complexity, Microstructure and Martensitic Transformation in High Entropy Shape Memory Alloys, Intermetallics, 2020, 122, 106792.CrossRef D. Piorunek, J. Frenzel, N. Jöns, C. Somsen and G. Eggeler, Chemical Complexity, Microstructure and Martensitic Transformation in High Entropy Shape Memory Alloys, Intermetallics, 2020, 122, 106792.CrossRef
15.
Zurück zum Zitat D. Piorunek, O. Oluwabi, J. Frenzel, A. Kostka, H.J. Maier, C. Somsen and G. Eggeler, Effect of Off-Stoichiometric Compositions on Microstructures and Phase Transformation Behavior in Ni-Cu-Pd-Ti-Zr-Hf High Entropy Shape MemoryAlloys, J. Alloy. Compd., 2021, 857, 157467.CrossRef D. Piorunek, O. Oluwabi, J. Frenzel, A. Kostka, H.J. Maier, C. Somsen and G. Eggeler, Effect of Off-Stoichiometric Compositions on Microstructures and Phase Transformation Behavior in Ni-Cu-Pd-Ti-Zr-Hf High Entropy Shape MemoryAlloys, J. Alloy. Compd., 2021, 857, 157467.CrossRef
16.
Zurück zum Zitat L. Wang, C. Fu, Y.D. Wu, R.G. Li, X.D. Hui and Y.D. Wang, Superelastic Effect in Ti-rich High Entropy Alloys Via Stress-Induced Martensitic Transformation, Scr. Mater., 2019, 162, p 112–117.CrossRef L. Wang, C. Fu, Y.D. Wu, R.G. Li, X.D. Hui and Y.D. Wang, Superelastic Effect in Ti-rich High Entropy Alloys Via Stress-Induced Martensitic Transformation, Scr. Mater., 2019, 162, p 112–117.CrossRef
17.
Zurück zum Zitat J.J. Gao, P. Castany and T. Gloriant, Synthesis and Characterization of a New TiZrHfNbTaSn High-Entropy Alloy Exhibiting Superelastic Behavior, Scr. Mater., 2021, 198, 113824.CrossRef J.J. Gao, P. Castany and T. Gloriant, Synthesis and Characterization of a New TiZrHfNbTaSn High-Entropy Alloy Exhibiting Superelastic Behavior, Scr. Mater., 2021, 198, 113824.CrossRef
18.
Zurück zum Zitat N. Hashimoto, Y.A. Zain, A. Yamamoto, T. Koyano, H.Y. Kim and S. Miyazaki, Ovel Beta-Type High Entropy Shape Memory Alloys with Low Magnetic Susceptibility and High Biocompatibility, Mater. Lett., 2021, 287, 129286.CrossRef N. Hashimoto, Y.A. Zain, A. Yamamoto, T. Koyano, H.Y. Kim and S. Miyazaki, Ovel Beta-Type High Entropy Shape Memory Alloys with Low Magnetic Susceptibility and High Biocompatibility, Mater. Lett., 2021, 287, 129286.CrossRef
19.
Zurück zum Zitat C.H. Chen, N.H. Lu, J.J. Shen and Y.J. Chen, Strain Glass and Stress-Induced Martensitic Transformation Characteristics of Ti40Zr10Ni40Co5Cu5 Multi-Principal Element Alloy, Scr. Mater., 2020, 186, p 127–131.CrossRef C.H. Chen, N.H. Lu, J.J. Shen and Y.J. Chen, Strain Glass and Stress-Induced Martensitic Transformation Characteristics of Ti40Zr10Ni40Co5Cu5 Multi-Principal Element Alloy, Scr. Mater., 2020, 186, p 127–131.CrossRef
20.
Zurück zum Zitat R.E. Rajeshwar, K. Margarita, T. Mikhail, S. Nikita and Z. Sergey, Exceptionally High Strain-Hardening and Ductility due to Transformation Induced Plasticity Effect in Ti-rich High-Entropy Alloys, Sci. Rep., 2020, 10, p 13293.CrossRef R.E. Rajeshwar, K. Margarita, T. Mikhail, S. Nikita and Z. Sergey, Exceptionally High Strain-Hardening and Ductility due to Transformation Induced Plasticity Effect in Ti-rich High-Entropy Alloys, Sci. Rep., 2020, 10, p 13293.CrossRef
21.
Zurück zum Zitat G.W. Zhao, J. Chen, C. Ding, D. Fang, C.H. Huang and X.C. Ye, Effect of Yttrium on the Microstructure, Phase Transformation and Superelasticity of a Ti-Ni-Cu Shape Memory Alloy, Vacuum, 2020, 177, 109381.CrossRef G.W. Zhao, J. Chen, C. Ding, D. Fang, C.H. Huang and X.C. Ye, Effect of Yttrium on the Microstructure, Phase Transformation and Superelasticity of a Ti-Ni-Cu Shape Memory Alloy, Vacuum, 2020, 177, 109381.CrossRef
22.
Zurück zum Zitat G.W. Zhao, J. Chen, Y.S. Ye, C.H. Huang and X.C. Ye, Effect of Mo on the Microstructure and Superelasticity of Ti-Ni-Cu Shape Memory Alloys, JMEPEG, 2021, 30, p 617.CrossRef G.W. Zhao, J. Chen, Y.S. Ye, C.H. Huang and X.C. Ye, Effect of Mo on the Microstructure and Superelasticity of Ti-Ni-Cu Shape Memory Alloys, JMEPEG, 2021, 30, p 617.CrossRef
23.
Zurück zum Zitat S.H. Chang, W.P. Kao, K.Y. Hsiao, J.W. Yeh, M.Y. Lu, and C.W. Tsai, High-Temperature Shape Memory Properties of Cu15Ni35Ti25Hf12.5Zr12.5 High-Entropy Alloy, J. Mater. Res. Technol., 2021, 14, p 1235-1242. S.H. Chang, W.P. Kao, K.Y. Hsiao, J.W. Yeh, M.Y. Lu, and C.W. Tsai, High-Temperature Shape Memory Properties of Cu15Ni35Ti25Hf12.5Zr12.5 High-Entropy Alloy, J. Mater. Res. Technol., 2021, 14, p 1235-1242.
24.
Zurück zum Zitat J.S. Kim, Y.J. Kim, W.C. Kim, W.T. Kim and D.H. Kim, Enhancement in Strength and Superelastic Cyclic Durability by Addition of Si in Ni-Ti-Cu-Zr Alloy, Intermetallics, 2020, 124, 106867.CrossRef J.S. Kim, Y.J. Kim, W.C. Kim, W.T. Kim and D.H. Kim, Enhancement in Strength and Superelastic Cyclic Durability by Addition of Si in Ni-Ti-Cu-Zr Alloy, Intermetallics, 2020, 124, 106867.CrossRef
25.
Zurück zum Zitat K.S. Sun, X.Y. Yi, B. Sun, W.H. Gao, H.Z. Wang, X.L. Meng, W. Cai and L.C. Zhao, The Effect of Hf on the Microstructure, Transformation Behaviors and the Mechanical Properties of Ti-Ni-Cu Shape Memory Alloys, J. Alloys. Compd., 2019, 772, p 603–611.CrossRef K.S. Sun, X.Y. Yi, B. Sun, W.H. Gao, H.Z. Wang, X.L. Meng, W. Cai and L.C. Zhao, The Effect of Hf on the Microstructure, Transformation Behaviors and the Mechanical Properties of Ti-Ni-Cu Shape Memory Alloys, J. Alloys. Compd., 2019, 772, p 603–611.CrossRef
26.
Zurück zum Zitat G.C. Wang, K.P. Hu, Y.X. Tong, B. Tian, F. Chen, L. Li, Y.F. Zheng and Z.Y. Gao, Influence of Nb Content on Martensitic Transformation and Mechanical Properties of TiNiCuNb Shape Memory Alloys, Intermetallics, 2016, 72, p 30–35.CrossRef G.C. Wang, K.P. Hu, Y.X. Tong, B. Tian, F. Chen, L. Li, Y.F. Zheng and Z.Y. Gao, Influence of Nb Content on Martensitic Transformation and Mechanical Properties of TiNiCuNb Shape Memory Alloys, Intermetallics, 2016, 72, p 30–35.CrossRef
27.
Zurück zum Zitat J. Li, X.Y. Yi, K.S. Sun, B. Sun, W.H. Gao, H.Z. Wang, X.L. Meng and W.L. Song, The Effect of Zr on the Transformation Behaviors, Microstructure and the Mechanical Properties of Ti-Ni-Cu Shape Memory Alloys, J. Alloys. Compd., 2018, 747, p 348–353.CrossRef J. Li, X.Y. Yi, K.S. Sun, B. Sun, W.H. Gao, H.Z. Wang, X.L. Meng and W.L. Song, The Effect of Zr on the Transformation Behaviors, Microstructure and the Mechanical Properties of Ti-Ni-Cu Shape Memory Alloys, J. Alloys. Compd., 2018, 747, p 348–353.CrossRef
28.
Zurück zum Zitat W. Abuzaid and H. Sehitoglu, Superelasticity and Functional Fatigue of Single Crystalline FeNiCoAlTi Iron-Based Shape Memory Alloy, Mater. Design., 2018, 160, p 642–651.CrossRef W. Abuzaid and H. Sehitoglu, Superelasticity and Functional Fatigue of Single Crystalline FeNiCoAlTi Iron-Based Shape Memory Alloy, Mater. Design., 2018, 160, p 642–651.CrossRef
29.
Zurück zum Zitat L.L. Pavón, E.L. Cuellar, S.V. Hernandez, I.E. Moreno-Cortez, H.Y. Kim and S. Miyazaki, Effect of Heat Treatment Condition on Microstructure and Superelastic Properties of Ti24Zr10Nb2Sn, J. Alloys. Compd., 2019, 782, p 893–898.CrossRef L.L. Pavón, E.L. Cuellar, S.V. Hernandez, I.E. Moreno-Cortez, H.Y. Kim and S. Miyazaki, Effect of Heat Treatment Condition on Microstructure and Superelastic Properties of Ti24Zr10Nb2Sn, J. Alloys. Compd., 2019, 782, p 893–898.CrossRef
30.
Zurück zum Zitat K. Endoh, M. Tahara, T. Inamura and H. Hosoda, Effect of Sn and Zr Content on Superelastic Properties of Ti-Mo-Sn-Zr Biomedical Alloys, Mater. Sci. Eng. A, 2017, 704, p 72–76.CrossRef K. Endoh, M. Tahara, T. Inamura and H. Hosoda, Effect of Sn and Zr Content on Superelastic Properties of Ti-Mo-Sn-Zr Biomedical Alloys, Mater. Sci. Eng. A, 2017, 704, p 72–76.CrossRef
31.
Zurück zum Zitat S.Y. Yang, F. Zhang, J.L. Wu, Y. Lu, Z. Shi, C.P. Wang and X.Y. Liu, Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys, Mater. Design., 2017, 115, p 17–25.CrossRef S.Y. Yang, F. Zhang, J.L. Wu, Y. Lu, Z. Shi, C.P. Wang and X.Y. Liu, Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys, Mater. Design., 2017, 115, p 17–25.CrossRef
32.
Zurück zum Zitat H.G. Armaki, A.C. Leff, M.L. Taheri, J. Dahal, M. Kamarajugadda and K.S. Kumar, Cyclic Compression Response of Micropillars Extracted from Textured Nanocrystalline NiTi Thin-Walled Tubes, Acta Mater., 2017, 136, p 134–147.CrossRef H.G. Armaki, A.C. Leff, M.L. Taheri, J. Dahal, M. Kamarajugadda and K.S. Kumar, Cyclic Compression Response of Micropillars Extracted from Textured Nanocrystalline NiTi Thin-Walled Tubes, Acta Mater., 2017, 136, p 134–147.CrossRef
33.
Zurück zum Zitat P. Hua, K.J. Chu, F.Z. Ren and Q.P. Sun, Cyclic Phase Transformation Behavior of Nanocrystalline NiTi at Microscale, Acta Mater., 2020, 185, p 507–517.CrossRef P. Hua, K.J. Chu, F.Z. Ren and Q.P. Sun, Cyclic Phase Transformation Behavior of Nanocrystalline NiTi at Microscale, Acta Mater., 2020, 185, p 507–517.CrossRef
34.
Zurück zum Zitat X.R. Chen, F. Zhang, M.Y. Chi, S.Y. Yang, C.P. Wang, X.J. Liu and S.S. Zheng, Microstructure, Superelasticity and Shape Memory Effect by Stress-Induced Martensite Stabilization in Cu-Al-Mn-Ti Shape Memory Alloys, Mater. Sci. Eng. A, 2018, 236–237, p 10–17.CrossRef X.R. Chen, F. Zhang, M.Y. Chi, S.Y. Yang, C.P. Wang, X.J. Liu and S.S. Zheng, Microstructure, Superelasticity and Shape Memory Effect by Stress-Induced Martensite Stabilization in Cu-Al-Mn-Ti Shape Memory Alloys, Mater. Sci. Eng. A, 2018, 236–237, p 10–17.CrossRef
35.
Zurück zum Zitat S.Y. Yang, M.Y. Chi, J.X. Zhang, K.X. Zhang, X.Y. Liu, C.P. Wang and X.J. Liu, Shape Memory Effect Promoted Through Martensite Stabilization Induced by the Precipitates in Cu-Al-Mn-Fe Alloys, Mater. Sci. Eng. A, 2019, 739, p 455–462.CrossRef S.Y. Yang, M.Y. Chi, J.X. Zhang, K.X. Zhang, X.Y. Liu, C.P. Wang and X.J. Liu, Shape Memory Effect Promoted Through Martensite Stabilization Induced by the Precipitates in Cu-Al-Mn-Fe Alloys, Mater. Sci. Eng. A, 2019, 739, p 455–462.CrossRef
36.
Zurück zum Zitat J. Chen, S.W. Zhang, Y.H. Zhang, J. Zhang, Y.H. Wen, Q. Yang, S.K. Huang and X.B. Wang, A Study on the Cold Workability and Shape Memory Effect of NiTiHf-Nb Eutectic High-Temperature Shape Memory Alloy, Intermetallics, 2020, 127, 106982.CrossRef J. Chen, S.W. Zhang, Y.H. Zhang, J. Zhang, Y.H. Wen, Q. Yang, S.K. Huang and X.B. Wang, A Study on the Cold Workability and Shape Memory Effect of NiTiHf-Nb Eutectic High-Temperature Shape Memory Alloy, Intermetallics, 2020, 127, 106982.CrossRef
37.
Zurück zum Zitat H. Chen, F. Xiao, X. Liang, Z.X. Li, X.J Jin, and T. Fukuda, Stable and Large Superelasticity and Elastocaloric Effect in Nanocrystalline Ti-44Ni-5Cu-1Al (at%) Alloy, Acta Mater., 2018, 158, p 330-339. H. Chen, F. Xiao, X. Liang, Z.X. Li, X.J Jin, and T. Fukuda, Stable and Large Superelasticity and Elastocaloric Effect in Nanocrystalline Ti-44Ni-5Cu-1Al (at%) Alloy, Acta Mater., 2018, 158, p 330-339.
38.
Zurück zum Zitat H.E. Karaca, E. Acar, B. Basaran, R.D. Noebe, G. Bigelow, A. Garg, F. Yang, M.J. Millsd and Y.I. Chumlyakov, Effects of Aging on (Ref 1 1 1) Oriented NiTiHfPd Single Crystals Under Compression, Scr. Mater., 2012, 67, p 728–731.CrossRef H.E. Karaca, E. Acar, B. Basaran, R.D. Noebe, G. Bigelow, A. Garg, F. Yang, M.J. Millsd and Y.I. Chumlyakov, Effects of Aging on (Ref 1 1 1) Oriented NiTiHfPd Single Crystals Under Compression, Scr. Mater., 2012, 67, p 728–731.CrossRef
39.
Zurück zum Zitat X.Y. Yi, G.J. Shen, X.L. Meng, H.Z. Wan, Z.Y. Gao, W. Cai and L.C. Zhao, The Higher Compressive Strength (TiB+La2O3)/Ti–Ni Shape Memory Alloy Composite with the Larger Recoverable Strain, Compos. Commun., 2021, 23, 100583.CrossRef X.Y. Yi, G.J. Shen, X.L. Meng, H.Z. Wan, Z.Y. Gao, W. Cai and L.C. Zhao, The Higher Compressive Strength (TiB+La2O3)/Ti–Ni Shape Memory Alloy Composite with the Larger Recoverable Strain, Compos. Commun., 2021, 23, 100583.CrossRef
40.
Zurück zum Zitat X.Y. Yi, X.L. Meng, W. Cai and L.C. Zhao, Larger Strain Recovery Characteristics of Ti-Ni-Hf Shape Memory Alloy Composite Under Compression, Scr. Mater., 2018, 153, p 90–93.CrossRef X.Y. Yi, X.L. Meng, W. Cai and L.C. Zhao, Larger Strain Recovery Characteristics of Ti-Ni-Hf Shape Memory Alloy Composite Under Compression, Scr. Mater., 2018, 153, p 90–93.CrossRef
41.
Zurück zum Zitat Y. Zhao, F. Ming, N. Jia, J.H. Chen, S.B. Ren, W. Xu, X.H. Qu, High-Strength Superelastic As-Cast Ni50.9Ti49.1-TiB2 in-situ Composites, Mater. Sci. Eng. A, 2021, 818, p 141451. Y. Zhao, F. Ming, N. Jia, J.H. Chen, S.B. Ren, W. Xu, X.H. Qu, High-Strength Superelastic As-Cast Ni50.9Ti49.1-TiB2 in-situ Composites, Mater. Sci. Eng. A, 2021, 818, p 141451.
42.
Zurück zum Zitat H. Sehitoglu, Y. Wu, L. Patriarca, G. Li, A. Ojha, S. Zhang, Y. Chumlyakov and M. Nishida, Superelasticity and Shape Memory Behavior of NiTiHf Alloys, Shap. Mem. Superelast., 2017, 3, p 168–187.CrossRef H. Sehitoglu, Y. Wu, L. Patriarca, G. Li, A. Ojha, S. Zhang, Y. Chumlyakov and M. Nishida, Superelasticity and Shape Memory Behavior of NiTiHf Alloys, Shap. Mem. Superelast., 2017, 3, p 168–187.CrossRef
43.
Zurück zum Zitat S.M. Saghaian, H.E. Karaca, H. Tobe, A.S. Turabi, S. Saedi, S.E. Saghaian, Y.I. Chumlyakov and R.D. Noebe, High Strength NiTiHf Shape Memory Alloys with Tailorable Properties, Acta Mater., 2017, 134, p 211–220.CrossRef S.M. Saghaian, H.E. Karaca, H. Tobe, A.S. Turabi, S. Saedi, S.E. Saghaian, Y.I. Chumlyakov and R.D. Noebe, High Strength NiTiHf Shape Memory Alloys with Tailorable Properties, Acta Mater., 2017, 134, p 211–220.CrossRef
44.
Zurück zum Zitat X.Y. Yi, K.S. Sun, W.H. Gao, X.L. Meng, W. Cai and L.C. Zhao, Martensitic Transformation and Mechanical Properties of Ti-Ni-Hf high Temperature Shape Memory Alloy with Network Structure Second Particles, J. Alloys. Compd., 2018, 735, p 1219–1226.CrossRef X.Y. Yi, K.S. Sun, W.H. Gao, X.L. Meng, W. Cai and L.C. Zhao, Martensitic Transformation and Mechanical Properties of Ti-Ni-Hf high Temperature Shape Memory Alloy with Network Structure Second Particles, J. Alloys. Compd., 2018, 735, p 1219–1226.CrossRef
45.
Zurück zum Zitat S.S. Liu, C.Q. Xia, T. Yang, Z.D. Yang, N. Liu and Q. Li, High Strength and Superior Corrosion Resistance of the Ti-Ni-Cu-Zr Crystal/Glassy Alloys with Superelasticity, Mater. Lett., 2020, 260, 126938.CrossRef S.S. Liu, C.Q. Xia, T. Yang, Z.D. Yang, N. Liu and Q. Li, High Strength and Superior Corrosion Resistance of the Ti-Ni-Cu-Zr Crystal/Glassy Alloys with Superelasticity, Mater. Lett., 2020, 260, 126938.CrossRef
46.
Zurück zum Zitat X.Y. Yi, W.H. Gao, X.L. Meng, Z.Y. Gao, W. Cai and L.C. Zhao, Martensitic Transformation Behaviors and Mechanical Properties of (Ti36Ni49Hf15)100-xYx High Temperature Shape Memory Alloys, J. Alloys. Compd., 2017, 705, p 98–104.CrossRef X.Y. Yi, W.H. Gao, X.L. Meng, Z.Y. Gao, W. Cai and L.C. Zhao, Martensitic Transformation Behaviors and Mechanical Properties of (Ti36Ni49Hf15)100-xYx High Temperature Shape Memory Alloys, J. Alloys. Compd., 2017, 705, p 98–104.CrossRef
47.
Zurück zum Zitat M. Zarinejad and Y. Liu, Dependence of Transformation Temperatures of NiTi-based Shape-Memory Alloys on the Number and Concentration of Valence Electrons, Adv. Funct. Mater., 2008, 18, p 2789–2794.CrossRef M. Zarinejad and Y. Liu, Dependence of Transformation Temperatures of NiTi-based Shape-Memory Alloys on the Number and Concentration of Valence Electrons, Adv. Funct. Mater., 2008, 18, p 2789–2794.CrossRef
48.
Zurück zum Zitat X.L. Han, K.K. Song, L.M. Zhang, H. Xing, B. Sarac, F. Spieckermann, T. Maity, M. Mühlbacher, L. Wang, I. Kaban and J. Eckert, Microstructures Martensitic Transformation, and Mechanical Behavior of Rapidly Solidified Ti-Ni-Hf and Ti-Ni-Si Shape Memory Alloys, JMEPEG, 2018, 27, p 1005–1015.CrossRef X.L. Han, K.K. Song, L.M. Zhang, H. Xing, B. Sarac, F. Spieckermann, T. Maity, M. Mühlbacher, L. Wang, I. Kaban and J. Eckert, Microstructures Martensitic Transformation, and Mechanical Behavior of Rapidly Solidified Ti-Ni-Hf and Ti-Ni-Si Shape Memory Alloys, JMEPEG, 2018, 27, p 1005–1015.CrossRef
49.
Zurück zum Zitat J.J. Gilman, R.W. Cumberland and R.B. Kaner, Design of Hard Crystals, Int. J. Refract. Met. Hard Mater., 2006, 24, p 1–5.CrossRef J.J. Gilman, R.W. Cumberland and R.B. Kaner, Design of Hard Crystals, Int. J. Refract. Met. Hard Mater., 2006, 24, p 1–5.CrossRef
50.
Zurück zum Zitat W.C. Kim, K.R. Lim, W.T. Kim, E.S. Park, and D.H. Kim, Recent Advances in Multicomponent NiTi-based Shape Memory Alloy Using Metallic Glass as a Precursor, Prog. Mater. Sci., 2021, p 100855. W.C. Kim, K.R. Lim, W.T. Kim, E.S. Park, and D.H. Kim, Recent Advances in Multicomponent NiTi-based Shape Memory Alloy Using Metallic Glass as a Precursor, Prog. Mater. Sci., 2021, p 100855.
Metadaten
Titel
As-Cast High Entropy Shape Memory Alloys of (TiHfX)50(NiCu)50 with Large Recoverable Strain and Good Mechanical Properties
verfasst von
Guangwei Zhao
Da Li
Guoxiong Xu
Dong Fang
Yongsheng Ye
Caihua Huang
Zengmin Shi
Publikationsdatum
11.05.2022
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 12/2022
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-022-06990-3

Weitere Artikel der Ausgabe 12/2022

Journal of Materials Engineering and Performance 12/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.